ESEO-Tech est le centre de Recherche, Developpement et Innovation de l'ESEO. L'activité de recherche est centrée sur la thématique des systèmes intelligents et communicants, du capteur à la décision.
ESEO-Tech regroupe 4 équipes de recherche : AGE : Automatique et Génie électrique prend appui sur le développement des énergies renouvelables (EnR) dans le paysage de la production d’énergie électrique et travaille au pilotage et à l’optimisation des réseaux électriques intelligents, en partenariat avec l’IREENA – EA 4642, Institut de recherche en Énergie Électrique de Nantes Atlantique. ERIS : L'équipe de Recherche en Informatique et Systèmes s’articule avec un premier axe autour de l'intelligence artificielle pour créer et améliorer des systèmes d'aide à la décision pour les systèmes d'information. Son deuxieme axe s'interesse à l'ingénierie logicielle et en particulier l'ingénierie des modèles en développant des outils de transformation, synchronisation, interprétation ou éxécution de modèles avec un focus particulier sur les systèmes embarqués. L'équipe est partiellement rattachée au LERIA-EA2645 (Laboratoire d’étude et de recherche en informatique de l’Université d’Angers). GSII : Groupe Signal Image et Instrumentation s’intéresse aux domaines du traitement du signal et de l’image et de l’intelligence artificielle pour la mesure, l’instrumentation et le développement de capteurs, sur des applications en géophysique, contrôle non destructif et biomédical, en lien avec le LAUM UMR 6613 –CNRS, le laboratoire d’Acoustique de Le Mans Université. RF-EMC : L'équipe Radio-Fréquences et Compatibilité Électromagnétique travaille à la fois à l’échelle du composant électronique et du système. Elle crée de nouvelles architectures de systèmes et dispositifs de transmission, de récupération/transmission d’énergie électromagnétique et mène des travaux sur la compatibilité électromagnétique : modélisation et caractérisation prédictive des comportements. Ses membres sont associés à l’IETR - Institut d’Electronique et des Technologies du numérique UMR CNRS 6164.
Le laboratoire accueille 35 permanents, dont 27 enseignants-chercheurs, qui élaborent dans leurs domaines respectifs de nouveaux concepts, expérimentent et mènent leurs projets jusqu’à la démonstration en environnement réel. ESEO-Tech accueille également chaque année une trentaine de doctorants et post-doctorants. |
Mots clés
Equations
Malan
Anti-diabetic properties
Autonomous Vehicles
Immunity testing
Action
Conducting materials
Accelerometry
Cable shielding
Monitoring
Thoracic outlet syndrome
Field-to-line coupling
Active Front Steering
Pins
Sleep apnea
Switching piecewise-constant controller
Integrated circuit modeling
GTEM cell
Analytical model
Integrated circuits
IC
Near field
Microstrip
Vehicle dynamics
Malai
Modelling
Mapping
Aging
Calf pain
Apprentissage par Renforcement
Peripheral artery disease
Radio frequency
Emission
Symmetry
Binary sequence
Susceptibility
Accelerométrie
Modélisation
Modeling
Reliability
Big Data
Integrated circuit
Calibration
Prediction
Acoustoelasticity
Temperature distribution
Machine Learning
Metamaterial
IDM
Dairy cows
Systèmes embarqués
FDTD
Bandits-Manchots Combinatoires
Independent chaotic attractors
Bifurcation
Electromagnetic compatibility
Ultrasound
UML
Active transformation
Transcutaneous oximetry
Claudication
Anticontrol of chaos
Model-checking
Model Driven Engineering
Artefact rejection
Initial conditions
Antioxidant activity
Instrument
DPI
Concrete
Machine learning
Damage detection
Structural health monitoring
Super-Twisting Sliding Mode Control
Full-wave simulation
Immunity
Microembolus
Optimal command
MDE
Simulation
Model transformation
Pathophysiology
Entropy
Ischemia
Chaos
Classification
Genetic algorithm
Diagnosis
Interaction
EMC
Capacitors
Optimization
Nonlinearity
Field-to-trace coupling
Coda Wave Interferometry
OCL
Temperature measurement
IEC
PCB
Accelerometer
|
|
Nos dernières publications
-
Jaber Al Rashid, Mohsen Koohestani, Laurent Saintis, Mihaela Barreau. Lifetime reliability modeling on EMC performance of digital ICs influenced by the environmental and aging constraints: A case study. Microelectronics Reliability, 2024, Microelectronics Reliability 159 (2024), 159, pp.115447. ⟨10.1016/j.microrel.2024.115447⟩. ⟨hal-04622696⟩
-
Jaber Al Rashid, Mohsen Koohestani, Laurent Saintis, Mihaela Barreau. Degradation and Reliability Modeling of EM Robustness of Voltage Regulators Based on ADT: An Approach and A Case Study. IEEE Transactions on Device and Materials Reliability, 2024, 24 (1), pp.2-13. ⟨10.1109/TDMR.2023.3340426⟩. ⟨hal-04334074⟩
-
Lokesh Devaraj, Qazi Mashaal Khan, Alastair Ruddle, Alistair Duffy, Richard Perdriau, et al.. Improvements Proposed to Noisy-OR Derivatives for Multi-Causal Analysis: A Case Study of Simultaneous Electromagnetic Disturbances. International Journal of Approximate Reasoning, 2024, 164, pp.109068. ⟨10.1016/j.ijar.2023.109068⟩. ⟨hal-04301458⟩
-
Safae Ouahabi, Nour Elhouda Daoudi, El Hassania Loukili, Hbika Asmae, Mohammed Merzouki, et al.. Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts. Marine drugs, 2024, 22 (6), pp.240. ⟨10.3390/md22060240⟩. ⟨hal-04616809⟩
-
Nathan Fradet, Nicolas Gutowski, Fabien Chhel, Jean-Pierre Briot. Byte Pair Encoding for Symbolic Music. The 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP 2023), Association for Computational Linguistics, Dec 2023, Singapore, Singapore. pp.2001-2020, ⟨10.18653/v1/2023.emnlp-main.123⟩. ⟨hal-03976252v2⟩