Two-dimensional categorified Hall algebras - Archive ouverte du site Alsace
Article Dans Une Revue Journal of the European Mathematical Society Année : 2022

Two-dimensional categorified Hall algebras

Résumé

In the present paper, we introduce two-dimensional categorified Hall algebras of smooth curves and smooth surfaces. A categorified Hall algebra is an associative monoidal structure on the stable $\infty$-category $\mathsf{Coh}^{\mathsf{b}}(\mathbb{R}\mathcal{M})$ of complexes of sheaves with bounded coherent cohomology on a derived moduli stack $\mathbb{R}\mathcal{M}$. In the surface case, $\mathbb{R}\mathcal{M}$ is a suitable derived enhancement of the moduli stack $\mathcal M$ of coherent sheaves on the surface. This construction categorifies the K-theoretical and cohomological Hall algebras of coherent sheaves on a surface of Zhao and Kapranov-Vasserot. In the curve case, we define three categorified Hall algebras associated with suitable derived enhancements of the moduli stack of Higgs sheaves on a curve $X$, the moduli stack of vector bundles with flat connections on $X$, and the moduli stack of finite-dimensional local systems on $X$, respectively. In the Higgs sheaves case we obtain a categorification of the K-theoretical and cohomological Hall algebras of Higgs sheaves on a curve of Minets and Sala-Schiffmann, while in the other two cases our construction yields, by passing to $\mathsf K_0$, new K-theoretical Hall algebras, and by passing to $\mathsf H_\ast^{\mathsf{BM}}$, new cohomological Hall algebras. Finally, we show that the Riemann-Hilbert and the non-abelian Hodge correspondences can be lifted to the level of our categorified Hall algebras of a curve.
Fichier principal
Vignette du fichier
10.4171-jems-1303.pdf (852.36 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-02088890 , version 1 (20-09-2024)

Licence

Identifiants

Citer

Mauro Porta, Francesco Sala. Two-dimensional categorified Hall algebras. Journal of the European Mathematical Society, 2022, 25 (3), pp.1113-1205. ⟨10.4171/JEMS/1303⟩. ⟨hal-02088890⟩
93 Consultations
11 Téléchargements

Altmetric

Partager

More