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Nonlinear Dynamics and Models

A course in Xi’an Jiaotong University

October-November 2014

by

Jean-Pierre FRANCOISE

Université Pierre-et-Marie Curie, Paris 6 and CNRS

Laboratoire J.-L. Lions

Nonlinear dynamics is developed in three different directions. Geometric quali-

tative theory of phase portraits, analysis (normal form, averaging, perturbative

approach, asymptotics) and numerical simulations. This course is of basic level for

undergraduate students who followed fundamental courses of linear algebra, differ-

ential calculus, topology and provides them an introduction to nonlinear dynamics.

Nonlinear dynamics applications are ubiquitous in many sciences including physics,

mechanics, biology and economics. In return, this field has received important feed-

back from modeling. We also include in this course presentations of such models.
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1. Geometric qualitative theory of phase portraits

1.1. Continuous dynamics on a metric space.

1.1.1. Definition of a continuous dynamics, invariant sets.

Definition 1. Let E be a metric space and f : R×E → E, f : (t, p) 7→ f(t, p) a

continuous map. The map f defines a topological continuous dynamical system if:

(i) f(0, p) = p

(ii) f(t1, f(t2, p)) = f(t1 + t2, p).

The variable t is called the time. The set of points

{f(t, p), t ∈ R} = f(R, p)

is the orbit or the trajectory of the point p. The set

{f(t, p), t ∈ R+},

respectively

{f(t, p), t ∈ R−},

is the positive (resp. negative) orbit of p. The set of points

{f(t, p), T1 < t < T2, } = f(]T1, T2[, p)

is an arc of the orbit of p

Definition 2. A subset S ⊂ X is said to be invariant by the dynamical system if

for all p ∈ S, f(t, p) ∈ S, for all t ∈ R.

Definition 3. A subset Σ is said to be a minimal invariant set if it is non-empty,

closed and invariant and if it does not strictly contain any subset with the same

properties.
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1.1.2. Lagrange stability, Poisson stability, Lyapunov stability, non-wandering points.

Definition 4. A solution f(t, p) is positively (resp. negatively) stable in Lagrange

sense if the closure of f([0,+∞[, p) (resp. of f(]−∞, 0], p)) is compact. It is said

to be stable in Lagrange sense if the closure of the orbit f(R, p) is compact.

Definition 5. A point p is positively stable in Poisson sense if for all neighborhood

U of p, and for all T > 0, there exists a t ≥ T so that f(t, p) ∈ U .

Definition 6. A point p is stable (positively stable, negatively stable) in Lyapunov’s

sense relatively to B if for all ε > 0, there exists δ > 0 such that for all q ∈ B so

that d(p, q) < δ: d(f(t, p), f(t, q)) < ε, for all t, resp. t ≥ 0, t < 0.

Definition 7. A point p is said to be wandering if there exists a neighborhood U

of p and a positif number T so that for all t ≥ T , f(t, U) ∩ U = ∅.

The set of wandering points is invariant and open. Its complement called the set

of non-wandering points is a closed invariant set denoted M1.

A non-wandering point is thus characterized by the fact that for any neighborhood

U of the point, there exists values of t arbitrarily large so that U ∩ f(t, U) 6= ∅.

For instance, a stable point in Poisson sense is non-wandering. Reciprocally, a

non-wandering point is not necessarily stable.

Consider a compact metric space E on which a continuous dynamics is defined. Let

M1 be the set of non-wandering points. Consider the restriction of the dynamics

to M1. This restricted dynamics displays a set of non-wandering points M2. In

general, we can associate to the dynamical system an infinite sequence of sets:

M1 ⊂M2 ⊂ ... ⊂Mn ⊂ ...
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1.1.3. Limit points. Let f(t, p) be a continuous dynamical system defined on a

metric space E. Let f(R+, p) (resp. f(R−, p) be the positive (resp negative) orbit

of the point p that we assume to be relatively compact.

Definition 8. Let 0 ≤ t1 < t2 < ... < tn < ..., be an increasing non-bounded

sequence of values of t, limn→+∞tn = +∞. The ω-limit set of a point p is the set

of points q so that there exists an increasing non-bounded sequence 0 ≤ t1 < t2 <

... < tn < ..., limn→+∞tn = +∞ so that q = limf(tn, p), limn→+∞. The α-limit set

of p is defined similarly by changing t into −t.

Lemma 1. If p′ belongs to the trajectory of p then the ω and α-limit sets of p′ are

the same as those of p.

This lemma whose easy proof is left to the reader justifies the notation ω(γ) and

α(γ) for the ω or α-set of any point of a trajectory γ.

