Skip to Main content Skip to Navigation
Journal articles

Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress

Abstract : Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems. We investigated the growth and cellular characteristics of acclimated mid-exponential phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle (14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experimental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV), 4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies for chlorophyll a content and cell size exhibited similar diel variations in HL and controls, with progressive increases during day and decreases at night, both parameters sharply decreased after the HL+UV shift. Two distinct transcriptional responses were observed among chloroplast genes in the light shift experiments: i) expression of transcription and translation-related genes decreased over the time course, and this transition occurred earlier in treatments than controls; ii) expression of several photosystem I and II genes increased in HL relative to controls, as did the growth rate within the same diel period. However, expression of these genes decreased in HL+UV, likely as a photoprotective mechanism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like, that had not previously been reported. The latter encodes the second largest chloroplast protein in Micromonas and has weak homology to plant Ycf1, an essential component of the plant protein translocon. Analysis of several nuclear genes showed that the expression of LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls. Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased, possibly reflecting enhanced N-assimilation under the 625 μmol photons m-2 s-1 supplied in the HL treatment. NIRFU’s domain structure suggests it may have more efficient electron transfer than plant NIR proteins. Our analyses indicate that Micromonas can readily respond to abrupt environmental changes, such that strong photoinhibition was provoked by combined exposure to HL and UV, but a ca. 6-fold increase in light was stimulatory.
Document type :
Journal articles
Complete list of metadata

Cited literature [48 references]  Display  Hide  Download

https://hal.sorbonne-universite.fr/hal-01490543
Contributor : Gestionnaire Hal-Upmc <>
Submitted on : Wednesday, March 15, 2017 - 2:52:06 PM
Last modification on : Monday, December 14, 2020 - 9:53:27 AM
Long-term archiving on: : Friday, June 16, 2017 - 2:09:14 PM

File

journal.pone.0172135.pdf
Publication funded by an institution

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Marie L. Cuvelier, Jian Guo, Alejandra C. Ortiz, Marijke J. van Baren, Muhammad Akram Tariq, et al.. Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress. PLoS ONE, Public Library of Science, 2017, 12 (3), pp.e0172135. ⟨10.1371/journal.pone.0172135⟩. ⟨hal-01490543⟩

Share

Metrics

Record views

1199

Files downloads

420