Bridging Text and Image for Artist Style Transfer via Contrastive Learning - Laboratoire d'informatique de l'X (LIX)
Communication Dans Un Congrès Année : 2024

Bridging Text and Image for Artist Style Transfer via Contrastive Learning

Résumé

Image style transfer has attracted widespread attention in the past few years. Despite its remarkable results, it requires additional style images available as references, making it less flexible and inconvenient. Using text is the most natural way to describe the style. More importantly, text can describe implicit abstract styles, like styles of specific artists or art movements. In this paper, we propose a Contrastive Learning for Artistic Style Transfer (CLAST) that leverages advanced image-text encoders to control arbitrary style transfer. We introduce a supervised contrastive training strategy to effectively extract style descriptions from the image-text model (i.e., CLIP), which aligns stylization with the text description. To this end, we also propose a novel and efficient adaLN based state space models that explore style-content fusion. Finally, we achieve a text-driven image style transfer. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods in artistic style transfer. More importantly, it does not require online fine-tuning and can render a 512x512 image in 0.03s.
Fichier principal
Vignette du fichier
2410.09566v1.pdf (14.44 Mo) Télécharger le fichier
Bridging Text and Image for Artist Style Transfer.png (214.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04822965 , version 1 (06-12-2024)

Identifiants

Citer

Zhi-Song Liu, Li-Wen Wang, Jun Xiao, Vicky Kalogeiton. Bridging Text and Image for Artist Style Transfer via Contrastive Learning. European Conference on Computer Vision Workshop (ECCV-W) 2024, European Computer Vision Association, Sep 2024, Milan (Italie), Italy. ⟨hal-04822965⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More