Proposition 2. The sets ω(γ) et α(γ) are invariant closed sets contained in the

closure of γ.

Proof. Let qn be a sequence of points in ω(γ) which converges to q. there is a

sequence tnm so that : f(tnm, p) → qn. Choose m(n) so that tn = tnm(n) > n

et d(f(tn, p), qn) < 1
n . This implies that d(f(tn, p), q) → 0 and q ∈ ω(γ). The

invariance by f is obvious. �

Theorem 3. Let f(t, p) be a continuous dynamical system defined on a metric

space E. Assume that the orbit γ is relatively compact. Then ω(γ) (resp. α(γ) is

non-empty, compact and connected.
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Proof. Let tn be a real sequence which tends to infinity and p ∈ γ. As the sequence

f(tn, p) is contained in a compact, there exists a convergent subsequence. Let q

be the limit of this subsequence, as q ∈ ω(p) it follows that ω(γ) is not empty.

The set ω(γ) is closed and contained in a compact, hence it is compact. Assume

it would not be connex and that there would exist two disjoint closed sets A and

B so that ω(γ) = A ∪ B. Let d = d(A,B) > 0. There exists a sequence t′n → +∞

so that f(t′n, p) → a ∈ A and another sequence t”n → +∞ so that φ(t”n, p) →

b ∈ B. Let us consider a new sequence tn whose terms of even order satisfy

d(f(tn, p), A) < d/2 and terms of odd order d(f(tn, p), A) > d/2. The function

φ(t) = d(f(t, p), A) is continuous on the interval (tn, tn+1) and on this interval it

takes values above and below d/2. Bu the intermediate value theorem, there is τn so

that d(f(τn, p), A) = d/2. Extraction of a subsequence f(τn, p) yields a convergent

sequence of limit q∗. THis limit point is such that q∗ ∈ ω(p), d(q∗, A) = d/2 and

d(q∗, B) ≥ d(A,B) − d(q∗, A) = d/2. It follows that Il s’ensuit que q∗ does not

belong neither to A nor to B, which is a contradiction. �

1.1.4. Recurrent solutions in Birkhoff’s sense.

Definition 9. A trajectory u(t) = f(t, p) is said periodic if it is not constant and

there is a T > 0 such that u(t+ T ) = u(t).

Proposition 4. A relatively compact trajectory is periodic if and only if u(R+)

(resp. u(R−)) is closed.

Proof. Obviously if u is periodic, u(R+) = u([0, T ]) is closed. Conversely if u(R+)

is closed, then ω(p) ⊂ u(R+). Since ω(p) 6= ∅, u(R+) ∩ ω(p) 6= ∅, hence u(R) ⊂
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ω(p). Thus u(−1) ∈ ω(p) ⊂ u(R+) and there is a τ ∈ R+ so that u(−1) = u(τ),

then u(t+ 1 + τ) = u(t). �

Definition 10. A point p is said to be recurrent if p ∈ ω(p). The set of recurrent

point is noted R.

Lemma 5. If p ∈ R, then f(t, p) ∈ R.

Definition 11. Solution u(t) = f(t, p) is said to be recurrent if p ∈ ω(p).

Observe that a periodic orbit is recurrent.

Lemma 6. If u(t) is recurrent then there is a sequence tn → +∞ such that

u(t+ tn)→ u(t).

Proposition 7. For all p ∈ E whose orbit is relatively compact, ω(p)∩R contains

a non-empty compact minimal invariant set K.

Proof. Consider ω(p), which is non-empty. By Zorn’s lemma, it contains a minimal

(for the inclusion) compact invariant set K. For every y ∈ K, ω(y) ⊂ K. As K is

minimal, ω(y) = K, hence y ∈ ω(y) is recurrent. So K ⊂ ω(p) ∩R is compact and

invariant. �

Define the set of translated of a solution u(t) = f(t, p) as the subset

Γ = {t 7→ u(t+ a), a ∈ R} of C(R, E).

Definition 12. The solution u(t) is almost-periodic if the set Γ is equicontinuous

in C(R, E).

Note that the family Γ is equicontinuous and bounded, hence the Ascoli’s theorem

implies that it is precompact.
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Proposition 8. A almost-periodic solution u(t) is recurrent.

Proof. Consider the sequence of translated u(t+n), accordingly to Ascoli’s theorem,

there is a subsequence u(t+nk) which is convergent. Let u(t+a) be its limit. Then

the sequence u(t+ nk − a) converges to u(t). So that u(t) is recurrent. �

1.1.5. Recurrence theorem of Poincaré-Carathéodory. In this part, we focus on X ⊂

E = Rn compact and assume defined a probability measure µ on X which is

preserved by a continuous dynamical system f(t, p) defined on X.

