N

HAL

open science

Robotics Real-Time Programming

Ludovic Saint-Bauzel

» To cite this version:

Ludovic Saint-Bauzel. Robotics Real-Time Programming. Master. Real-time programming for
robotics, Université Pierre et Marie Curie, France. 2013, pp.111. ¢el-01170371

HAL 1d: cel-01170371
https://hal.sorbonne-universite.fr/cel-01170371
Submitted on 1 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.sorbonne-universite.fr/cel-01170371
https://hal.archives-ouvertes.fr

Robotics Real-Time Programming

Ludovic Saint-Bauzel

2013-14

Contents

1 Introduction

1.1.1 Definition e
1.12 Hardware
1.1.3 Software
1.2 Whatisacontroller?
121 SystemDesign,
122 Methodology

Robotics Software Frameworks

2.1 RUPIL . . . e
211 RUPIPointOf View

22 OROCOS e
221 Open RObotics COntrol Software

23 ROS . ..
2.3.1 Robotics Operating System

24 Frameworks
241 Conclusion e

OS : Tasks And Threads

3.1 Operating System Approach
311 Introduction
312 Properties
313 Multitasks
314 Real-Time

32 Scheduling oo oo
321 Model e
322 Algorithms
3.2.3 Thread Scheduling

33 Management. 43
331 Process o 43
332 PosixThread 44
34 TimeServices 48
341 PosixTime 48
342 XenomaiTimeservices. 50
3.5 Synchronization 00 L. 50
351 Mutex 50
3.5.2 Variable Conditionnal 51
3.53 Counting Semaphore 52
3.5.4 Xenomai Native API Synchronisationtools 54
3.6 Messages and Communication 54
361 Signals L 54
3.62 MailQueue 56
3.6.3 XenomaiNative API 57
37 1I0Control 59
371 Memory e 59
372 TO ... 60
OS Driver Programming 62
4.1 Firstldea: FromScratch 62
411 Example o 62
412 x8bexample oo 63
413 Fromscratchapproach 68
4.2 Second Idea : Operating System Approach 68
421 Introduction 68
422 Linux Kernel Introduction 69
43 LinuxKernel L . 71
431 MainConcepts 71
43.2 Components and mechanisms 73
43.3 Developing environment 77
44 Tools 78
441 Dev.tools 78
442 Debugging. 79
443 Practical o 80
45 User Space Mechanisms 81
451 Review o 81
452 SystemCalls. 81
453 Hardwareaccess 82
4.6 Kernel/Hardware Interface 84
461 Devices. 84
4.6.2 Interruptionsandevents. 86
463 Waitingqueues L 88
47 DriverModule) 89
471 Manipulation L 0oL 89
472 BasicRoutines. 90

473 CharDevices 92

474 Memory Management 94
475 XenomaiaRTOSexample 94
476 Description, 94
477 MainMechanisms 98
478 RIDM 99
Application 100
51 Examples 100
511 Examples 100
Documentations 106
61 Doc 106
6.1.1 Interface withcommunity 106
6.12 References 107
6.1.3 Licences 109
614 Glossary 109

1 Introduction

1.1 Whatis arobot?
1.1.1 Definition
Robot

e Definition : An Autonomous Robot is a complex system that has the abil-
ity to decide its actions on its environment from its sensing, state in order
to fill his aims. Survive, Assist ...

— Sensors
— Decision
— Action

e Physical ability : read information from sensor, send orders to actuators,
have a regulation (Time based computation) and a decision computation
unit (policy).

Robot : Computer science point of view

A computer science way to see a robot is to say it is a computer with pe-
ripherals that bring sensing, actuation ability and because of real life interac-
tion need to put the stress on the time. So like a computer we will have to deal
with :

e bus
e memory

e cpu

1.1.2 Hardware

Structure Choice criteria

o | Critical path?

- the main loop

— delayed sensors
e Method
— Tasks

- Pipes (read only, read write, write)

PRl
i d s - * M ~
’ -~ .
R Robot . Environment
I' \\
4 A

S Sensors ‘ +

’ D)

’)
!)
’ 1
' Control '
] 1
1 1
1 1

A} L]

\ Effectors !

X ——
A 4
A L4
A\] 4
'l
’

Supervision / Decision

PP
- ~
" S
. ~
4 ~

-~

’
4 Autonomous Robot . Environment

-
S f\ Sensors
’

Decision

[er—
Pl ~a

-
A
A Y
A Y
E \)
A
1)
1
1
1
1
1
1
\ Effectors ")
4
4
K4
4
4
’

~ -’
~
~ .’

~ -
e s

Figure 1: Classic (up) and Autonomous (down) Robot Models

Figure 2: mc2e

e Parameters

- Computation
— Time constraints
- Memory needs

— Precision of measure

Monocomputer

e Properties

— Limited Computation Ability
— Delays are limited too

- Simple but efficient
e Recent Improvements

- GPU
— Multicore CPU

e Example

Control | .-

Effectors
’ 4
»* -Acquisition Card (NI-PCI6034E)

A}
A
A
A .
‘ ’
. S analog inputs (sensors),
analog outputs (effectors)

Supervision / Decision

Figure 3: mc2e Architecture

Monocomputer

e Properties
- Limited Computation Ability

- Delays are limited too
- Simple but efficient
e Recent Improvements

- GPU
— Multicore CPU

e Example

Multi computer

e Properties
- High scalability of computation

- High time lost : Bus communication

e Recent Improvement
— Distributed algorithms developpment

e Example

Figure 4: Staubli

Multi computer

e Properties

— High scalability of computation

- High time lost : Bus communication
e Recent Improvement
- Distributed algorithms developpment

e Example

Master Computer - Slave Computing Units

e Master is connected to slave unit
e Often a bus

e Image

-
=" ~~
- o
i4 ~
~

4
L4 .
A Y
. /’\ Sensors . .- . N
. P
- Robot Models .

- Kinematics \ UDP
- Velocities
Trajectory Control

-

Control

-
- -~

S

' Effectors

AY
A .
A 4
. .
. .
.
-

~ -
-
~eenno==
.

- GUI To choose
- trajectories

K4

Supervision / Decision -

Figure 5: Staubli Architecture

Bus

e Definition

— Physical connection

— Multiple devices

e Common elements :

— Base Address called ports
— Local Address

e Examples:

— Serial
x RS485
* USB
x* CAN
— Parallel
x ISA
x PCI

1.1.3 Software
How the robot can make environment interaction ?
o Categories

— Perception
— Decision

— Actions

e Computer Science Name : tasks

Real-Time Programming
o Low Level Access
e High Time constraints

- Don’t mean quick!

— Mean ability to respect those constraints

Low Level Programming
LINUX

#include <asm/io.h>

unsigned char inb (unsigned short port) ;
void outb (unsigned char byte, unsigned short port) ;
unsigned char insb (unsigned short port, void *addr,
unsigned long count) ;
void outsb (unsigned short port, void #*addr,
unsigned long count) ;

DOS

#include <dos.h>

unsigned char inputb (unsigned short port) ;
void outputb (unsigned short port,unsigned char byte) ;

1.2 What is a controller ?
1.2.1 System Design
SADT : Description

SADT : Structure

Petri Net

10

Control

v

INPUL = Function ——) Output

v

Mechanism

A0

Figure 6: SADT: Structured Analysis and Design Technique

1.2.2 Methodology
Find the tasks!
e No Fuzzy properties

— Real-Time
— Good Refresh rate

e Nothing is perfect

- Properties

* Time (Loop (Freq?), Oneshot)
+ Load (CPU)

— Boundaries

* Delays
* Memory

o Task repeated every miliseconds with acceptable delay of 0.01 ms

Classical Robotics Tasks

e Control Task

- Loop, Delay
— Variable Parameters

— Static parameters
e User Interface

— Supervision

- Send Orders (Asynchronous, Parameters)

11

.7 a0]

')
)
L) h 5

s
- 1

Al

7

This box is the parent of
this diagram.

EYE|

MOTE; Mode numbers shov
here indicate that the box
been detailed. The C-numt
or page number of the chil
diagram could have been v
instead of the node numbe

Figure 7: SADT : Hierarchical Structure

Figure 8: Petri Net

12

Backend Server
(Authentication,
Robot/User management, Billing...)

Sensor FHome
Network Appliances

URS Server

External

Contents Server !

Robot Applications

EH —
Standard Interface g 31 3 35 RUPI Server Applications
System Application é‘g s g EEE]
Component _Component | | 382 F 8 25% Standard Intertace
3y-) 8 o=
Robot Middleware for RUPI | 25~ (£ @ 58 || voice mag _Navigation
=)
E

uof

Native Robot S/W G
w3 | o=
Hardware ‘*E I!‘iﬁﬁﬁ

=
URC Robot 62 URC Server

RUPI Server Middleware

Server Platform

Figure 9: RUPI

MVC+

o View

— Supervision
- GUI

e Controller

— Send Orders
— Control Task Information
- GUI

e Model

- Synchronization
- Communication System
- Database

e RT Task

2 Robotics Software Frameworks

2.1 RUPI
2.1.1 RUPI Point Of View

Challenging Scenario

13

2.2
221

OROCOS
Open RObotics COntrol Software

Introduction

The aim of this part is to present a framework that is a state of art of what
can be done by a system that manages the control of a robot. Of course this
framework is not perfect and some choices can be questionned but i decided
to choose this to give you the main rationales that one can imagine to use to
make a good controller. As a summary of the properties I appreciate:

component programming that provides a good reusability of the code and
lets deploy differents things according to the needs

Dataflow : The main system is based on a software dataflow approach.
That is very close to the control of systems.

State-Machine of components lets work with hooks for every state. Gives
a supervision of the components.

State-Machine of deployment, lets implement complex behaviour, change
the control kind

Activity mechanism to update each component : gives a wide variety of
updating mechanism different to the data-flow

logging Thanks to the component approach and the hook approach, it is
possible to subscribe to ports of component and see what happens

OROCOS Project

Software component

y ;':\‘ for control

SN \

@) o) = % -
\ L 7\/-’,‘_ = a D ™

Kinemati d " . "
Dynamics Bayesl_'iab':a'jlte”"g Orocos Toolchain
Library 4

Kinematic chains, real-ime Dynamic Bayesian Networks, ~ Real-time software components,

inverse and forward (Extended) Kalman Filters, interactive scripting, state

kinematics, Python bindings Particle Filters (or Sequential machines, distributed processes,
Monte Carlo methods) code generation

Figure 10: Orocos Project

14

History
e December 2000, as an idea of Herman Bruyninckx
e European Funding
e European Labs
— K.U.Leuven in Belgium (Orocos@KUL)
— LAAS Toulouse in France (Orocos@LAAS)
— KTH Stockholm in Sweden (Orocos@KTH)
Orocos Toolchain = RTT + OCL

e Real-Time Toolkit

e Orocos Component Library

components configuration

System
Builders

Component
Builders

Application connections

Builders Applicarion Depbymens

— middleware

Framework
Builders

RealTime Toolkit

Figure 11: Orocos Component/Plugins Architecture

Task Context

OCL -> Logging Tools

e 2 Solutions

— Custom Component

* + Complete control of the generated file

* - Some additional code that is not the heart of the controller
— Listen a component through logging tools

* In C++ code:

* In deployment :
*

15

Control Components
Deployment

Build
Components

Real-Time Toolkit

C+ + Classes

Figure 12: RTT Workflow

Operations . OperationCallers
—Provides
—(Requires
|_LI_| Plugin
» Flow Port
C/C++ N | Dynamic
I t functions: functions:
npu
P pt -Callbacks 4 | - State Charts Output
orts -Algorithms | (| - Program Ports
scripts

Configuration
Interface

O

Properties

Figure 13: Component Description

16

)/

TaskState
Init Q
public APl b)
user code PreOperational
cleanup()
cleanupHook() ™ configure()
configureHook()
Default Stopped
state
stopl) start()
stopHook() startHook()
Running
update()
updateHook()

Pl O [P

Figure 14: Component State Diagram

Thread type TaskContext

Asynchr. Operations

Activity
- period
- periority

- scheduler

Plugin Functions

void updateHook()
it

An Activity object executes the
ExecutionEngine, which in turn
processes incoming messages,
plugin functions and finally
updateHook() is called.

// your code
¥

Figure 15: Component Activity Diagram

17

Task State Diagram
Activity vs Threads

Data Flow

Connection specified
by RTT::ConnPolicy

OutputPort InputPort

.. Data Flow
Port Connections

N:M connections
between ports

Figure 16: Components Connections

Example : Definition
e Supervisor
- Initialisation
- Waiting
- Standing-Up
- Walking
- Alert

e Sensors

— Force Handles
— Orientation of the arm
— Orientations of the wheels(Beta_L,Theta_L, Beta_R,Theta_R)

e Controls

- Impedance Control
- Position Control

— Speed Control

18

— Models

* XZMGD
* XYPhi MGD
* Trajectory Generator

Figure 17: Walky ISIR

Example : Modelling State Machine
Example : Modelling Data Flows

Example : State Machine (Excerpt)

StateMachine OurStateMachineType
{
var bool detected;
initial state INIT {
entry {
ConsoleOut.display ("[INIT]");
/*...%/ Plant.configure();
T
transition select Waiting;
}
state Waiting {
entry {
STSDetector.start ();
}
transition STSDetected(detected)
if (detected) then select SitToStand;
P /xx/

RootMachine OurStateMachineType statemachine

19

Mo

STSDetected ?

Yes

| No ‘ STSTerminated ?

