On the approximation of the von Neumann equation in the semi-classical limit. Part I : numerical algorithm - Centre de mathématiques Laurent Schwartz (CMLS)
Pré-Publication, Document De Travail Année : 2024

On the approximation of the von Neumann equation in the semi-classical limit. Part I : numerical algorithm

Résumé

We propose a new approach to discretize the von Neumann equation, which is efficient in the semi-classical limit. This method is first based on the so called Weyl’s variables to address the stiffness associated with the equation. Then, by applying a truncated Hermite expansion of the density operator, we successfully handle this stiffness. Additionally, we develop a finite volume approximation for practical implementation and conduct numerical simulations to illustrate the efficiency of our approach. This asymptotic preserving numerical approximation, combined with the use of Hermite polynomials, provides an efficient tool for solving the von Neumann equation in all regimes, near classical or not.
Fichier principal
Vignette du fichier
paper_clean.pdf (5 Mo) Télécharger le fichier
refer.bib (17.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04581425 , version 1 (21-05-2024)
hal-04581425 , version 2 (13-12-2024)

Identifiants

Citer

Francis Filbet, François Golse. On the approximation of the von Neumann equation in the semi-classical limit. Part I : numerical algorithm. 2024. ⟨hal-04581425v2⟩
188 Consultations
127 Téléchargements

Altmetric

Partager

More