Theorem 9. For almost all p ∈ X, the trajectory f(t, p) is recurrent. More pre-

cisely, there is a set A ⊂ X of full measure µ(A) = 1 and a sequence mk → +∞

so that for all x ∈ A, u(t) = f(t, x) is such that limu(t+mk) = u(t).

Proof. Take any ε > 0 and set

(1) Aε = {x ∈ X, for all k ∈ N,d(f(k, x), x) ≥ ε}.

Assume that µ(Aε) > 0, then there exists x0 ∈ X such that µ(C) > 0, C =

Aε ∩ B(x0,
ε
3 ). Write Cn = f(n,C), for all n ∈ N, µ(Cn) = µ(C) > 0. Assume

Cp ∩Cm 6= ∅, p < m, then set ξ ∈ C ∩Cm−p. This yields ξ = f(m− p, η), d(η, x) ≤

ε/3, d(ξ, x) ≤ ε/3, d(ξ, η) ≥ ε > 2ε/3. Contradiction shows that Cp ∩ Cm = ∅ for

all p 6= m. Thus this yields

(2) µ(X) ≥ Σnµ(Cn) = +∞.

This last contradiction displays µ(Aε) = 0 for all ε.

Finally, set A = ∪A1/k. This displays µ(A) = 0 and if x ∈ X − A, for every k,

there exists mk such that d(f(mk, x), x) ≤ 1/k. �
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1.1.6. Absorbing sets and attractors.

Definition 13. Let f : E×R→ E be a continuous dynamical system defined on a

metric space E. Let B be a bounded set of E and U an open neighborhood of B.

The set B is called an absorbing bounded set of U if the orbit of any point of any

bounded set of U enters B after some time (which depends on the bounded set).

Definition 14. A set A is an attractor of the dynamical system if A is the ω-limit

set of one of its neighborhoods U . The basin of attraction of A is the reunion of all

the open sets U so that ω(U) = A.

Theorem 10. Let U be an open set and B a bounded subset. Assume there is t0 so

that ∪t≥t0f(t, B) is relatively compact in E, then A = ω(B) is a compact attractor

in U . If E is a Banach space, U convex and connex, then A is connex.

1.2. Differentiable vector fields, stationary points and periodic orbits.

1.2.1. Fundamental theorems of differential equations.

Theorem 11. Let E be a Banach space, R×D ⊂ E open, (x0, t0) ∈ D, a, b ∈ R,

B =| t − t0 |≤ a, || x − x0 ||≤ b. Assume that f is defined, continuous on D and

Lipschitz in x of constant k on B. Let:

M = Max(t,x)∈B || f(x, t) ||,

A = Min(a,
b

M
).

The differential equation

x′ = f(t, x),
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displays a unique solution x(t, t0, x0) on [t0 − A, t0 + A] so that x(t0, t0, x0) = x0.

Furthermore, this solution satisfies

|| x(t, t0, x0)− x0 ||≤MA

for all t ∈ [t0 −A, t0 +A].

Proof. Note that the solution writes

(3) x(t, t0, x0) = x0 +

∫ t

t0

f(s, x(s, t0, x0)ds.

Consider the sequence of functions:

(4)

x0(t) = x0,

x1(t) = x0 +
∫ t
t0
f(s, x0(s))ds,

...

xm+1(t) = x0 +
∫ t
t0
f(s, xm(s))ds, ...

We prove that this sequence converges uniformly on [t0 − A, t0 + A]. Indeed it is

more convenient to proceed first on [t0, t0 +A] and extends to the whole interval.

We check that xm(t) is defined for all m > 0 and yields

(5) | xm(t)− x0 |≤M | t− t0 | .

This is obvious for m = 0. Assume this is true untill m = q, then

(6) | xq(t)− x0 |≤MA ≤ b,

hence:

(7) xq+1(t) = x0 +

∫ t

t0

f(s, xq(s))ds

is defined, continuous and so that

(8) | xq+1(t)− x0 |≤M | t− t0 |≤MA.

Consider then

(9)
dm(t) =| xm+1(t)− xm(t) |≤

∫ t
t0
| f(s, xm(s)− f(s, xm−1(s) | ds

≤ k
∫ t
t0
dm−1(s)ds.
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Furthermore as

(10) d0(t) =| x1(t)− x0 |≤M | t− t0 |,

assume inductively that

(11) dm(t) ≤ M

k
km+1 (t− t0)m+1

(m+ 1)!
,

then it follows that

(12) dm+1(t) ≤ M

k

km+2

(m+ 1)!