Yes

=
®

Figure 18: State Machine of Walky Experiment

20

STSMGD

inWheelG

inWheelD
inArmG
inArmD

outPoiXZG PoiXZG —
"
outPoIXZD >To
\“I PoiXZD ‘\» inPoiXZG
inPoiXZD
STS -/'| ConsPoixz —"]___inConsPoixZ

outPoiXZ inTil ons
QUETi ns > m/' ouEWheelG ConsWheelG
outSTSTerminated outWheelD

OutArmG
outArmD
Sl ‘outControl ConsArmD
SIEHEEE STSTermi inSTSTerminated
STSTerminated
STSDetected
WalkModel2 ConsWheelD
inConsSpdXYPhi
vecSpdXYPhi =
outWheelG
outWheelD
DesactiveWheels outControl
inFPoiG
inFPoiD
LeftHF LeftHFDiscretizer outDesactiveWheels
outFPoi inFPoi
outFPoi
FdisPoiG STSDetector
inFPoiG
RightHF RightHFDiscretizer inFPoiD
outFPoi inFPoi) outSTSDetected
outFPoi 7
Walk
inFPoiG
inFPoiD
outSpdXYPhi

Figure 19: Dataflow of Walky Controller

21

Example : Component Skeleton(Excerpt)

class Supervisor : public TaskContext {
protected:
InputPort<std::vector<char> > inButtons;
InputPort <bool> STSDetected; /*...*/
string stateMachineName;
public:
Supervisor (string const& name)
TaskContext (name) ,
stateMachineName ("statemachine")
{
this->addEventPort ("STSDetected",STSDetected) ;
this->addProperty ("stateMachineName",stateMachineName);

}

bool configureHook () {
return true;

}

bool startHook () {

scripting::ScriptingService::shared_ptr sa

= boost::dynamic_pointer_cast<scripting::ScriptingService>(

provides () ->getService ("scripting"));

scripting::StateMachinePtr sm = sa->getStateMachine(stateMachineName
if (tsm) {

log (Error) << "State Machine not loaded in Supervisor."<< endlog();
return false;

}

return sm->activate() && sm->start();

}

void updateHook () {
}

void errorHook () {

}

void stopHook () {

scripting::ScriptingService::shared_ptr sa

= boost::dynamic_pointer_cast<scripting::ScriptingService>(
provides () ->getService ("scripting"));

scripting::StateMachinePtr sm = sa->getStateMachine(stateMachineName
if (!sm) {

log(Error) << "State Machine not loaded in Supervisor."<< endlog();
return;

}

sm->stop () ;

sm->deactivate ();

}

void cleanupHook () {
}

Irg

22

Example : Deployment File(Excerpt)

<properties>
<struct name="Supervisor" type="Supervisor">
<struct name="Activity" type="Activity">
<simple name="Period" type="double"><value>0.1</value></simple>
<simple name="Priority" type="short"><value>50</value></simple>
<simple name="Scheduler" type="string"><value>0R0_SCHED_RT</value
</struct>
<struct name="Peers" type="PropertyBag">
<simple type="string"><value>STSDetector</value></simple>
<!--... [EVERY PEERS that will be touched by this component] ... -->
</struct>
<struct name="Ports" type="PropertyBag">
<simple name="STSDetected" type="string"><value>STSDetected</valu
</struct>
<simple name="RunScript" type="string"><value>deployment/smSTSandW
</struct> <!--...... --> </properties>

</simple>

¢ ></simple>

ALK .osd</value></simple>

2.3 ROS
2.3.1 Robotics Operating System
Definition
e ROS (Robot Operating System) provides libraries and tools to help soft-
ware developers create robot applications. It provides hardware abstrac-

tion, device drivers, libraries, visualizers, message-passing, package man-
agement, and more.

o Willow Garage

— Created in 2006
— 2008 first stable release of ROS
- 2010 ROS 1.0

Connecting Middleware
e Nodes

— Server (roscore)

— Output (rosout)
o Topics

— Publishers

— Subscribers
e Parameterized Connections

- TCP

23

- SharedMemory

— Serial (Arduino RosSerial)

Path: |/ v | [Quiel & Alltopicc @

fstring_in

frostopic_1290€

Jstring_out

Jfloat_out

Info:

Mode [/Example]]
Publications:

* [rosout [rosgraph_msgs/
Log]

* [Float_out [std_msgs/
Float64]

* [string_out [std_msgs/
string)

Subscriptions:
* [string_in [unknown type]
* [float_in [unknown type]

Services:
* [Example/get_loggers
* [Example/set_logger_level
Pid: 11636 |
Connections:
* topic: frosout
*to: frosout
*direction: outbound
*transport: TCPROS
* topic: /skring_out
*to:/
rostopic_12906_ 1330694219
491

* diractinn: authaund

Figure 20: rxgraph of /Example node with its topics

Meta-Operating System
e Meta-Operating-System

- rosdep
— rosmake
— roscd

- rosed

- rosrun

o Usefull tools
- rxgraph
- rxplot

24

RXPlot SEE)

Figure 21: rxplot of /Example node with its topics

25

excerpt Manifest

<package>
<description brief="depth_reg">

depth_reg

</description>

<author>bonjean</author>
<license>BSD</license>

<review status="unreviewed" notes=""/>
<url>http://ros.org/wiki/depth_reg</url>
<depend package="cv_bridge"/>

<depend package="roscpp"/>

<depend package="sensor_msgs"/>

</package>

24 Frameworks

24.1 Conclusion

Connectivity Question
e Exercice :

e Description

Kinect
OpenCV
SLAM
Directions

e Aim

— When someone do hello then go to its direction

Example
e Exercice

— Description
* Kinect
* OpenCV
* SLAM
* Directions

- Aim
* When someone do hello then go to its direction

e Result

- Kinect -> OpenCV -> Position -> SLAM -> Directions

26

Connectivity Solutions

e In OROCOS:
— Omni ORB

— From Scratch Components Connection

* RPC
* CORBA
* Sockets -> Server /Client Approach

e ROS

Conclusion

e Overview Implementation

— Controller on one Computer : OROCOS

— Communication between computing units : ROS
e Method

— Identify the states of your system (Tasks, loops)

— Think of the time, delays and how to overlay some of them

— Write the data flow for each state

— Look at the Computing Units At least one node per Unit (ROS)

— Therefor the components are described (inside one node)

3 OS: Tasks And Threads

3.1 Operating System Approach
3.1.1 Introduction

Operating System few words

A software :

or precisely the first software executed by your computer Consequences :
Manager

e Schedule task order
e Manage resources in order to fulfil every needs

e Use of all the resources.

27

Resources
Computer Science :

e Processor : CPU, IRQ
o Communication : BUS
e Memory
o ..
Robotics :
e Motor
e Sensors
What is RealTime
Two examples :[3mm]

A navigation system computing the best path for a boat.
A navigation system computing a boat position during its sailing.

o First case: Computing time is not a constraint, the result is this only thing
that is interesting

e Second case, if computing time is too long, position is false.

An informal definition

Real-Time system : A system where the behaviour relies on precision of
computation and also the time when it is produced.

In other words, a delay is considered as an error that can lead to severe
consequences

3.1.2 Properties
Time scheduling

e time-driven system : measure of time leads to actions
e event-driven system : arising of an event leads to actions

e reactive system : constrained time to process

28

Predictability determinism reliability

Real time system : in worst case.[3mm]

Predictability : Ability to identify in advance if a system is able to respect
its time constraints Knowledge of parameters related to computation.

Determinism : remove any uncertainty in individual task behaviour and
when they are together

e Variation of task execution time

e IO duration, reaction time

e Interruption reaction

Reliability : Behaviour and Fault tolerance
Classical system limits

Classical systems are based on multiple task not well adapted to real time
constraints :

o scheduling policy that aims to share time in a balance way for each task

e access mechanisms that shares resources and synchronizes time uncer-
tainty

e interruption management is not optimal

Virtual memory and cache memory management generate some delays

timer management is not very accurate

3.1.3 Multitasks

Services of a multitasks system

Conclusion : A single program rarely use all CPU load[2mm]

Used those idle times to compute some concurrent other tasks from other
software : a part of what an operating system must do

e running concurrent tasks

e exchanging with outside world

e managing memory resources

e sharing hardware, synchronization, communication

¢ time management

What are the limits for real-time system?

29

CPU Management - Task, process
Standard operating systems manage process that can be described as follow

e separated memory room

e special channels for communication

e high time cost spent for creation of a new one

e protection mechanisms are also time costing

o switch between two processes need a lot of memory switches
CPU Management - Task, process

One process works on many memory areas

e computing area (instructions of the software)

e a heap data area

e astack area for temporary data (variable)

Context of a process is composed of registers, a name, a state, etc. [3mm]
A thread only own individual context data , everything else is shared with
father process

Management multiple task and scheduling
A activated process can have many states, here are the main one :
o created

terminated

running : task is currently using the CPU. We say it is elected.

e waiting : task is asking for CPU. It is electable.

e blocked : task is blocked waiting for an event to arise.
Management multiple task and scheduling

State transitions are :

e waking : blocked — waiting

o allocating : waiting — running

¢ unallocating or pre-empted : running — waiting

e blocking : running — blocked

30

e

Main Memory

V'ad 'S

Blocked

Swapped out and blocked

Virtual Memory

Swapped out and waiting

Figure 22: Processus States

Scheduling

Scheduler must manage how the task are allocated to the CPU.

Schedule in the best way is very hard.

A scheduler called with request or pre-emptive if running process can be
unallocated by scheduler.

Non pre-emptive systems can do context switch only when a task is termi-
nated or when it is asking for context switch

Scheduler works most of the time on-line. That means that a policy must
exists and be applied[3mm)]

Scheduling policy
Classical scheduling rules :
e First In First Out (FIFO)

e Each one its turn (tourniquet, Round Robin : RR)

e Priority based

Example
Task Length Priority Start time
T1 6 1 0
T2 3 2 0
T3 4 1 0

31

e

Main Memory

V'ad 'S

Blocked

Swapped out and blocked

Virtual Memory

Swapped out and waiting

Figure 23: Processus Transitions

Scheduling example 1

e FIFO

[TL[T [T1 [T [T [T T2 [T2][T2 T3] T3] 13] 13|

¢ RR

[TL[T2 13 [TL [12 [13 [T [T2] 13 TL T3] T1]TL]

e Priority

(2 [2 [T [T [T [N [[T][1B]B]1B]13)]

Scheduling example 1
Scheduler with task interactions

Task 1 (prio = 2) | Task 2 (prio = 2) | Task 3 (prio = 3)
(not started)
T[1.1] T[2.1] T[3.1]
wait (event) Signal wait (1 sec.)
T[1.2] (Task 1, event)
T[2.2] T[3.2]
Starting Task 3
Scheduling example 2

Pre-emption after OS signal

32

Task 1 (prio =2) | Task 2 (prio =2) | Task 3 (prio = 3)
T[1.1]
Wait (evt)
T[2.1] Signal T1
T[1.2]
T[2.2] Start T3
T[3.1] Wait 1 sec.
T[3.2]
Scheduling example 2

Without pre-emption

Task 1 (prio = 2) | Task 2 (prio = 2) | Task 3 (prio = 3)
T[1.1]
Wait (evt)
T[2.1] Signal T1
T[2.2] Start T3
T[3.1] Wait 1 sec.
T[1.2]
T[3.2]
Interruptions
e 2 kind

— asynchronous : emitted by external context (hardware) can arise at
any time

- synchronous : emitted by a specific instruction can only arrive in
known date for the developer

e processed by the same mechanism

Interruption management

The way interruptions are processed have a large influence on efficiency of
the OS

o Control of interruptions : mostly hardware

— Context switch

- Source identification
e Processing interruption

— Short : same context

- Long : task are called : signal /wait

e Back to original process

33

Resources management
Those mechanisms are used to give one access to one resource in one time.

e Define some sections as atomic : critical sections
e Mask interruptions (hardware)
o Scheduler is disabled during this critical section (software)

— Mutex

* Block other tasks whatever priority they are
* Problem to choose the task when Mutex is released

- Counting Semaphores to manage a set of devices

Synchronization

Force an order of processing instructions of a process

e Mutex

e Rendezvous

e Product/Consume

Uses the following mechanisms :

e Signal an event

e Semaphores use

e Mailboxes

e Rendezvous

Synchronization Limits
Maintain coherency of data : creation of waiting queues

e "Balanced" Systems inefficient

e Priority : Synchronization brings some priority issues where a low prior-
ity can block a high priority task

Some solutions :

e Priority based waiting management : unlock view the priority level of
the task

¢ Flag like "availability test"

e Time out on blocking flags

34

Input/Output
Different policies for CPU scheduling and for Input/Output (IO)

Access through a specialized layer

Synchronous processing

Asynchronous processing

Difficult to manage priorities

Bad time management

3.14 Real-Time

Services

e Definition : a software that schedules computing of tasks in one shot
way,manage devices of the system and bring development libraries (Ap-
plication Programming Interface or API)

o Itis organized with :

- a kernel that schedules tasks and manage devices

- often it proposes services packaged as modules for example. These
service can bring the ability of the system to manage File Systems,
network devices or any services that are needed by software

Components
The main components of a RTOS are :

o scheduler, inside every kernel, it is the component that apply different
algorithms to manage access to the CPU

o kernel interfaces that give developers the ability to create software

— tasks
— semaphores

- message queue...

e services : actions that a kernel can do on a device or on the system like
time measurement, interruption, bus controller,...

35

3.2 Scheduling
3.21 Model

Scheduler

Aim : address any needs of a real-time software like emergency stop, high
level action or reactivity need

Taxonomy :

o Off-line/On-line algorithm : static/dynamic algorithm
e Static/Dynamic priorities
e pre-emptive/non pre-emptive algorithms :

- Ability to have mutual exclusion of a device
— Scheduler cost low
— Small efficient

Scheduler
Properties that we look for :

e Feasibility : ability to decide "a priori" that all the constraints will be ful-
filled

e Predictability : response time of tasks is predictable.

e Optimality : Optimal if able to find a schedule of every set of feasibility
tasks

o Complexity : feasibility test is long and difficult?

o Easiness to implement

Scheduler
Scheduler works only on active tasks :

e Schedule Table : off-line scheduling
o Off-line priorities definition, root of the scheduling

e On-line analysis and scheduling

Analysis recipe
Scheduling problem :

e To Model tasks of the system and their constraints
e To Choose a scheduling algorithm
o To Validate feasibility on a set of tasks

— Theoretical feasibility : scheduling ability and complexity
- Empirical feasibility : implement scheduler

36

Task model
Task families :

e Linked task or not (Precedence constraint).

e Important task or not

e Repetitive or periodic task : activated regularly
e Non periodic task

- Sporadic : irregular activation but a minimum time between each
activation

— Aperiodic : deadline is less strict and no minimum time between
each activation

Task model
Parameters for task i
e S, : start time when task arrives in the scheduler
e C;: Computation time needed by the task (Capacity).
e D;: Period
e D, : Deadline of the task
e R;: Earliest activation time
o Aperiodic task is defined by : [2mm]
(5i,Ci, Di, R;)
e Periodic task is defined by :
(Si,Ci, Di, P)
Task model
Let’s consider a simplified model :
e Periodic task
o Independent (No precedence constraint)
e Starting time (worst case) : S; = 0

e Deadline equal to Period : P; = D;

37

Scheduler Structure
Computation of scheduling information

e On-line or Off-line

e Period, Deadline...

