Explicit Aspect Annotation via Transfer and Active Learning - Laboratoire d'Intelligence Artificielle et Sémantique des Données
Communication Dans Un Congrès Année : 2023

Explicit Aspect Annotation via Transfer and Active Learning

Résumé

We present a semi-supervised annotation process for identifying and labelling explicit aspects of an initially unlabelled corpus. Firstly, we employ cross-domain learning to pre-annotate the initial data, deliberately excluding domain-related input features to ensure effective learning transfer. Then, we apply an active learning strategy to enhance the pre-annotation performance and enrich the learning data. We adjust the strategy to sequence labeling and address class imbalance. We evaluate this process using two unlabelled datasets in French, consisting of user opinions on beauty products and electronic devices, respectively. The results show an improved F1-score achieved by increasing and correcting 30% of the training dataset.
Fichier principal
Vignette du fichier
KES2023.pdf (313.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04440368 , version 1 (06-02-2024)

Identifiants

Citer

Maroua Boudabous, Anna Pappa. Explicit Aspect Annotation via Transfer and Active Learning. 27th International Conference on Knowledge Based and Intelligent Information and Engineering Systems (KES 2023), Oct 2023, Athens, Greece. pp.1124-1133, ⟨10.1016/j.procs.2023.10.100⟩. ⟨hal-04440368⟩
62 Consultations
28 Téléchargements

Altmetric

Partager

More