Weight sensitivity in K-stability of Fano varieties - Institut de Mathématiques et de Modélisation de Montpellier
Pré-Publication, Document De Travail Année : 2024

Weight sensitivity in K-stability of Fano varieties

Résumé

We prove that, for a spherical Fano threefold not in the Mori-Mukai family 2-29, and a weight function associated with the action of the connected center of a Levi subgroup of its automorphism group, weighted K-polystability is equivalent to vanishing of the weighted Futaki invariant. This is surprising since unlike the case of toric Fano manifold, there exist non-product, special, equivariant test configurations. For the Kähler-Einstein Fano threefold 2-29, and for well-chosen torus action on the three dimensional quadric, we show that this property is false and exhibit explicit examples of weighted optimal degenerations. We then generalize this to higher-dimensional quadrics and blowups of quadrics along a codimension 2 subquadric.
Fichier principal
Vignette du fichier
wsKs.pdf (225.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04783284 , version 1 (14-11-2024)

Licence

Identifiants

Citer

Thibaut Delcroix. Weight sensitivity in K-stability of Fano varieties. 2024. ⟨hal-04783284⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More