Loading...
Last deposit, any kind of documents
Nous présentons une méthodologie de conception, basée sur une modélisation exacte de la diffraction par des réseaux, qui vise à concevoir des réseaux de diffraction qui satisfont aux exigences du piégeage atomique tout en tenant compte des contraintes et des tolérances de fabrication. Nos résultats montrent que des réseaux pertinents peuvent être facilement conçus à l'aide de cette méthode, et nous identifions des conceptions avec des tolérances de fabrication accrues et une meilleure résistance à l'imprécision, ce qui simplifie et augmente les chances de réaliser des pièges atomiques magnéto-optiques à réseaux (GMOTs) efficaces.
We present a design strategy for grating magneto-optical traps (GMOTs). It takes the three most relevant optical properties for laser cooling (radiation pressure balance, specular reflection cancellation, and diffracted polarization) to build a scalar figure of merit. We use a rigorous coupled wave analysis (RCWA) simulation to find a geometry that maximizes this figure of merit. We also introduce a criterion that takes into account the robustness of the manufacturing processes to select a geometry that is reliable to manufacture. Finally, we demonstrate that the fabricated grating exhibits the expected optical properties and achieves typical GMOT performance.
We have observed the decoherence of a lithium atomic wave during its propagation in the presence of the radiation emitted by tungsten-halogen lamps, i.e., decoherence induced by blackbody radiation. We used our atom interferometer to detect this decoherence by measuring the atom fringe-visibility loss. The absorption of a photon excites the atom, which spontaneously emits a fluorescence photon. The momenta of these two photons have random directions, and this random character is the main source of decoherence. All previous similar experiments used small-bandwidth coherent excitation by a laser, whereas incoherent radiation involves several technical and conceptual differences. Our approach is interesting as blackbody radiation is omnipresent and decoherence should be considered if particles resonant to electromagnetic fields are used.
This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions.
We report here on the realization of light-pulse atom interferometers with large-momentum-transfer atom optics based on a sequence of Bragg transitions. We demonstrate momentum splitting up to 200 photon recoils in an ultracold atom interferometer. We highlight a new mechanism of destructive interference of the losses leading to a sizable efficiency enhancement of the beam splitters. We perform a comprehensive study of parasitic interferometers due to the inherent multiport feature of the quasi-Bragg pulses. Finally, we experimentally verify the phase shift enhancement and characterize the interferometer visibility loss
Subjets
Collisions atome-atome
Amortissement
Stark effect
Fringe visibility
Decoherence
Black hole
Electro-optics
Diffraction d'une onde atomique
Damping
He-McKellar-Wilkens
Critical phenomena
Bose-Einstein condensate
Anisotropy
Ring cavity
Frequency metrology
Atomes froids
Atom interferometry
Atomic Bloch states
Matter wave
Effet Stark
Atom optics
ATOMS
Accurate measurement
Fringe contrast
Magneto-optics
Aharononov-Bohm
Polarizability
CERN Lab
Laser cooling of atoms
Optique atomique
Friction
Cosmic string
Diffraction atomique
Atom inerteferometry
Topological phase
Adsorbats moléculaires
Dark matter
Coherence
Diffraction atomique par laser
Condensat de Bose-Einstein
Atome de lithium
Detector sensitivity
Vibrations
Compensation
Bragg diffraction
Mesures de précision
Atom diffraction
Axion
Experimental results
Laser diffraction
Coupled oscillators
Détecteur à fil chaud
Cooling effect
Muonic hydrogen
Effet Aharonov-Bohm
Franges d'interférence
Fringe phase shift
Parallel velocity
Sagnac effect
Atom Interferometry
Atom chip
Atomic polarisability
Polarisabilité
Non reciprocal effect
Phase géométrique
Diffraction
Aharonov-Bohm effect
Aharonov-Casher
Atomic interferometry
Bose Einstein condensate
Experiment
Aharonov-Bohm
Electric polarizability
Condensates
Atom
Close-coupling
FIELD
Lithium
Diode-pumped solid state lasers
Interferometry
Atom Optics
Interférométrie atomique
Birefringences
Effet Zeeman
Diffraction de Bragg
Geometric phases
Cohérence
Frequency doubling
Atom interferometer
Birefringence
Cold atoms
Lithium atoms
Condensats
Condensats de Bose-Einstein
Optical pumping
Atom interferometers
Zeeman effect
Fringevisibility
CAVITY
Diffraction laser