Waiting queue management

e One queue for each priority
e FIFO policy

e Round Robin policy

Election phase

e Priority, deadline, ...

3.2.2 Algorithms

Rate Monotonic Algorithm
Off-line analysis, fixed priority, periodic tasks : Static software
Rationale

e Computation phase : priority = W

o Election phase : highest priority is chosen
Properties

o Low Complexity

e Optimal Algorithm in fixed priority algorithm set

Rate Monotonic Algorithm
Example

e Task1: C; =6,P; =10
e Task2:C, =9,P =30
e Pre-emptive case

e Non pre-emptive case

Can be scheduled if load rate of the CPU U agrees with the following suffi-
cient condition :

n
u= Zg x (21 —1)
i

Critical time theorem

If every tasks both arrive at the same time in a system if they respect their
first deadline,

then

every other following deadlines will be respected whatever time they arrive
in the system

e it’s a necessary and sufficient condition if every tasks arrive at the same
time

e clse, it is a sufficient condition

If D; = T;, finishing test is :

i c [+
Vi,1<i<mn ming<¢<p, 2 T] {-‘ <1
j=1

Response time computation
Response time TR: Duration between time when a task begin and time
when it is finished. Result can be exact relying on task model. [3mm)]

jehp(i)

TR,
TR; =Ci+ }, {p,l—‘cj
jetp(i)

]

Where hp(i) represents a set of tasks with a higher priority than i.

Response time computation
Computation method : iterative way of evaluation

wn-‘rl =C; + Z lrw?—‘ C:
i - P]
je€hp(i)]
e Let start with w? =C;
e Fail if ZU;1 > Pi

e Achieved if w?“ =w!

Example : with P, =7, C; =3, P =12, C, =2, P3 =20,C3 = 5. We
assume that every task have the same priority and are ran in this order

TR; =3 TRy =5 TR; =18

39

Aperiodic tasks with high priorities
Periodic task dedicated to these tasks.

e bring feasibility in the worst case
e dedicated task is not activated if there is no aperiodic task to compute

e easy solution, but sometime we loose some CPU load

Earliest Deadline First EDF algorithm
e Periodic task and aperiodic

e On-line Algorithm, more useful than Rate Monotonic

Rationale :
o Computation phase : Deadline computation
With priority;(t) current priority at f and i the task :

- Aperiodic task : priority;(t) = S; +D; —t
- Periodic task : priority;(t) = S;(t) [last start activation time when

timeist] +P; — ¢

e Election phase: Earliest deadline is chosen.(Min)

EDF Example
Let consider 2 tasks : [3mm]
T1 : C1 = 6, P1 = 10[3mm] T2 . C2 = 9, Pz =30

e Pre-emptive case

e Non pre-emptive case

EDF Properties
Ability to schedule : Pre-emptive case, periodic and independent tasks

o Necessary and sufficient condition if Vi, D; = P;; Only necessary if i, D; <

Pi:
nC.
u=y 1<
Lp =1
j=1"]

e Sufficient condition if 3i, D; < P; :

40

Budget replenished Budget replenished
! N N T
Budget

Budget exhausted

J, released

Tprtpdiey (penode em 17 e

T=(¢=2, p=3.5, e=1.5) | [| | | |) |)

| T=(p=6.5, e=0.5) I | | I
0 1 2 3 4 5 6 7 8 9

Server for aperiodic and sporadic jobs
e Periodic server :

- Idle if waiting queue is empty
— Running in its time

Server for aperiodic and sporadic jobs
e Deferred server :

— Time Budget
— Waiting for task
— Used to be in highest priority

Server for aperiodic and sporadic jobs
e Sporadic server :

— Like Deferred server
— But extra computation is done in background (lowest priority)

41

‘ Replenishment

A * Aper. Request
Sporadic
| [e]

Periodic T=2
I N mE %

Background

* 10* 17+ 2123 26 30 »t

3.2.3 Thread Scheduling

Services
Properties :

e Threads and process capability

o Fixed priorities, pre-emptive = RM easy. A minimum of 32 levels is a
mandatory

e One waiting queue for each priority and scheduling policy (SCHED_F
IFO, SCHED_RR, SCHED_OTHERS).

o Available Services to specific users (like root)
Standard say that scheduling policies must be able to be applied each time

the choice threadprocess exists (ex. : choice of a threadprocess to release a
semaphore).

Policies
POSIX.4 policies :

#define SCHED_OTHER O
#define SCHED_FIFO 1
#define SCHED_RR 2

e Parameter(s) : extensible to future policies

struct sched_param{
int sched_priority;

g

42

e Parameters modification:

— Thread : creation of a thread from an attribute or modification of a
running thread.

— Inherit from a fork() or modify of a running process.

API

sched_get_priority_max | Get max priority value.
sched_get_priority_min | Get min priority value.

sched_rr_get_interval Get duration of one time unit.

sched_yield Free the CPU of this thread.

sched_setscheduler Choose the scheduler policy. The
sched_getscheduler Get the scheduler policy value.

sched_setparam Set parameters of the scheduler.
sched_getparam Get parameters of the scheduler.

pthread_setschedparam | Set parameters of the scheduler for thread.
pthread_getschedparam | Get parameters of the scheduler for thread.
last 2 function are working only on threads, other functions can be applied on
process/thread.

Example

struct sched_param parm;
int res=-1;

/* Task T1 ; P1=10 x*/

parm.sched_priority=15;

res=sched_setscheduler (pid_T1,SCHED_FIFO ,&parm)
if (res<0)

perror ("sched_setscheduler task T1");

/* Task T2 ; P2=30 */

parm.sched_priority=10;

res=sched_setscheduler (pid_T2,SCHED_FIFO ,&parm)
if (res<0)

perror ("sched_setscheduler task T2");

3.3 Management
3.3.1 Process
Fork

#include <unistd.h>
pid_t fork(void);

43

Kill - Signal

#include <signal.h>

typedef void (*sighandler_t) (int);

sighandler_t signal(int signum, sighandler_t handler);

3.3.2 DPosix Thread

POSIX Threads

Defined in chapter POSIX.4a (Portable Operating System Interface). This
chapter describe both threads and synchronization tools that are close to threads
(ex : mutex).

Properties :

o A POSIX Thread is defined with a identifier that is local to the process.It
owns its stack, its context and a set of attributes that describe its be-
haviour.

e A POSIX Thread can be implemented in user space or in kernel space =-
Standard describe only the interface not the way it is coded.

POSIX Threads

e Code must be re-entrant (or "thread safe") = code is able to be computed
in multiple instances in a safe way

e re-entrant code means :

- don’t manipulate shared variables.

- or it manipulate shared variables in a critical section (that mean no
other is able to access this variable when one is manipulating it) .

e Everything must be re-entrant user code but also system libraries (ex.
libc.so)

POSIX threads
pthread_create | Creation of a thread.

Paramters : code, attributes, arg.
pthread_exit End of a thread.

Parameter : return error value.
pthread_self returns id of the running thread
pthread_cancel | Destroy a thread.

Parameter : id of the thread.
pthread_join Suspend a thread until

another is not finished.
pthread_detach | Suppress parent link

between threads.

44

POSIX Threads
pthread_kill Emit a signal to a thread.

pthread_sigmask | Modify signal mask of a thread.

In a POSIX 4a system, some services have a different semantic.

e fork() : create a new process containing a thread where the main() func-
tion is computed

e exit() : finish a process and all threads it contains.

POSIX Threads
Creation and join example of a thread

#include <pthread.h>
void* th(void* arg)

{
printf ("I am thread %d ;
process %d\n",
pthread_self (),getpid ());
pthread_exit (NULL);

}

POSIX Threads

Creation and join example of a thread

#include <pthread.h>

void#* th(void* arg)

{
printf ("I am thread %d ;
process %d\n",
pthread_self (), getpid());
pthread_exit (NULL);

POSIX Threads

int main(int argc, char* argv[])

{
pthread_t id1l ,id2;
pthread_create (&id1 ,NULL,th,NULL);
pthread_create (&£id2,NULL,th,NULL);
pthread_join(id1l,NULL);
pthread_join(id2,NULL);
printf ("End of main thread %d ;
process %d\n",
pthread_self () ,getpid ());
pthread_exit (NULL);

45

POSIX Threads

e With Solaris :

gcc -D_REENTRANT create.c -lpthread -1rt
>a.out

I am thread 4 ; process 5539

I am thread 5 ; process 5539

End of main thread 1 ; process 5539

e With Linux :

gcc -D_REENTRANT create.c -lpthread
>a.out

I am thread 1026 ; process 1253

I am thread 2051 ; process 1254

End of main thread 1024 ; process 1251

Thread Attributes

Thread Attributes : properties of a thread that are defined during its cre-
ation. No heritage between father and son threads.

Example of attributes :

Attribute Name | Meaning
detachstate pthread_join possible or not
policy scheduler policy
priority level of priority of the thread (> 0)
stacksize Size of the allocated stack

Thread Attributes

During creation of a thread, an structure of type pthread_attr_t can be
filled and given if we want to specify none default attributes to the new thread

pthread_attr_init Creation of a default attribute structure.
pthread_attr_delete Destruction of attribute structure.
pthread_attr_setATT | set the value of "ATT" attribute.
pthread_attr_getATT | set the value of "ATT" attribute.

where ATT is replace by the name of the attribute.

Thread Attributes

#include <pthread.h>

void#* th(void* arg)

{
printf ("I am thread %d \n",
pthread_self ());

}

46

Thread Attributes

int main(int argc, char* argvl[])

{
int ij;
pthread_t id;
pthread_attr_t attr;
struct sched_param param;
pthread_attr_init (&attr);
pthread_attr_setdetachstate (&attr,
PTHREAD _CREATE_DETACHED) ;
pthread_attr_setschedpolicy (&attr,
SCHED_FIFO0);
param.sched_priority=1;
pthread_attr_setschedparam(&attr ,¶m) ;
for(i=1;i<10;i++)

pthread_create (&id,&attr ,th,NULL);

Thread Attributes

The TSD (Thread Specific Data area) : is an area of memory where are stored
specific information of each thread.

Allow extension of regular attributes.

pthread_key_create | Creation of a key.
pthread_key_delete | Destruction of the key.
pthread_getspecific | get pointer value linked

to the key of the running thread.
pthread_setspecific | set pointer value linked

to the key of the running thread.

Thread Attributes
Creation of a new attribute :

pthread_key_t cd_key;

int pthread_cd_init (void)

{

return pthread_key_create (&cd_key ,NULL);

}

char* pthread_get_cd(void)

{

return (char*)pthread_getspecific(cd_key);
}

Thread Attributes

int pthread_set_cd(char* cd)
{

char* mycd = (char*)malloc(sizeof (char)*100);

47

strcpy (mycd, cd);
return pthread_setspecific(cd_key ,mycd);

main(int argc, charx* argv[])

pthread_cd_init ();
pthread_set_cd("/here/dir");

printf ("My local directory is %s\n",
pthread_get_cd ());

}
3.4 Time Services
3.4.1 Posix Time

Time manipulation
Time linked services :

What time is it ?
Block a thread /process during a defined time.

Wake up a thread /process regularly (timer) = periodic tasks.

Precision of these services :

Linked to what hardware we have (clock circuit), its features (interrup-
tion period) and also to the software that use it (interruption handler).

Ex: Linux Intel : circuit activated periodically (10 ms) = waking between
10 to 12 ms.

Time Manipulation : POSIX Extensions

Many timers are available = many physical clocks, profiling.

Need at least one real-time clock : CLOCK_REALTIME (less than 20 ms
precise).

timespec structure = "theoretical" precision close to micro-seconds
Available services :

Get and set clocks.

Put a task in sleep mode.

Link periodic timer to UNIX signals ; and maybe with real-time signals.
With or without automatic restart.

48

Time Manipulation

defined duration.

clock_gettime Get clock value.

clock_settime Set clock value.

clock_getres Get clock resolution.

timer_create Create a timer.

timer_delete Remove a timer.

timer_getoverrrun | Give the number of unprocessed signals
timer_settime Activate a timer.

timer_gettime Get time to the end of the timer
nanosleep Block a process/thread during a

Time Manipulation : Example

int main(int argc, char * argv[]){
timer_t monTimer; struct sigaction sig;
struct itimerspec tij;
timer_create (CLOCK_REALTIME ,NULL ,&monTimer);
sig.sa_flags=SA_RESTART;
sig.sa_handler=trop_tard;
sigemptyset (&sig.sa_mask);
sigaction (SIGALRM ,&sig,NULL);
ti.it_value.tv_sec=capacite;
ti.it_value.tv_nsec=0;
ti.it_interval.tv_sec=0; // here timer is not

ti.it_interval.tv_nsec=0; // automatically restarted

timer_settime (monTimer ,0,&ti,NULL);

Time Manipulation : Example

printf ("Begin\n");
while (go>0)
printf ("I am working \n");

printf ("Unblocked by timer : deadline missed ..\n");
}
int go=1;
void too_late(int sig){
printf ("Signal %d received\n",sig);
go=0;
}
Execution :
Begin I am working
I am working Signal 14 received
I am working Unblocked by timer deadline
I am working missed
I am working ‘

49

3.4.2 Xenomai Time services

API Timer Management System
API:

e void rt_timer_spin (RTIME ns) : busy clock

e int rt_timer_set_mode (RTIME nstick) : TM_ONESHOT or period time
Hardware level :

e oneshot

e periodic

3.5 Synchronization
3.51 Mutex
Mutex

e Optimized Semaphores to implement critical section.

e Waiting queue manager : depends of scheduling policy (SCHED_FIFO,
SCHED_OTHER, ...). Default behaviour : threads are waked in decreas-
ing order of priority

e Behaviour is defined by a set of attributes, main parameters are :

Attribute name | Meaning
protocol Inheriting Protocol used
pshared Inter-process or inter-thread mutex
ceiling Priority ceiling
Rationale

Programming mechanism that can block a thread while a condition is not
true.[3mm]

e Solution is based on a mutex and a Var Cond

e Waking signal has no memory : if nothing is waiting for the condition,
waking signal is lost (# counting semaphores).

e Waiting queue management : depend on scheduling policy (SCHED_FIFO,
SCHED_OTHER, etc ...). Default behaviour : threads are waked in de-
creasing order of priority.

