Height representation of XOR-Ising loops via bipartite dimers - Laboratoire de Probabilités et Modèles Aléatoires
Article Dans Une Revue Electronic Journal of Probability Année : 2014

Height representation of XOR-Ising loops via bipartite dimers

Résumé

The XOR-Ising model on a graph consists of random spin configurations on vertices of the graph obtained by taking the product at each vertex of the spins of two independent Ising models. In this paper, we explicitly relate loop configurations of the XOR-Ising model and those of a dimer model living on a decorated, bipartite version of the Ising graph. This result is proved for graphs embedded in compact surfaces of genus g. Using this fact, we then prove that XOR-Ising loops have the same law as level lines of the height function of this bipartite dimer model. At criticality, the height function is known to converge weakly in distribution to the Gaussian free field. As a consequence, results of this paper shed a light on the occurrence of the Gaussian free field in the XOR-Ising model. In particular, they provide a step forward in the solution of Wilson's conjecture, stating that the scaling limit of XOR-Ising loops are level lines of the Gaussian free field.
Fichier principal
Vignette du fichier
EJP.v19-2449.pdf (543.79 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-00755394 , version 1 (07-01-2022)

Identifiants

Citer

Cédric Boutillier, Béatrice de Tilière. Height representation of XOR-Ising loops via bipartite dimers. Electronic Journal of Probability, 2014, 19, pp.1-33. ⟨10.1214/EJP.v19-2449⟩. ⟨hal-00755394⟩
352 Consultations
193 Téléchargements

Altmetric

Partager

More