Skip to Main content Skip to Navigation

hal-00772653v1  Conference papers
Francois JamesNicolas Vauchelet. Numerical simulation of a hyperbolic model for chemotaxis after blow up
14th International Conference on Hyperbolic Problems, F. Ancona, A. Bressan, P. Marcati, A. Marson, 2012, Padova, Italy. pp.693-700
hal-01240291v1  Journal articles
Marc ThirietYannick DeleuzeTony W.H. Sheu. A Biological Model of Acupuncture and its Derived Mathematical Modeling and Simulations
Communications in Computational Physics, Global Science Press, 2015, 18 (4), pp.831-849. ⟨10.4208/cicp.121214.250515s⟩
hal-00605479v3  Journal articles
François JamesNicolas Vauchelet. Chemotaxis: from kinetic equations to aggregate dynamics
Nonlinear Differential Equations and Applications, Springer Verlag, 2013, 20 (1), pp.101-127. ⟨10.1007/s00030-012-0155-4⟩
tel-01218388v2  Theses
Yannick Deleuze. Modeling and simulation of transport during acupuncture
Numerical Analysis [math.NA]. Université Pierre et Marie Curie - Paris VI; National Taiwan University (Taipei), 2015. English. ⟨NNT : 2015PA066372⟩
tel-02103912v1  Theses
Karina Vilches. Study of mathematical models of phenotype evolution and motion of cell populations
General Mathematics [math.GM]. Université Pierre et Marie Curie - Paris VI; Universidad de Chile, 2014. English. ⟨NNT : 2014PA066117⟩
hal-01689571v1  Journal articles
Benoît PerthameNicolas VaucheletZhian Wang. The Flux Limited Keller-Segel System; Properties and Derivation from Kinetic Equations
Revista Matemática Iberoamericana, European Mathematical Society, In press, 36 (2), ⟨10.4171/rmi/1132⟩
hal-02194421v1  Journal articles
Benoît PerthameWeiran SunMin TangShugo Yasuda. Multiple asymptotics of kinetic equations with internal states
Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2020, 30 (06), ⟨10.1142/S0218202520400060⟩
hal-00440108v1  Journal articles
Jonathan SaragostiVincent CalvezNikolaos BournaveasAxel BuguinPascal Silberzan et al.  Mathematical description of bacterial traveling pulses
PLoS Computational Biology, Public Library of Science, 2010, ⟨10.1371/journal.pcbi.1000890⟩
hal-00527338v1  Journal articles
Francois JamesNicolas Vauchelet. On the hydrodynamical limit for a one dimensional kinetic model of cell aggregation by chemotaxis
Rivista di Matematica della Università di Parma, Istituto di Matematica, 2012, 3 (1), pp.91-113
hal-01584754v1  Journal articles
Benoît PerthameWeiran SunMin Tang. The fractional diffusion limit of a kinetic model with biochemical pathway
Zeitschrift für Angewandte Mathematik und Physik, Springer Verlag, 2018, 69:67, ⟨10.1007/s00033-018-0964-3⟩
hal-00795833v1  Journal articles
Yannick Deleuze. A Mathematical Model of Mast Cell Response to Acupuncture Needling
Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2013, 351 (3–4), pp.101-105. ⟨10.1016/j.crma.2013.02.003⟩
hal-00844174v1  Journal articles
Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis
Kinetic and Related Models , AIMS, 2010, 3 (3), pp.501-528. ⟨10.3934/krm.2010.3.501⟩