50

Mutex
pthread_mutex_init Initialize a mutex.
pthread_mutex_lock Lock the mutex in blocking manner eventually.
pthread_mutex_trylock Non blocking try to lock the mutex
pthread_mutex_unlock Release the mutex lock.
pthread_mutex_destroy Destruct the mutex.
pthread_mutexattr_init Initialize an attribute structure
pthread_mutexattr_setATT | Set attribute ATT.
pthread_mutexattr_getATT | Get attribute ATT value.

0 ATT is one of the attributes of the mutex.

API
pthread_cond_init Initialize a variable.
pthread_cond_destroy Destruct a variable.
pthread_cond_wait Wait a waking signal coming from a condition.
pthread_cond_signal Signal that a condition is true to one thread
pthread_cond_broadcast | Signal that a condition is true to all threads

3.5.2 Variable Conditionnal

Mechanism
A classical program where a thread modify a variable : a mutex is used
(var_mutex) and a condition is used (var_cond).

pthread_mutex_lock (&var_mutex);

/* Modify the variable in critical
section */

var = ;

/* If the condition is fulfilled, we

alert the blocked thread */

if (condition(var))
pthread_cond_signal (&var_cond);

pthread_mutex_unlock (&var_mutex);

Mechanism
Classical program that wait for a variable to be modified :

pthread_mutex_lock (&var_mutex);
while (! condition(var))
{
/* If the condition is not true,
wait */
pthread_cond_wait (&var_cond, &var_mutex);
}
/* use the variable in critical section */

pthread_mutex_unlock (&var_mutex);

51

Attention pthread_cond_wait is making some implicit lock and unlock of the
mutex.

Example

int y=2, x=0;
pthread_mutex_t mut;
pthread_cond_t cond;
void* th(void* arg)
{
int cont=1;
while (cont){
pthread_mutex_lock (&mut);
X++;
printf ("x++\n");
if (x > y){
pthread_cond_signal (&cond);
cont=0; }
pthread_mutex_unlock (&mut);}

Example

int main(int argc, char* argv){
pthread_t id;
pthread_mutex_init (&mut ,NULL);
pthread_cond_init (&cond,NULL) ;
pthread_mutex_lock (&mut);
pthread_create (&id,NULL,th,NULL) ;
while (x <= y)

pthread_cond_wait (&cond, &mut);

printf ("x>y is true\n");
pthread_mutex_unlock (&mut) ;}

Execution :
X++ X++
x++ x>y is true

3.5.3 Counting Semaphore
Counting semaphore
e Semaphore: waiting queue + counter.

e No management of priority inversion : case must be treated in developer
level.

o Used for synchronization and inter-process or inter-thread mutual exclu-
sion.

52

o Waiting queue management : depend on scheduling policy (SCHED_FIFO,
SCHED_OTHER, etc ...). Default behaviour : threads are waked in de-
creasing order of priority.

e Two kind of semaphore : named and unnamed semaphore.

Counting Semaphore

sem_open Connection to a named semaphore.
sem_close Disconnection to a named semaphore.
sem_unlink | Destruction of a named semaphore.
sem_init Initialisation of a unnamed semaphore..
sem_destroy | Destruction of a unnamed semaphore.
sem_post Freeing a semaphore.

sem_wait Acquiring a semaphore.

sem_trywait | Non blocking acquiring of a semaphore.

Counting Semaphore Example

#include <pthread.h>

#include <semaphore.h>

sem_t sem;

int main(int argc, char* argv[]){
pthread_t id;
struct timespec delay;
sem_init (&sem,0,0);
pthread_create (&id,NULL,th,NULL) ;
deli.tv_sec=4; deli.tv_nsec=0;
nanosleep (&delay ,NULL);
printf ("main thread %d : free from

the other thread \n",pthread_self ());

sem_post (&sem) ;
pthread_exit (NULL);

Counting Semaphore Example

void* th(void* arg)

{
printf ("thread %d waiting\n",
pthread_self ());
sem_wait (&sem);
printf ("thread %d unblocked \n",
pthread_self ());

}

Execution

thread 4 waiting

main thread 1 : free from
the other thread

thread 4 unblocked

53

3.5.4 Xenomai Native API Synchronisation tools

API Mutexes

int rt_mutex_create (RT_MUTEX *mutex, const char *name)
int rt_mutex_acquire (RT_MUTEX *mutex, RTIME timeout)
int rt_mutex_release (RT_MUTEX *mutex)

API Condition variables
int rt_cond_create (RT_COND *cond, const char *name)

int rt_cond_signal (RT_COND *cond)
int rt_cond_broadcast (RT_COND *cond)
int rt_cond_wait (RT_COND *cond, RT_MUTEX *mutex, RTIME timeout)

API Counting Semaphores
int rt_sem_create (RT_SEM *sem, const char *name,
unsigned long icount, int mode)
int rt_sem_p (RT_SEM *sem, RTIME timeout)
int rt_sem_v (RT_SEM *sem)
int rt_sem_broadcast (RT_SEM *sem)

3.6 Messages and Communication
3.6.1 Signals

Real-Time Signals
Signal : event delivered in asynchronous way to a process/thread (soft-
ware interruption).

o Blocked signals (or masked) pending or delivered.
e Default behaviour can be modified by user.
o One signal register for each thread /process.
Real-Time Signals
Existing mechanism in POSIX.1 but with the following issues :
e Implementation pending signal register = unsafe delivery (possible loss).
e Emitting order not respected when they are delivered.

e Does not contain many information and few of them are available for
user : not adapted to IPC implementation.

o Not efficient (slow : high latency).

54

Real-Time Signals : POSIX Interface

kill Emission of a signal.

sigaction Connection of a handler to a signal.

sigemptyset | Initialize with all signals disabled.(mask all signals)
sigfillset Initialize with all signals enabled.(unmask all signals)
sigaddset Add a signal in the set(unmask this signal).

sigdelset Remove a signal from the set(mask this signal).
sigismember | Check if the signal is enabled in the set.

sigsuspend | Block a process until a signal is received.
sigprocmask | Install a mask.

Signals : Non RT Example

voi

int

d handler (int sig){
printf ("Signal %d received\n",sig);}

main(int argc, char * argv[]){
struct sigaction sig;
sig.sa_flags=SA_RESTART;
sig.sa_handler=handler;
sigemptyset (&4sig.sa_mask);
sigaction (SIGUSR1 ,&sig,NULL);
while(1); // program computes !!

Execution :

$sig &
$kill -USR1 14090
Signal 10 received

Real-Time signals : POSIX Extended

Range of new signals numbered from SIGRTMIN to SIGRTMAX (that rep-

resent a minimum of RTSIG_MAX signals)

¢ Possibility to use a value linked to this signal.

o No loss of signal : using of a queue for pending signals.

e Ordered delivery : respecting scheduling policy chosen + priority linked

to a signal = SIGRTMIN has the highest priority.

o Emitted with a kill, sigqueue, with a timer or by an asynchronous IO.

Real-Time Signals : POSIX Extended

Complementary interfaces of POSIX.4 :

sigqueue Emit a real-time signal.
sigwaitinfo | Wait for a signal without handler execution
sigtimedwait | Idem above + timeout on blocking time.

55

Real-Time Signals : RT Example

int main(int argc, char * argv[]){

struct sigaction sig;

union sigval val;

int cpt;

sig.sa_flags=SA_SIGINFO;

sig.sa_sigaction=handler;

sigemptyset (&sig.sa_mask);

if (sigaction (SIGRTMIN ,&sig ,NULL) <0)

perror ("sigaction");

for (cpt=0;cpt<5;cpt++){
struct timespec delai;
delai.tv_sec=1; delai.tv_nsec=0;
val.sival_int=cpt;
sigqueue (0, SIGRTMIN ,val);
nanosleep (&delai ,NULL);

RealTime Signals : RT Example

void handler (int sig, siginfo_t *sip, void *uap)

{
printf ("Received signal %d, val = %d \n",
sig,sip->si_value.sival_int);
}
Execution :
\$rt-sig

Received signal 38, val =
Received signal 38, val =
Received signal 38, val =
Received signal 38, val =
Received signal 38, val =

S wWwN R o

3.6.2 Mail Queue

Mechanism

With UNIX, Communication mechanism is the pipeline (named or not) =
too abstract for real-time constraints.[2mm]

Mail queues in POSIX.4 have the same features :

e Priority in emission/reception.

e Can work in Non-blocking

Can preallocate resources.

Can communicate in Inter-Process and Inter-Thread mode.

Unfortunately, priority inversion issues are not addressed.

56

API

mq_unlink | Destruction of a queue.

mq_setattr | Set attributes of the queue.
mq_getattr | Get attributes of the queue.

mq_open Creation or connection to a queue.

mgq_receive | Reception of the oldest and the most important

mail.
mq_send Emission of a mail with a given priority
mgq_close Disconnection to a queue.

mgq_notify | Notification that there is a new mail.

Example

/* Emission with a priority 1 (from 0 to

MQ_PRIO_MAX) =/
mq_send (id,buff ,100,1);
pthread_create (&tid ,NULL, consumer ,NULL) ;
pthread_exit (NULL);

}

void#* consumer (void* arg){
mqd_t id;
char buff [100];
id=mq_open ("/myqueue",0_RDONLY);
mq_receive (id,buff ,100, NULL);
printf ("msg = %s\n",buff);
mq_unlink ("/myqueue");
pthread_exit (NULL);

Example

#include <pthread.h>
#include <mqueue.h>
int main(int argc, char* argv[])
{
pthread_t tid;
mqd_t id;
char buff [100];
struct mq_attr attr;
attr.mq_maxmsg=100;
attr.mq_flags=0;
attr.mq_msgsize=100;
id=mq_open ("/mafile",0_CREAT|O_WRONLY,
444 gattr);
strcpy (buff ,"Hil!!");

3.6.3 Xenomai Native API

API Event flags groups

57

Synchronizing object based on a long word structure.

Any bit in the word can be used as a user flag

Task oriented signal mechanism

Conjunctive or Disjunctive

API Event flags groups

int rt_event_create (RT_EVENT *event, const char *name,
unsigned long ivalue, int mode)

int rt_event_signal (RT_EVENT *event, unsigned long mask)

int rt_event_wait (RT_EVENT *event, unsigned long mask,
unsigned long *mask_r, int mode, RTIME timeout)

int rt_event_clear (RT_EVENT *event, unsigned long mask,
unsigned long *mask_r)

API Messages queue
int rt_queue_create (RT_QUEUE *q, const char *name,
size_t poolsize, size_t qlimit, int mode)
void * rt_queue_alloc (RT_QUEUE *q, size_t size)

int rt_queue_free (RT_QUEUE *q, void *buf)
int rt_queue_send (RT_QUEUE *q, void *mbuf, size_t size, int mode)
int rt_queue_write (RT_QUEUE *q, const void *buf, size_t size, int mode)

ssize_t rt_queue_receive (RT_QUEUE *q, void **bufp, RTIME timeout)
ssize_t rt_queue_read (RT_QUEUE *q, void *buf, size_t size, RTIME timeout)

API Messages pipe
int rt_pipe_create (RT_PIPE *pipe, const char *name,
int minor, size_t poolsize)
ssize_t rt_pipe_receive (RT_PIPE *pipe,
RT_PIPE_MSG **msgp, RTIME timeout)
ssize_t rt_pipe_read (RT_PIPE *pipe, void *buf, size_t size, RTIME timeout)
ssize_t rt_pipe_send (RT_PIPE *pipe, RT_PIPE_MSG *msg,
size_t size, int mode)
ssize_t rt_pipe_write (RT_PIPE *pipe, const void *buf, size_t size,
int mode)
ssize_t rt_pipe_stream (RT_PIPE *pipe, const void *buf, size_t size)
RT_PIPE_MSG * rt_pipe_alloc (RT_PIPE *pipe, size_t size)
int rt_pipe_free (RT_PIPE *pipe, RT_PIPE_MSG *msg)
int rt_pipe_flush (RT_PIPE *pipe, int mode)

Example : Pipe Kernel side

#include <sys/types.h>

#include <fcntl.h>

#include <string.h>

#include <stdio.h>

#include <native/pipe.h>

#define TASK_PRIO O /* Highest RT priority x*/

#define TASK_MODE T_FPU|T_CPU(0) /* Uses FPU, bound to CPU #0 */
#define TASK_STKSZ 4096 /* Stack size (in bytes) x*/

RT_TASK task_desc;

58

RT_PIPE pipe_desc;

void task_body(void){

RT_PIPE_MSG *msgout, *msgin;

int err, len, n;

for (;;) {

VA TN ¥

len = sizeof ("Hello");

/* Get a message block of the right size in order to
initiate the message-oriented dialog with the

user -space process. */

msgout = rt_pipe_alloc(len);
if (!msgout)
fail ();

Example : Pipe Kernel side

#include <native/pipe.h>

RT_PIPE pipe_desc;

int init_module (void)

{

int err;

/* Connect the kernel-side of the message pipe to the
special device file /dev/rtp7. */

err = rt_pipe_create (&pipe_desc,"MyPipe",7,NULL);

}

Example : Pipe User side

From a regular Linux process:

#include <native/pipe.h>

int pipe_£d;

int main (int argc, char *argv[])

{

/* Open the Linux side of the pipe. */

pipe_fd = open("/dev/rtp7",0_RDWR);

/* ou grace au service de registresx/

pipe_fd = open("/proc/xenomai/registry/native/pipes/MyPipe",0_RDWR);

/* Write a message to the pipe. */
write(pipe_fd ,"hello world",11);

}

3.7 10 Control
3.71 Memory

Memory Management
A shared time system leads to possible time indeterminism because :

59

e Dynamic memory allocation.
e Page swap : swapin=swapout.