∫ t

t0

(s− t0)m+1ds =
M

k
km+2 (t− t0)m+2

(m+ 2)!
.

This yields the normal convergence of the series:

(13) x0(t) + Σ+∞
m=0[xm+1(t)− xm(t)],

Indeed, it displays

(14) Σ+∞
m=0dm(t) ≤ M

k
Σ+∞
m=0

km+1Am+1

(m+ 1)!
≤ M

k
[exp(kA)− 1].

At this point, this secure the existence of the solution. Check now the unicity.

Assume ad absurdum that there exist two continuous distinct solutions x(t) and

x(t) defined on [t0 − r, t0 + r] ⊂ [t0 −A, t0 +A] so that x(t0) = x(t0) = x0. As x(t)

and x(t) are continuous, for all δ arbitrarily small, there exists a B so that:

(15) | x(t)− x(t) |≤ B,

for all t ∈ [t0, t0 + r − δ]. This displays

(16) | x(t)− x(t) |≤
∫ t

t0

| f(s, x(s))− f(s, x(s)) |≤ kB(t− t0).

We can then deduce inductively that for all m,

(17) | x(t)− x(t) |≤ [km/m!]B(t− t0)m,

tends to 0 as m → +∞. This yields that | x(t) − x(t) | vanishes identically on

[t0, t0 + r− δ]. As δ is arbitrarily small, unicity follows on [t0, t0 + r] then the same

can be shown on [t0 − r, t0]. �
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Corollary 12. The solution x(t, t0, x0) depends continuously on (t, t0, x0).

Proof. Back to the proof, one can easily check by recurrence that xm(t, t0, x0)

depends continuously of its arguments. The corollary follows as a uniform limit of

continuous functions is continuous. �

Corollary 13. If f(t, x, λ) is Lipschitz in λ, then the solution is continuous in λ.

Proof. Suffices to consider

(18)
x′ = f(t, x, λ),
λ′ = 0.

�

Definition 15. If x(t) is a solution of the differential equation defined on (a, b)

and x(t) is a solution of the differential equation defined on (α, β), x(t) is called an

extension of x(t) if (a, b) ⊂ (α, β) and if x(t) |(a,b)= x(t).

Definition 16. If x(t) is a solution of the differential equation defined on (a, b)

so that for all extensions x(t) defined on (α, β), with (a, b) ⊂ (α, β), necessarily

x(t) = x(t) et (α, β) = (a, b), then solution x(t) is said maximal.

The local existence theorem yields existence of solution x(t) defined on an interval

[−A,+A] so that x(0) = x0.

Theorem 14. There exists a unique maximal solution x′(t) = f(t, x), so that

x(0) = x0 defined on an interval ]α(x0), ω(x0)[.

Proof. Let (α, β) be the reunion of all intervals I which contains 0 so that the

equation displays a solution so that x(0) = x0 defined on I. Define a function x(t)

on (α, β) as follows. Given t ∈ (α, β), there exists I so that t ∈ I on which there
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is a solution u(t) of the equation. Set x(t) = u(t). Necessary to check that x(t) is

well defined. Assume there are two intervals I1 and I2 so that t ∈ I1 ∩ I2 and two

solutions u1 and u2. From the local uniqueness, there exists an interval ]−A,+A[

on which u1(t) = u2(t). Let I∗ be the largest interval contained in I1 ∩ I2 so that

u1 = u2. If I∗ is a proper sub-interval of I1 ∩ I2, for one of its extremities τ , by

continuity of u1 and u2,

(19) Limt→τu1(t) = Limt→τu2(t) = u0.

From the local existence and unicity u1(t) = u2(t) on an interval ]τ − α, τ + α[,

contradicts maximality of I∗. Hence u1(t) = u2(t) on I1 ∩ I2, and x(t) is well

defined. This function x(t) is a solution of the differential equation because in all

points it coincides with a solution u(t) of the differential equation. This maximal

interval of existence is open by the possibility of an extension at the extremity of

the interval. �

Theorem 15. Let x(t) be the maximal solution defined on (α, β). Assume that

β < +∞, for a compact K ⊂ Ω, then there exists a t ∈ (α, β) so that x(t) /∈ K.

Proof. Assume that x(t) ∈ K for all t ∈ (α, β). If α < t1 < t2 < β, then

(20) | x(t1)− x(t2) |≤
∫ t2

t1

| f(x(s) |≤M(t1 − t2),

and this yields existence of Limt→β−x(t) = x1, x1 ∈ K. Set then u(t) = x(t) for

t ∈ (α, β) and u(β) = x1. This function displays

(21) u(t) = x0 +

∫ t

0

f(u(s))ds,

and is thus differentiable in β with u′(β) = f(u(β). It is then possible to extend

the solution and there is a contradiction. �
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Corollary 16. For any maximal solution contained in a compact,

(α, β) =]−∞,+∞[.