Solution : limit dynamic memory allocation and lock pages in central mem-
ory (POSIX.4 Interface) :

e mlockall()=munlockall() : lock/unlock swap with all memory pages of
this process..

o mlock()=munlock() : lock/unlock a range of addresses.

! Warning : mlock() is not portable (because there is no memory model in
POSIX standard).

API Memory heap
int rt_heap_create (RT_HEAP *heap, const char *name, size_t heapsize, int mode)
int rt_heap_alloc (RT_HEAP *heap, size_t size, RTIME timeout, void **blockp)
int rt_heap_free (RT_HEAP *heap, void *block)

3.7.2 10
Posix AIO
e aio_read
e aio_write
e aio_return, aio_error
e aio_cancel
e aio_fsync

e aio_suspend

Example :

sa.sa_sigaction = aioSigHandler;

if (sigaction(IO_SIGNAL, &sa, NULL) == -1) errExit("sigaction");

ajocb.aio_nbytes = BUF_SIZE;

ajocb.aio_reqprio = 0;

aiocb.aio_offset = 0;

ajocb.aio_sigevent.sigev_notify = SIGEV_SIGNAL;

aiocb.aio_sigevent.sigev_signo = IO_SIGNAL;

ajocb.aio_sigevent.sigev_value.sival_ptr = &ioValue;

aio_read (&aiocb);

err = aio_error (&aiocb));

switch (err) {
case 0: printf ("I/0 succeeded\n");break;
case EINPROGRESS: printf ("In progress\n");break;
case ECANCELED: printf ("Canceled\n") ;break;
default: errMsg("aio_error");break;
}

aio_return (&aiocb);

60

API Interrupt management
int rt_intr_create (RT_INTR *intr, const char *name, unsigned irq,
rt_isr_tisr, rt_iack_t iack, int mode)[Kernel]
int rt_intr_create (RT_INTR *intr, const char *name, unsigned irq, int mode)[User]
int rt_intr_enable (RT_INTR *intr)
int rt_intr_disable (RT_INTR *intr)
int rt_intr_wait (RT_INTR *intr, RTIME timeout)

Example : User Interruption

#include <sys/mman.h>
#include <native/task.h>
#include <native/intr.h>

#define IRQ_NUMBER 7 /* Intercept interrupt #7 x*/
#define TASK_PRIO 99 /* Highest RT priority =/

#define TASK_MODE O /% No flags */

#define TASK_STKSZ 0O /* Stack size (use default one) */

RT_INTR intr_desc;
RT_TASK server_desc;

void irq_server (void *cookie){

for (;;) {

/* Wait for the next interrupt on channel #7. x/
err = rt_intr_wait(&intr_desc,TM_INFINITE);

if (terr) {

/* Process interrupt. */

}

}

}

Example : User Interruption

int main (int argc, char *argv[]){

int err;

mlockall (MCL_CURRENT |MCL_FUTURE);

/* .. x/

err = rt_intr_create(&intr_desc,"MyIrq",IRQ_NUMBER,O0);
/x .. %/

err = rt_task_create(&server_desc,
"MyIrqgServer",

TASK_STKSZ,

TASK_PRIO,

TASK_MODE) ;

if (lerr)

rt_task_start (&server_desc ,&irq_server ,NULL);
/* ... %/

}

void cleanup (void){

rt_intr_delete (&intr_desc);

rt_task_delete (&server_desc);}

61

Figure 24: Autonomous Mobile Robot

4 OS Driver Programming

4.1 FirstIdea: From Scratch
41.1 Example
RobModex

e ISA Card

— 0x100 : Base Address

— 0x01 - 0x04 : Timer (IRQ 5)

- 0x05 - 0x08 : DAC1

- 0x09 - 0x12 : DAC2

— 0x13 - 0x14 : 2 Wheel Encoder Registers

Closed Loop PID

62

PIC Registers

Memory (0x0-0x3FF)

IRQ IRR IMR ISR VT

#0| O 1 0 Addr Interrupt Routine
#1 0 0 0

#2 1 1 > 1

#3] 0 0 0

Figure 25: IRQ Process

error
PID Controller Robot

qdes

gmes

variables qgmes, qdes
error (k) =
error_cumul (k) =
error_diff (k)=

qcons=
olderror = error

4.1.2 x86 example
Simple IRQ x86
e 0x20

- Command Register
— Status Register

o 0x21
— Int Mask Register
o Internal Registers

— Int. Req. Reg.

— In Service Register

e System Memory

— Interrupt Vector Table (4 bytes)

63

Pentium 4 and Pentium and Pd

Intel Xeon Processors Family Processors
Processor Core Processor Core
Local APIC Local APIC
Interrupt Loca Interrupt Local
\ Messages Intemupts Messages ntemupts
- f o o g
Interrupt | System Bus 3-Wire APIC Bus
Messages

Y

Bridge - Extemnal
= | osre [g
PCl

-‘—¢h- System Chip Set

i o Extemal
M ARIC | Interrupts

System Chip Set

Figure 26: Interruption Recent Mechanism more complex

Byte 0 : Offset Low Address of the Interrupt Routine (Handler)
Byte 1 : Offset High Address of the IR

Byte 2 : Segment Low Address of the IR

Byte 3 : Segment High Address of the IR Offset

Piece of code:
turboC DOS example

#define IMR 0x21
void _install_int_function(int IRQmn,
void interrupt (*_new_int_function) ())
{
int inter = IRQn + 8;
_disable(); //disable interrupts
//save the old interrupt vector
_old_int_function=_dos_getvect (inter);
//install the new interrupt vector
_dos_setvect (inter, _new_int_function);
//save the state of the 8259A IMR register
_old_mask=inportb (IMR);
//Set new value for IMR register
outportb(IMR, _old_mask&_interrupt_mask (IRQn));
_enable(); //enable interrupts

}

I/O APIC : Advanced Programmable Interrupt Controller

IRQ

64

3 13 18 17 16 15 1312 1 87]
[[] I [e]
Address: FEED 0320H
Diner Mode Value after Reset: 0001 000DH
01: Pericdic "
10: TSC-Deadiine g_el"'j‘l':")’ Status
1: Send Pending
Interrupt Input Delivery Mode
Pin Polarity 000: Fixed
010: SMI
100: NMI
Remote 111: ExtiNT
IRR 101: INIT .
All other combinations.
) are Reserve
Trigger Mode
0: Edge ———
1: Level
H 17 7
LINTO Vector
LINT1 |
Error Vector
Performance
Mon. Counters Vector
T;:::;I. Vector
16 15 14 13 12
[] Reserved Addrss: FEED 0350H
Addredg; FEED 0380H
Address’
t (Pentium 4 and Intel ¥eon processors.) When a Address: FEED 0340H
performance monitoring counters intermupt is generated Address: FEEQ 0330H

the mask bit for its associated LVT entry is set.

Value After Reset

0001 0000H

Figure 27: Intel SMP Interrupt Systems

65

Bus : ISA
e Ax: Addresses
e Dx: Data
e IRQs: 3,4,5,6,7
e AEN:DMA

Bus : ISA

#define ISAADDR
short data;
void interrupt _new_int_function ()

{

_disable(); //disable interrupts

data=inb (ISAADDR); //getDataFromISA

//that the ISA Component has requested

//to tell the system the interrupt service function has finished
_end_interrupt ();

_enable(); //enable interrupts again

}

Digital/Analog Converter

RobModex Application

#define ISAADDR
short data;

void interrupt _new_int_function ()

{

_disable(); //disable interrupts
data=inb () §

outb (s)

_end_interrupt ();
_enable(); //enable interrupts again

}

66

8 Bit XT Bus - top view

¥ O @@ @O0 O ®@ @
L T

FFFF OF R

Figure 28: ISA Port

MOCACK
Data 7
Data &
Data 5
Diata 4
Data 3
Daita 2
Diata 1
Duaita 8

L0 CH RDY
AEN

Addr 19
Addr 18
Addr 17
Addr 18
Addr 15
Addr 14
Addr 13
Addr 12
Addr 11
Addr 10
Addr 9
Addr

BAom N m

z
=
R TR TS

7

o7 INPUT DAC
I DAC Vour
Do REGISTER REGISTER |_ |

[[1
POWER-ON
MUX RESET

CONTROL

LOGIC L
AD7801 I%I (Ij AGND

)
P0 TR LDAC REFIN Vpp DGHD

'

Figure 29: Digital Analog Converter Schematic

Backend Server
(Authentication,
Robot/User management, Billing...)

Sensor FHome
Network Appliances.

URS Server

External

‘Contents Sel
Robot Applications 2 enis Server Intertace
= —
Standard Interface g 3 mg RUPI Server Applications
System Application é‘g EE EEE]
Component | Component | | 3ER —F 8 m 25% Standard Interface
) o o
Robot Middleware for RUPI | £3= £ 32 || voice mage _Navigation
== =]
Native Rabot /W s > || RUPIServer Middleware
0/S 5
Hardware Lﬁ e Server Platform
U;C/R bot [lL;lLlL
° e URC Server

Figure 30: RUPI

4.1.3 From scratch approach
Conclusion
e More Complex = More code

e No- reusability of pieces of code

4.2 Second Idea: Operating System Approach
421 Introduction
Context

e OS Hardware

e Native Robot SW

68

Backend Server
| (Authentication,
Robot/User management, Billing...)

Sensor Home
Network Appliances

URS Server

() Contents Server Fxternal
TR [Interface
Robot Applications
ER —
Standard Interface g g Eg . RUPI Server Applications
System Application é‘g = g %3;0
Component Component gEE g8 2§% Standard Interface
L I E] Eal
Robot Middleware for RUPI Eg— T g 87| voice image . Navigation
2] = .
Native Robot S/W S s

— RUPI Server Middleware
= | D=
Hardware ‘E‘] & L ’ﬁ
&) N It
URC Robot Fre URC Server

Server Platform

Figure 31: Robot Unified Platform Initiative

o MiddleWare

e Communication Framework

State of Art

e OS Hardware
— Linux WindowsCE VxWorks
e Native Robot SW

— Xenomai RTAI RTLinux OROCOSRT
e MiddleWare

— RoSta Robotics Standards : OROCOS, Microsoft Robotics Studio,
URBI, Robotic Operating System (ROS), ORCA. MARIE...

e Communication Framework

- OROCOS, Microsoft Robotics Studio, URBI, Robotic Operating Sys-
tem, OpenJaus

4.2.2 Linux Kernel Introduction

History
Creator: Linus Torvalds for personnal reasons

¢ understand Operating System

69

o funding no cheap OS present on the market place
e Minix had too many limits

Main initial choices taken by Linus

using GNU licenses tools compiler and tools
o share sources on Internet

GNU GPL License used

collaborative work = quick emergence of a developer community

Key dates
e First stable version (1.0) in 1994 ;
e POSIX compatibility added in version 1.2 (1995) ;

e Support Multi Processors (SMP) and portability improvement in versions
2.0 (1996) ;

e Improvement of general performances, increase of number of platform
and number of supported devices in versions 2.2 (1999) ;

e Increasing performances with SMP architectures and network layer in
versions 2.4 (2001).

e wide set of improvements internally and in the API (pre-emptive, 64
bit/embedded architectures, unified devices management, ...) (2003).

Features

e Monolithic Kernel

UNIX type architecture all files concept
e MultiTasks
MultiUsers

MultiProcessors

Multiplatform

70

Properties
e Dynamic load of kernel modules
¢ Inter Processes memory protection

Load of executable on demand

Page sharing between each executable

Dynamic cache size management

Shared libraries supported

4.3 Linux Kernel
4.3.1 Main Concepts

User/Kernel World
Material protection using CPU mechanisms.
Two distinct worlds

o Kernel space where all is permitted even the worst
o User space where possibilities are restricted with safety mechanisms (ex
: memory access)
Schema
User/Kernel Transitions
Three kind of transitions user/kernel :
e system calls;
e interruptions = Interruption controller in the kernel ;
e exceptions (ex : illegal memory access , illegal instructions ...).

Limited number of entry points in the kernel (190) for users = system calls ;
Each user process can be divided in two main parts :

e a kernel part = System calls (ex : open(), read()...) ;

e a User part = all the other things (ex : management, algorithms...).

71

Espace Utilisateur

Espace Noyau

Matériel

Figure 32: User Kernel Hardware links

Rationale
Main rule
”Always try to bring complexity outside of the kernel ”
Consequences

e kernel must stay as small as possible
e system calls must be limited in their numbers
e all the complexity are in the library called libc or

e in user software

Motivations
’ Kernel device drivers or user mode software?
Kernel device drivers:

e Direct Access : Memory and devices ;

e quickness (less software layers) ;

e manage concurrent accesses to devices ;

e manage access rights.
User software solution :

o keep complexity outside of the kernel ;

e software are running in safe mode ;

e easy to debug.

Ex : Ghostscript (printers), Sane (scanners)...
Kernel Structures

Many structures are commonly used in the kernel :

o Complex structures (ex : task_struct defined in <linux/sched.h>) ;

e complex linked lists (ex : structures list vin_area_struct organised as AVL
tree - <linux/mm.h>) ;

e pseudo-objects composed of pointers on functions structures as a method
of it (ex : module structure defined in <linux/module.h>).
4.3.2 Components and mechanisms

Memory management
Kernel address space

e linear view of the RAM no segments
e no check of illegal accesses
User address space
e virtual dont represent real memory
e private for each process
e in advance allocation real allocation when really in use

e no size limit except hardware ones sometimes software if it doesnt fit the
hardware (ex: DOS)

73

Memory Translation Virtual-Real
Virtual Address

I Segment Number I Displacement |

J [

Segmentation table
information fields Base Address (or NIL)
>,
Addition
[
Real Address
Virtual Address
I Page Number I Displacement I
| |
Page table
information fields Block number (or NIL)

Process

\4

Block Number Displacement
|

Real Address

Elementary Execution Unit of the Operating System

Two kinds

74

e process based on a copy of resources coming from father process im-
proved with the use of copy on write mechanisms or vfork

o thread share the maximum part of the resources coming from the main
process = context switch accelerated

Scheduling
Pre-emptive Multi-task :
Kernel is pre-emptive itself (from 2.6 version);
UNIX Policy to share CPU time between each processes;
Real-Time API in POSIX.1b ;
Linux is nevertheless a real-time kernel :

e Execution time not predictive;
e non-determinist system. Priorities management (41 normal levels + 99

real-time levels).

Interruption management

Linked to a device (ex : bus, interface, timer...) ;

Material interruptions can pre-empt a process even if it work in kernel
mode;

Two phases computing :

o top-half : high-speed part and critical (ex : acknowledge an interruption
for a device), and

e bottom-half : slow part in a queue of tasks that is emptied by the sched-

uler (ex : processing associated to the interruption). Possibility to share
IRQ.

Mutual Exclusion
Linux Kernel is re-entrant and pre-emptive;
There is consequently many possible concurrencies :

e between each CPU (SMP architecture) ;
e between Interruption Controller and System Calls ;

e between different System Calls (because of explicit or implicit pre-emption)

= Blocking mechanism (locking) for protection :
e global variables,
e non-re-entrant functions,

e critical hardware accesses.

75

File Systems
Fundamental of every UNIX based systems ;
Two main kind :

e real : Associated to a real storage device (ex. hdd, CDROM ...) ;

e virtual : emulates a storage device to have access to advantages of files
mechanisms (ex : drivers, /proc ...).

File System
Abstraction layer to implement writing mechanism with file system (VEFS) :

e can be based on every bloc device ;

e basic mechanism are present : * open()/close(), read()/write(), Iseek()... ;
*inheriting generic mechanisms if not implemented.

o need of specific tools (ex : formatting, check, tuning...)

Network
One of the big asset of Linux system ; Many devices and protocols are sup-
ported ; Divided in two set of sub-systems :

e driver of interfaces that fit with physical level (1) and Data level (2) of
OSI Model (ex : Ethernet, Token Ring, PPP...) ;

e Protocols corresponding to layers Net (3) and Transport (4) (ex : TCP, IP,
IPX, Appletalk...).

Network

Interface drivers use device drivers to have access to them ; Communication
between device drivers, interface drivers and protocols is done with packets
(ex : structure sk_buff defined in <linux/skbuff.h>);

IP layer integrate route tables and name resolution.

Modules

Dynamic Kernel Modules : object files (.0/.ko) implementing a functionality
of the kernel ;

Used to reduce the size of the Kernel and bring it more flexibility ;

We can load and unload in dynamic way (during run-time) a new function-
ality (ex : driver, protocol, file system ...)

Module Dependencies management with modprobe tool ;

Management of dynamic link edition with insmod.

76

Device drivers

Piece of software plugged in the kernel to bring an interface between kernel
and hardware devices;

There must be two different interfaces :

o one for users that is generic and stable ;
e one to communicate with the kernel .

With Linux, user interface is provided as a special file ;

So we are able to use classic system call like open(), read(), write() ;

Can be implemented as a module dynamically linked "on demand" or stat-
ically compiled in the kernel.

4.3.3 Developing environment

Distribution
Sources archives in files linux-X.Y.Z.tar.bz2

e X = VERSION (~ 4 5 years) : number of version ;

e Y = PATCHLEVEL (" 1 2 years) : number of sub-version (even = stable,
odd = unstable) ;

e Z =SUBLEVEL ("~ 1 6 months) : number of sub-sub-version.

Update patches in files like patch-X.Y.Z+1.bz2 ;[6mm] Files .sign to check sig-
nature of archives and patches Ex for signature :

gpg -keyserver wwwkeys.pgp.net -recv-keys O0x517DOFOE
gpg -verify linux-X.Y.Z.tar.bz2.sign linux-X.Y.Z.tar.bz2

TreeView

Documentation/ : documentation related to the kernel and its sub-systems
(ex : sound/, DocBook/...) ;

arch/ : specific part for architectures (ex : alpha/, arm/, 1386/ ...) ;

drivers/ : device drivers (ex : usb/, net/...) ;

fs/ : file systems (ex : xt2/, fat/...) et VFS;

include/ : headers files (ex : asm-i386/, linux/, net/...) ;

init/ : initialisation process (boot) of the kernel ;

TreeView

ipc/ : inter-processes communication mechanisms (ex : shared memories,
semaphores...) ;

kernel/ : core of the system (ex : scheduler, signals...) ;

lib/ : mini C library to be used in the kernel (ex : strcmp(), sprintf()...) ;

mm/ : memory management ;

net/ : interfaces and network protocols (ex : ethernet/, ipv4/...) ;

scripts/ : useful scripts for configuration and compilation of the kernel.

77

TreeView

In 2.6 version, new directories : crypto : generic API cryptography and
their implementations ; security : security mechanisms running in the kernel
et implementations (SELinux) ; sound : sound sub-systems (in drivers before).

4.4 Tools
4.4.1 Devw. tools

Compilation
Only supported tools for compilation :

o GCC (with its specific optimization set...) ;

¢ GNU Make (syntax...).

Lower versions of tools = Documentation/Changes ;
Use optimization flag -O of GCC to have inline in headers interpreted.

Ex Makefile
Ex : Makefile
CC = gcc
CCOPTS = -Wall -Wstrict-prototypes -02
KSRC = /lib/modules/\$(shell uname -r)/build
MODVERSIONS = -DMODVERSIONS
MODVERSIONS += -include $(KSRC)/include/linux/modversions.h
CFLAGS = -I$(KSRC)/ ... $(CCOPTS) -DMODULE $(MODVERSIONS)

CFLAGS += -D__KERNEL__

h.o : h.c
$(CC) $(CFLAGS) -c $< -o $@

C Language and C library

No libC for kernel programming ;

Useful Functions in the directory lib/ of kernel sources ;

Coding standards described in Documentation/CodingStyle ;

It is advised to split big C files into many smaller files with well defined
functions inside (ex : software layer) ;

Object files (.0) can then be merged in one module (one module_init()...)
with the linker ;

Ex:

>1d -r partl.o part2.o0 -o module.o

78

Patches
Collecting modifications in one or more files ;
Must keep the original file or directories ;
Ex : creation of a patch

>diff -urN <orig> <dest> > patch_<description>

Ex : using the patch

>cd <origine>
>patch -pl < patch_<description>

4.4.2 Debugging

Console
Kernel function printk() to send information in standard output (console) ;
Multiple levels of debugging are defined in <linux/kernel.h>> (ex : KERN_EMERG,
KERN_INFO..)) ;
Messages are logged by syslogd deamon (entry kern.”) ;
dmesg software display and check the round buffer used by printk() ;
Prototype :

e int printk (const char *fmt, ...) ;
KGDB

kgdb patch for the kernel (http :/ /kgdb.sourceforge.net) ;
Need of a second machine :

o link the target with a serial connection ;

o use GDB-client to debug the target.

Easy to use and quick way to debug (source mode debugging).

KDB
Embedded in the kernel debugging tool ;
Developed by SGI (http :/ /oss.sgi.com/projects/kdb/) ;
It includes :

o A set of user commands that allow to debug the kernel and real-time
kernels ;

o a kernel debugger in assembly mode (not in source mode)

Useful debugger but hard to use because of its complexity.

79

Profiling
It is possible to analyse time spent by each function of the kernel :

e boot parameter : profile=n ;

e binary information in /proc/profile ;

e can become readable with readprofile tool.
Allow to identify :

e structural misbehaviour ;

e to be optimised parts of the driver.

2.6 kernel provides Oprofile , a more powerful kernel/user profiler.

Other possibilities
On request Debugging :

e virtual file in /proc ;
e system call ioctl().

GDB debugging read only mode the virtual file /proc/kcore ;
Using Linux User Mode for hardware independent parts ;
Analysing outputs of the software with strace ;

In oops case, analysing et interpretation with ksymoops tool (use the file

System.map).

4.4.3 Practical
Practical
o Get sources of a linux kernel on www.kernel.org

- Extract kernel sources : tar xvfj linux-X.Y.Z.tar.bz2

— Go to the root of the sources : cd linux-X.Y.Z

Apply some patches : patch -pl < /path/to/patch-foo

Configure the kernel : make xconfig

- Compile (2.4 kernel) : make dep clean bzImage modules

— Compile (2.6 kernel) : make

Install : make modules_install install

e Reboot.

80

4.5 User Space Mechanisms

4.5.1 Review

Threads

Signals

Systems Calls

Hardware access

4.5.2 System Calls

ioctl
ioctl : Devices Control

#include <sys/ioctl.h>

int ioctl(int d, int request, ...)

0x00000606 LPGETIRQ
0x00000608 LPWAIT
0x00000609 LPCAREFUL
0x0000060A LPABORTOPEN

Example :

syscall

int *
int
int
int

#include <syscall.h>

#include <unistd.h>

#include <stdio.h>

#include <sys/types.h>

int main(void) {

long ID1, ID2;
[Hoccccocooonoocsascocnconoonacoa */
/* direct system callx/

/* SYS_getpid (func no. is 20) x*/
T */
ID1 = syscall(SYS_getpid);

printf ("syscall(SYS_getpid)=%1d\n", ID1);
[Boccccconccnconconconocoscasoas */
/* "libc" wrapped system call */
/* SYS_getpid (Func No. is 20) x*/
[Boccoccocconcooconconococosooa */
ID2 = getpid();

printf ("getpid()=%1d\n", ID2);
return (0);

}

Extract from "/usr/include/bits/syscall.h"

81

#define SYS_chmod __NR_chmod

#define SYS_chown __NR_chown

#define SYS_chroot __NR_chroot

#define SYS_clock_getres __NR_clock_getres
#define SYS_clock_gettime _NR_clock_gettime

4.5.3 Hardware access

Input/Output Ports and Authorization

Address range used by present devices on IO bus (ex : controlling regis-
ters);

We can access these ports from the kernel with functions :

e in{b,w1}()/out{b,w,1}() : read/write 1, 2 or 4 octets on an 10 port,

e in{b,wl}_p()/out{b,w,1}_p() : read/write 1, 2 or 4 octets on an IO port and
pause until the I/O completes,

e ins{b,w,1}()/outs{b,w,1}() : read/write sequences of 1, 2 or 4 octets on 10
ports.

To be authorize to access data in user space you have to ask for permission
with the functions :

o int ioperm(unsigned long from, unsigned long num, int turn_on) : only
the first 0x3ff I/O ports can be specified in this manner.

e int iopl(int level) : changes the 1/O privilege level of the calling process,
Warning !! not advised.

Prototypes
Prototypes x86 (<asm/io.h>):

e unsigned char inb (unsigned short port) ;

void outb (unsigned char byte, unsigned short port) ;

unsigned char insb (unsigned short port, void *addr, unsigned long count)

7

void outsb (unsigned short port, void *addr, unsigned long count) ;

82

Mapping addresses
Memory

e mmap

e mremap

e mprotect

IO In some cases, it is mandatory to map addresses range of 1O in linear ad-
dress space of the kernel (ex : PCI = addresses > PAGE_OFFSET) :

e joremap() : map physical addresses range to a linear address range (sim-
ilar to vmalloc()),

e jounmap() : free an address range already mapped .

Memory Mapping

#include
#include
#include
#include
#include
#include

<sys/mman.h>
<sys/stat.h>
<fcntl.h>
<stdio.h>
<stdlib.h>
<unistd.h>

int main(int argc, char *argv[]){

char

*addr ;

int £fd;

struct stat sb;

off_t offset, pa_offset;
size_t length;

ssize_t s;

fd =
if (fstat(fd, &sb)
offset = atoi(argv([2]);

open(argv[1], O_RDONLY);
== -1) /* To obtain file size */

pa_offset = offset & ~(sysconf (_SC_PAGE_SIZE) - 1);
/* offset for mmap() must be page aligned x*/

Memory Mapping

if (argec == 4) {
length = atoi(argv[3]);

if

(offset + length > sb.st_size)
length = sb.st_size - offset;

/* Can’t display bytes past end of file */

} else {
/* No length arg ==> display to end of file x*/
length = sb.st_size - offset;

}

addr = mmap (NULL, length + offset - pa_offset,

PROT_READ, MAP_PRIVATE, fd, pa_offset);

s =

write (STDOUT_FILENO,

addr + offset - pa_offset, length);

exit (EXIT_SUCCESS);

83

Kernel Services
Isys : system / driver status information

> cat /sys/bus/usb/devices/usb4/4-2/product
USB-PS/2 Optical Mouse

/proc : Hardware Status Information

> cat /proc/iomem
fec00000-fecO0Offf : IOAPIC O
fee00000-feeOOfff : Local APIC

>cat /proc/ioports
0000-001f : dmal
0020-0021 : picil
0040-0043 : timerO
0050-0053 : timeril
0060-0060 : keyboard

4.6 Kernel/Hardware Interface
4.6.1 Devices

IO Port Reservation
Drivers can access 1O ports that are not there own devices (ex : probing) ;
In order to avoid conflicts, kernel can reserve ports for drivers :

e int request_region() : reserve a IO port ;
e check_region() : check if the port is not yet reserved (deprecated in 2.6) ;
e release_region() : free an 10 port.

List of ports already reserved appears in /proc/ioports.

Memory Reservation

To avoid conflicts, kernel can reserve IO memory region for some device
driver :

e request_mem_region() : reserve one memory range of adress,

e check_mem_region() : check if the region is already reserved (deprecated
in 2.6),

o release_mem_region() : free this region.

Listing of memory regions reserved appears in /proc/iomem ;

84

Prototypes
Prototypes (<asm/io.h> and <linux/ioport.h>) :

void * ioremap (unsigned long offset, unsigned long size) ;
void iounmap (void *addr) ;

struct resource * request_{mem_}region (unsigned long start, unsigned
long n, const char *name) ;

int check_{mem_}region (unsigned long start, unsigned long n) ;

void release_{mem_}region (unsigned long start, unsigned long n) ;

Hardware access functions
It is then possible to access to shared memory of IO with the following
functions :

readb,w,1() /writeb,w,1() : read/write respectively 1, 2 ou 4 octets in 10
memory ;

memcpy_{from,to}io() : read /write octet continuous block in IO memory

memset_io() : fill a specific range of data with a fixed value ;

virt_to_bus()/bus_to_virt() : translate between a virtual linear address
and real address on the bus .

Prototypes
x86 prototypes (<asm/io.h>):

char readb (void *addr) ;

void writeb (char byte, void *addr) ;

void * memcpy_{from,to}io (void *dest, const void *src, size_t count) ;
void * memset_io (void *addr, int pattern, size_t count) ;

unsigned long virt_to_phys (volatile void *addr) ;

void * phys_to_virt (unsigned long addr) ;

85

Kernel memory
Many methods exists in kernel to allocate memory :

o kmalloc()/kfree() : allocate/de-allocate a real continuous memory block
in the kernel (GFP_KERNEL =- can sleep, GFP_ATOMIC = atomic),

o _ get_free_pages()/free_pages() : allocate/de-allocate an integer num-
ber (2") of continuous real memory pages (idem previous but for biggest
needs - limit : 128 ko),

e vmalloc()/viree() : allocate/de-allocate a virtual memory block composed
by many discontinuous memory blocks of real memory.
Prototypes
Prototypes (<linux/slab.h> et <linux/vmalloc.h>) :
e void * kmalloc (size_t size, int flags) ;
e void kfree (const void *addr) ;
e unsigned long _ get_free_pages (int gfp_mask, unsigned long order) ;
e void free_pages (unsigned long addr, unsigned long order) ;
e void * vmalloc (unsigned long size) ;

e void vfree (void *addr) ;

4.6.2 Interruptions and events

Interruptions and events

Supervision of Input/Output events, I/O often asynchronous and unpre-
dictable (ex : keyboard) ;

Two methods to supervise /O :

e active waiting (polling) ;
e interruptions.
In polling mode, CPU is released with schedule() function after each unsuc-

cessful test ;

Interruptions et events
Ex: polling

for (; 3)
{
if (read_state(carte) & ETAT_END)
break ;
schedule () ;
}

86

In interruptible mode, calling process is asleep and put in a waiting queue ;
Interruption manager will have to wake the process (or processes according
to its policy)

Interruptions et events
Interruption manager is called interrupt handler.
Properties :

e must be fast;

e can't call sleeping function (ex : kmalloc() non atomic).

For these reasons, interruption management is divided in 2 parts :
e interrupt handler : fast and uninterrupted part, and

e bottom-half : slowest part, manage waiting queue of tasks.

First part can exist without second part but inverse is not possible ;

Interruptions et events
Interrupt handler is declared with function request_irq() ;
It is freed by free_irq() ;
Prototypes (<linux/sched.h>, <linux/interrupt.h>):

e int request_irq (unsigned int irq, irqreturn_t (*handler)(int, void *, struct
pt_regs *), unsigned long flags /* SA_SHIRQ */ , const char *device, void
*dev_id) ;

e void free_irq (unsigned int irq, void *dev_id) ;

Interruptions et events

When irq arises, function handler() is called ;

dev_id field is used to identify devices when IRQ is shared (SA_SHIRQ) ;

It can be used to send specific structure to driver ; List of already declared
IRQ is available in /proc/interrupts ; Returning code of request_irq must be
IRQ_NONE or IRQ_HANDLED.

Interruptions et events
bottom-halves
Kernel functions used to manage asynchronous tasks ;
Executed after every return of system call, exception or interrupt handler ;
Two possible "implementations" :

e tasklets : can run on different CPU but one instance at one time

e softirgs : can run on different CPU and many instances can work in par-
allel

87

Interruptions et events

Ex:
void my_routine_bh(unsigned long)
{
/* ... bottom-half code ... x/
}

DECLARE_TASKLET (ma_tasklet, ma_routine_bh, 0) ;
void my_handler_irq(int irq, void x*dev_id,
struct pt_regs *regs)

{

tasklet_schedule (& ma_tasklet) ;

4.6.3 Waiting queues

Concepts

A process can wait for a kernel event (ex : data) ;[6mm] Process is going in
a waiting queue and release the CPU ;[6mm] When the event arises, processes
in the corresponding queue are awaking.

Implementation
Manipulation methods on waiting queue are as follow :

e wait_event_interruptibletimeout() : put the running process in sleep mode,
in interruptible way or not and with/without time out limit, sleeping
process is put in waiting queue

Interruptible Implementation

‘interruptible’ version check if a signal has been sent to a process and return
an error code in this case (-ERESTARTSYS).

This error code should be propagated as a return of the system call. Initial-
isation of a waiting queue (type wait_queue_head_t) :

e during declaration == DECLARE_WAIT_QUEUE_HEADY(), or

e during execution (runtime) = init_waitqueue_head().
Prototypes (<linux/wait.h>) :

e DECLARE_WAIT_QUEUE_HEAD (name) ;

e void init_waitqueue_head (wait_queue_head_t *wq) ;

88

Prototypes
Prototypes (<linux/sched.h>, <linux/wait.h>):

e void wait_event (wait_queue_head_t *wq, condition) ;
e int wait_event_interruptible (wait_queue_head_t *wq, condition) ;

e intwait_event_interruptible_timeout (wait_queue_head_t *wq, condition,
long timeout) :

o void wake_up_interruptible (wait_queue_head_t *wq) :
e void wake_up_interruptible_nr (wait_queue_head_t *wq, int nr) :
e void wake_up_interruptible_all (wait_queue_head_t *wq) ;

Example
Ex:

static DECLARE_WAIT_QUEUE_HEAD (ma_file) ;
int function_reading (void #*addresse) {

ret = wait_event_interruptible (& ma_file, readb() != 0) ;
if (ret $<$ 0)
return ret ;

}
void my_handler (int irq, void *priv, struct pt_regs *regs)

{

wake_up_interruptible (& my_file) ;

4.7 Driver (Module)
4.7.1 Manipulation

Manipulation
Set of tools to manipulate modules = modutils (kernel 2.4) or module-init-
tools (kernel 2.6) :

e Ismod : listing of modules loaded in the kernel ;
e ins,rmmod : manual insertion/extraction of a module in the kernel ;

e modprobe : automatic insertion/extraction of a module in the kernel
with dependency resolving (loading all needed modules) ;

89

Manipulation

e modinfo : general information about a module (ex : author, description,
parameters...) ;

e depmod : generate a list of dependencies for a set of modules ;

Modules are automatically loaded when it is need according to hotplug mech-
anism that run modprobe in user mode.

4.7.2 Basic Routines

Basic Macros
Descriptions and parameters
managed by dedicated macros (<linux/module.h>):

e MODULE_AUTHOR() ;
e MODULE_DESCRIPTION() ;
¢ MODULE_LICENSE() ;
¢ MODULE_PARM() ;
e MODULE_PARM_DESC().
In kernel 2.6, MODULE_PARM() is replaced by (<linux/moduleparam.h>):
e module_param(name, type, perm) ;
Ex: MODULE_PARM(my_integer, "i") ; MODULE_PARM_DESC(my_integer,

"My integer parameter") ;

Initialisation and release
Macros defined in file <linux/inith> :

e module_init() : declaration of initialisation function (type int foo(void) ;)

7

e module_exit() : declaration of quitting function (type void foo(void) ;).

MODULE is a constant that allow the compiler to make the difference between
module versus in kernel compilation (no use for you!).

Implementation

The initialisation function must contain all necessary information and com-
putation to initialise a module (ex : allocations, hardware initialisations, re-
sources reservation...) ;

In the opposite, exiting function must undo all the things done by initial-
isation one (ex : freeing reserved memory, hardware deactivation, freeing re-
sources...) ;

90

routines
Linux uses optimisations of GCC to free in memory some unused part of
the code after they have been instantiated (<linux/init.h>):

e _ init: initialisation functions (freed after finishing module_init()) ;
e _ exit: exit functions (ignored if statically linked to the kernel) ;

e _ initdata : used data in initialisation functions (freed after finishing
module_init()) ;

__exitdata : used data in exit functions (ignored if statically linked to the

kernel) ;
Ex:
int __init my_function_init(void)
{
/* ...code... */
}

module_init (my_function_init) ;

Usage counter
Each module is associated to a usage counter ;
Avoid that a module is unloaded while being used ;
Counter modification is done when the module is called ;
The module can be manipulated with functions described in (<linux/module.h>)

e MOD_INC_USE_COUNT : increase the usage counter ;
e MOD_DEC_USE_COUNT : decrease the usage counter ;
e MOD_IN_USE : bring the value of the usage counter.
Kernel 2.6 provides instead (<linux/module.h>):
o try_module_get(THIS_MODULE) : try to increase the usage counter.
e module_put(THIS_MODULE) : decrease the usage counter.
e module_refcount(THIS_MODULE) : bring the value of the usage counter.

Symbols

Exported symbols by the kernel are available in /proc/ksyms (/proc/kall-
syms in 2.6) ;

Used by insmod to do dynamical linking ;

Most of the symbols are exported in kernel/ksyms.c ;

Modules can declare new symbols according to macro EXPORT_SYMBOL()
(<linux/module.h>) ;

ksyms tool give a more precise and readable view of /proc/ksyms.

91

Integration to kernel sources

Choose an appropriate directory in kernel tree ;

Create a sub-tree if necessary (ex : many elements) ;

In 2.4, edit Config.in and Makefile files of upper directory ;

En 2.6, edit Kconfig et Makefile files of upper directory ;

Add an entry inspired by the other ;

Add a help entry in Documentation/Configure.help (2.6 only, in 2.6 content
is in Kconfig)

Syntax is defined in Documentation/kbuild/... ;

Implementation basic routines

In kernel 2.4, while a statical compilation, parameters of a module must be
defined by macro __setup() (in <linux/inith>):

void __setup (char *append, int (*extract) (char *)) ;

In kernel 2.6, module_param() automatically do this, parameters are di-
rectly given as inline parameter with :[6mm] module.param=valeur

Practical
Creation of the simplest module (HelloWorld) ;
Add some parameters to this module ;
Link it to the kernel in a static point of view.

4.7.3 Char Devices

File systems
You can access to drivers with the use of specials files (device nodes also
called inode) ;
A structure file_operations provide a way to define any entry point (<linux/fs.h>)

Access classic functions can be overloaded by driver own access functions;

Structure Associated

Initialisation of structure variables is done with the new C syntax (.var =
value) (in old times a specificity of GCC)

Some not implemented methods are replaced by default functions (ex :
open(), close())

Others not implemented functions return -EINVAL ;

Ex:

static struct file_operations mondriver_fops = {
.owner = THIS_MODULE,
.read = mondriver_read,
.write = mondriver_write,
.open = mondriver_open,
.release = mondriver_releasel};

92

Majors et minors

Special files are created with command mknod ;

A inod file is described by a unique identifier (i_rdev, of type kdev_t, size 16
bits in 2.4, 32 bits in 2.6) separated in two numbers (8+8 / 12+20) :

e major : identifier of the driver kind (ex : IDE, /dev/hd* = Major=3),
e minor : identifier of one driver in a set (ex : IDE, /dev/hdal = minor=1).

Majors 0 to 255 are reserved ;

Majors and minors

List of majors and minors already used is updated in Documentation/de-
vices.txt and <linux/major.h> ;

Macros MAJOR() and MINOR() allow you to know what are these informa-
tion of your inode ;

Ex:

static int mondriver_open(struct inode #*inode,
struct file *file)
{
unsigned int minor = MINOR(inode-$>$i_rdev) ;
/* or file-$>$f_dentry-$>$d_inode-$>$i_rdev =/
}

Kernel 2.6 have also functions : imajor(inode) and iminor(inode)

Majors and minors

Classical use, a major describes one driver for a specific device ;

Minors are used to identify different devices of the same kind or controlled
sub-set ;

Can manage same maje identical cards with this habit:

e structures that describes each device (ex : buffers, mutex...) ;
e array of structures indexed with minors ;
¢ n files in /dev with the same major and different minors.
Returning Value
Negative means error defined in <linux/errno.h> and <asm/errno.h> ;
Positive or zero means working ;

This standard is used in every functions in the kernel; Error values trans-
mitted between each functions ;

93

Returning Value
Ex: invalid argument

if (arg $>$ 3) return -EINVAL ;

Ex : error transmission

int ret ;
ret = fonction_noyau() ;

if (ret $<$ 0) return ret ;

4.74 Memory Management

Data Transfer kernel/user

Kernel uses physical or virtual memory ;

Processes use their own virtual memory space ;

Need to transfer data from/to kernel memory space to/from calling process
memory space ;

Main functions are :

o get,put_user() : transfer a variable from/to user memory space (using
with lvalue), and

e copy_{from,to}_user() : transfer a buffer from/to user memory space.
Data Transfer kernel/user

These functions are all calling function access_ok() that checks validity of a
user buffer ;

This call can be avoided if we used those functions prefixed by __ (not ad-
vised). Prototypes (<asm/uaccess.h>) :

o int get_user (Ivalue, addr) ;
e int put_user (expression, addr) ;

e void copy_{to,from}_user (unsigned long dest, unsigned long src, un-
signed long len) ;

e int access_ok (int type, unsigned long addr, unsigned long size) ;

4.7.5 Xenomai a RTOS example
4.7.6 Description
Motivations

e Linux based (GPL)

¢ Developing tools (Multi-Interfaces)

94

e Dynamic community (Forum and mailing list')

Main Structure

e HAL

e nucleus

- RTAI,

Multi-skins

Patched Kernel (ADEOS)

— VXWorks,

- POSIX,

- RTDM,
- pSOS+,

- VRTX,

— ulTRON ...

Architecture

o QD W@

Lo

syscall interface

Native

POSIX VxWorks) pSOS uITRON

VRTX

Real-time nucleus

HAL

Adeos

User-space applications
D Kernel-based applications

1Quality to be observed when we want to use a free tool in long term point of view

95

ADEOS - Virtual Domains

per-CPU Adeos pipeline

EEENR E I EEEEEEER EEEEEEEEEDR I>

Kernel

ADEOS - Applied to Xenomai

per-CPU Adeos pipeline

(RN R RN N R RN R RN RN RN RRRRRRRRRRINRRR] III>

ADEOS - HAL to manage communications

void realtime_eth_handler (unsigned irq, void *cookie)

{

rthal_irq_enable (irq);

rthal_irq_host_pend(irq);

/* This irq has been marked as pending for Linux */

}

void linux_eth_handler (int irq, void *dev_id,
struct pt_regs *regs)

{

/* process the IRQ normally. */

}

NATIVE API - Main

o Compactness : <100 services
e Orthogonality :

— developer memory :)

96

- Non-ambiguity

— More functions combination than more complex functions
¢ Context independent :

— Kernel Space

- User space : privileged
e Small Semantic for localisation : Same names

— Kernel (ex. xeno_native.ko),

— User (ex. libnative.so)

NATIVE API - Services

o Tasks Management

e Time Service

e Synchronisation tools

e Messages and communication

Control I/O

Registers

NATIVE API - Services

e Tasks Management
- Increasing Priorities 1-99
e Time Service

— Timers,
— Time,

- Alarm...
e Synchronisation tools

- Counting Semaphores,
— Mutex,
— Conditional Variables,

— Event Flags

97

NATIVE API - Services

e Message and communication

- Inter-tasks synchronous Messages
— Messages queue

- Pipes : Message streaming
e I/0 control

— Interruptions
- Heap memory

— Memory Access of a device in user space
o Registers

— Small semantic, developer basis

- /proc/xenomai/registry/...

NATIVE API - Compilation Flags

CFLAGS=$(shell xeno-config --xeno-cflags)
LDFLAGS= -1lnative $(shell xeno-config --xeno-1ldflags)

myapp: myapp.c
$(CC) -o $@ myapp.c $(CFLAGS) $(LDFLAGS)

4.7.7 Main Mechanisms

Common Functions
o Create / Delete
e Bind / Unbind = Registry and binding
¢ Inquire = Inquiries

Registry and binding

Multiple processes unified sharing of objects.
In Kernel Space and in User Space (T_PRIMARY).

e "/proc/xenomai/registry"

e int rt_object_bind (RT_OBJECT *obj, const char *name, RTIME timeout)

e static int rt_object_unbind (RT_OBJECT *obj)
Ex:

98

mainl.c:
RT_TASK t;
rt_task_create (&t,"myTask",0,0,0);

main2.c:

RT_TASK *tt;

rt_task_bind (tt, "myTask", (RTIME)10000);
Execution

rt_task_unbind (tt);

Inquiries
State informations of any object.

e int rt_object_inquire (RT_OBJECT *obj, RT_OBJECT_INFO *info)
Ex:

RT_TASK *curtask;

RT_TASK_INFO curtaskinfo;

curtask=rt_task_self ();
rt_task_inquire (curtask ,&curtaskinfo);

rt_printf ("Task name : %s \n", curtaskinfo.name);

RTDK
Introduces a collection of utilities aimed at forming a Real-Time Develop-
ment Kit for userland usage.

int rt_vfprintf (FILE *stream, const char *format, va_list args);
int rt_vprintf (const char xformat, va_list args);

int rt_fprintf (FILE *stream, const char *format, ...);

int rt_printf (const char *format, ...);

int rt_print_init(size_t buffer_size, const char *name);
void rt_print_cleanup(void);

void rt_print_auto_init (int enable);

const char *rt_print_buffer_name(void);

4.7.8 RTDM
Real Time Driver Model RTDM

e User API
e Driver Development API
— Inter-Driver API

- Device Registration Services + Synchronisation Services

99

— Clock Services

— Task Services

— Timer Services

- Synchronisation Services

- Interrupt Management Services

- Non-Real-Time Signalling Services

- Utility Services

e User API

e Driver Development API
— Inter-Driver API

— Device Registration Services + Synchronisation Services
— Clock Services

— Task Services

— Timer Services

— Synchronisation Services

- Interrupt Management Services

— Non-Real-Time Signalling Services

— Utility Services

Real Time Driver Model

e Device Profiles

— CAN Devices
— Serial Devices

— Testing Devices

5 Application

5.1 Examples
5.1.1 Examples
MC2e

e Aim:

— Surgical Robotics
- 3rd Hand

100

- Minimal invasive operation
— Co-manipulation

e Technical notes :

— Spherical kinematics

— Force based robot

MC2e : Tasks Architecture
Shared Time | Constrained Time

User Kernel

TOD T
(ul) (Asserv)

101

MC2e : Synchro Solution

Shared Time | Constrained Time

User Kernel

TORDOTITIU »
C ul) (Asserv)
< luuul%ﬂ\@

Shared Memory
Mutex

Only one shared memory with all the state and command information. =
leads to only one synchronization mechanism

Monimad : Description

e Aim:
— Sit-To-Stand
- Walking
— disbalance recover
- Old and Diseased people

— Assistance

102

~
Mobile plateform

Monimad : Tasks Architecture
Shared Time Constrained Time

—TopotPUSqMIP ————— ——TobotPose T >
(Ul : Trajectory, Decision) (Com) (MPC555 : Pos Asserv)
< <
‘k .y -y
| ;< Force Sensor Driver ’

Elements :
e CAN Bus
e Force Sensors (Serial, Acquisition card)

e Ul

Monimad : Synchro Solutions

103

Shared Time | Constrained Time

____+______________

User Kernel
N

N

-
oD i
(Ul : Trajectory, Decision) (Com)
<l I
< %

TobotPoSCITT

|-
»
(MPC555 : Pos Asserv)

A

TODOTSTaTE

| ;< Force Sensor Driver)

Shared Memory Char Device
Mutex

Cardioloc : Description
e Aim:

— Heart Surgery
— Compensation

- Visual Servoying
e technical information :

— 2000Hz
— PiezoElectric Actuator

- High frequency camera

Cardioloc : Tasks Architecture

CAN Bus
Shared Structure

Shared Time | Constrained Time
e
User Kernel
I
ropoteTT— —Tototemm— Tet g te—
(ul) r (Com) (Asserv) CCamera Driver)
~—Toorst TODOTSTATE ¢ frrran
'r g
Elements :
e GUI

e Camera Driver

e Threads

104

Cardioloc : Synchro Solutions
Shared Time | Constrained Time

User Kernel

o]

\,...i, \ otem—3 Hemo——
C Com) CAsserv> (Camera Driver)

potStare——

)
_/
A

Fifo SharedVariable IShared Memory
SharedStructure Mutex utex

RobModex : Description
e Aim:

- Pedagogic Solution
- Polytechnique School of Engineering (Palaiseau)

e Technical

— Fixed Wheel Structure

— Usb Camera

RobModex : Tasks

105

Shared Time | Constrained Time

UI TopotrStar (SIOPUITIT ASSGI’V

WebCam

Elements :
e USB Driver
e Threads

RobModex : Synchro Solution
Shared Time | Constrained Time

—— - = = = = = = - = = =

User Kernel
WebCam \ / Q
Shared Memory Flag

Keyboard (Signal) (Read only) Shared Memory

Notice : There is no Synchronization needed

6 Documentations

6.1 Doc
6.1.1 Interface with community

Documentation

106

The Documentation/ directory in kernel sources ;
The documentation Linux project

e LDP "http://www.tldp.org" : guides, HOWTOs, FAQs, manpages... ;
Personal web sites of maintainers (see newsgroups) ;

Other documents from web (http://www.google.com/linux/).

Information
Specialised Mailing Lists (newsgroups http://www.uwsg.indiana.edu/
search/):

e linux-kernel,
e kernel-newbies,
e linux-net... ;

Week summary of discussions of linux-kernel mailing list :

e Kernel Traffic (http://kt.zork.net/kernel-traffic/), and
e Kernel Notes (http://www.kernelnotes.org).
Interface with community
FAQ Linux kernel (http :/ /www.tux.org/lkml/) ;
Discussion Forums : comp.os.development.kernel... ;
Personal email maintainers or authors of a part of source code.
6.1.2 References

References
Use the source, Luke !
The answer of all your questions are inside the kernel sources...

References
Books - Linux Device Drivers 2nd edition (O’Reilly) http://www.xml . com/
1dd/chapter/book/index.html :

e Understanding the Linux Kernel (O'Reilly) :

e "Programmation Linux 2.0 "(Eyrolles).

107

References
E-Books - Linux Kernel Internals (kernel 2.4) [http://www.t1ldp.org/LDP/
1ki/]:

e Linux Kernel Module Programming Guide (kernels 2.0 et 2.2) [http://
www.tldp.org/LDP/lkmpg/] :

e Linux Kernel Hackers” Guide (kernels 2.0 et 2.2) [http://www.tldp.org/
LDP/khg/] :

e The Linux Kernel (kernel 2.0) [http://www.tldp.org/LDP/tlk/]:
e The Linux Programmer’s Guide (APl user space) [bttp://www.tldp.org/
LDP/1pg/].
References

Articles and documents

e Articles on how import drivers from 2.4t0 2.6 [http://lwn.net/Articles/
driver-porting/]

e Links of kernelnewbies [http://www.kernelnewbies.org/links/]:
o Articles of kerneltrap [http://kerneltrap.org/]:

o Conceptual architecture of Linux Kernel [http://plg.uwaterloo.ca/~itbowman/
CS746G/al/]:

e Concrete architecture of Linux kernel [http://plg.uwaterloo.ca/~itbowman/

CS746G/a2/].

References

e http://www.xenomai.org
e http://www.xenomai.org/index.php/Publications

- Native-API-Tour-rev-C.pdf
- Life-with-Adeos-rev-B.pdf
— RTDM-and-Applications.pdf

e http://www.xenomai.org/index.php/API_documentation

108

6.1.3 Licences

GPL

GNU General Public License (GPL) Maintained et defended by Free Soft-
ware Foundation (FSF) ;

Give the right (and it is also a duty !) to copy, modify et redistribute the
software only under the same licence terms (GPL).

This rule includes also software linked to codes licensed under GPL ;

No free of charge are described, only freedom in using ;

It is possible to sell a software under GPL but not to forbid them to modify
it and redistribute (free of charge or not).

LGPL

o GNU Lesser General Public License (LGPL) Maintained and defended by
Free Software Foundation (FSF) ;

o Less restricted than GPL ; Possibility to call LGPL code from a non-free
program (ex : software under licence incompatible with GPL) ;

e Used mainly for libraries (ex : GNU libC).

Others

e Licence of Linux kernel is GPL with added terms ;

Core of the kernel is GPL ;

But using and redistribution of binaries only inside are allowed ;

Must fit with standard interfaces of modules ;

A lot of work has been done to clarify the GPL/non GPL frontier : EX-
PORT_SYMBOL_GPL, MODULE_LICENSE...

Licences

Technically very difficult to provide compatible binary modules because of
all possible configurations of the kernel (ex : versions, external patches...) ;
Legal but not advised (no support from community).

6.1.4 Glossary

e API, Application Programming Interface :

e AVL, Adelson-Velskii and Landis : binary tree structure always balanced
that allow researches in O(log n) where a classic research is in O(n) :

109

BE , Big-Endian : bytes organization where most significant byte (MSB)
are stored before less significant bytes (LSB), :

DMA , Direct Memory Access : Mechanism in Computer that bring the
ability to avoid the CPU to be used when we want data transfer between
central memory and devices;

FAQ, Frequently Asked Questions : the document to be read before ask-
ing any question on a mailing list :

FSF , Free Software Fundation : association that aim to defend and pro-
mote free-ware (on GPL and LGPL Licenses) :

GPL , General Public Licence : free license of Free Software Fundation :
IP , Internet Protocol : (level 3 in OSI Model) based best effort principle,
IRQ, Interrupt ReQuest : ;

ISDN, Integrated Services Digital Network : numerical network that can
transport voice or data :

LE, Little-Endian : bytes organization where less significant byte (LSB)
are stored before most significant bytes (MSB), :

LGPL, Lesser General Public Licence : free licence of Free Software Fun-
dation mainly used for libraries :

OSI, Open System Interconnect : layer model bringing a conceptual and
standardize for exchanging between different operating systems ;

POSIX , Portable Operating System for Computer Environment : Unix
Standard from IEEE (number 1003.1) that specify system kernel ; it is
composed of extensions for real-time kernel (1003.1-b) and threads (1003.1-

C):

PLIP, Parallel Line Internet Protocol : communication protocol on paral-
lel port used to embed IP communications through parallel lines :

PPP , Point to Point Protocol : communication protocol used to embed
communications on serial lines (ex : modem) :

SLIP , Serial Line Internet Protocol : communication protocol used to
embed IP communications on serial lines (ex : modem) ;

110

e SMP, Symmetric Multi-Processing : use of multiple same CPU that share
the same resources (memory...) and devices in one operating system =
transparent for users :

e TCP , Transmission Control Protocol : (4th level in OSI model) working
in connected mode :

e VES, Virtual File System : abstraction layer in high level part of the kernel
to enable fast writing on file systems ;

111