Consider more particularly the autonomous case, also named vector fields

(22) x′(t) = f(x).

Corollary 17. If the solutions of an autonomous differential equation remain in a

compact set K, then they define an associated topological dynamical system on K.

Proof. Consider an initial point x0 of K, the solution passing by x0 exists for all

values of t ∈ R. The unicity of this solution yields:

(23) x(t+ t′) = x(t, x(t′),

and this defines a topological dynamical system:

(24) f : R×K → K, f : (t, p) 7→ f(t, p) = x(t, p).

�

1.2.2. Gronwall’s Lemma.

Theorem 18. Let φ(t) be a continuous function, with positive values defined on

an interval t0 ≤ t ≤ t0 + T which displays the inequality:

(25) φ(t) ≤ δ1
∫ t

t0

φ(s)ds+ δ2(t− t0) + δ3,

then it satisfies the inequality:

(26) φ(t) ≤ (
δ2
δ1

+ δ3)exp[δ1(t− t0)]− δ2
δ1
,

for all t ∈ [t0, t0 + T ].
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Proof. Write

(27) ψ(t) = φ(t) +
δ2
δ1
,

which displays

(28) ψ(t) ≤ δ1
∫ t

t0

ψ(s)ds+
δ2
δ1

+ δ3.

This implies:

(29)
δ1ψ(t)

δ1
∫ t
t0
ψ(s)ds+ δ2

δ1
+ δ3

≤ δ1.

Then, by integration,

(30) log[δ1

∫ t

t0

ψ(s)ds+
δ2
δ1

+ δ3]− log(
δ2
δ1

+ δ3) ≤ δ1(t− t0),

this yields

(31) δ1

∫ t

t0

ψ(s)ds+
δ2
δ1

+ δ3 ≤ (
δ2
δ1

+ δ3)eδ1(t−t0).

Application of the same inequality again, displays

(32) ψ(t) ≤ (
δ2
δ1

+ δ3)eδ1(t−t0),

which provides the expected inequality. �

Consider now a differential equation depending of a parameter λ:

(33)
dx

dt
= f(x, t, λ),

so that f is Lipschitz of coefficient K relatively to x uniformly in λ and t ∈ [−a,+a].

Let φ = φ(t, t0, x0) be the unique maximal solution so that φ(t0, t0, x0) = x0, defined

on the interval I(t0, x0) = (ω−(t0, x0, λ), ω+(t0, x0, λ)).

Gronwall Lemma allows to show the

Theorem 19. For all t ∈ I(t0, x0)∩I(t0, y0), the inequality:

(34) | φ(t, t0, x0)− φ(t, t0, y0) |≤ exp(K | t− t0 |) | x0 − y0 |,
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stands.

This shows that the solution is a differentiable function of the initial data x0 as

well as of t0 if the differential equation f(x, t) is differentiable.

1.2.3. Differentiable dynamical system associated to a vector field, transversal sec-

tion and first return mapping. We have thus obtain that the dynamical system

associated to the solutions of a differentiable vector field f(x) (on a compact set)

is not only continuous but also differentiable.

Definition 17. The mapping φt : x0 7→ x(t) which associates to the initial value

x0 the value of the maximal solution x(t) at time t, is called the flow at time

t of the vector field.This flow is said complete if this mapping is defined for all

t ∈ [−∞,+∞].

For instance the flow is complete if the solutions remain in a compact set K. It

is possible to prove that if the vector field f(x) is of class Ck, the flow is also a

mapping of class Ck. Assume further that f(x) is at least differentiable.

Definition 18. The orbit (or integral curve) γ of the vector field f(x) passing by

the point x0 is the differentiable curve t 7→ x(t). This curve is oriented by the sense

of variation of t (time). The tangent to the orbit at the point x(t) is given by the

vector f(x(t)). The positive orbit is γ+ = {x(t), t ≥ 0} and the negative orbit is

γ− = {x(t), t ≤ 0}.

Definition 19. The phase portrait of a vector field f(x) is the partition of the

space into its orbits.
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Definition 20. Given a vector field f(x), a point x0 is said to be stationary if

f(x0) = 0. A stationary point is a fixed point of the flow. A point which is not

stationary is said to be regular.

Definition 21. Let f be a differentiable vector field defined on an open set U of

Rn. Let A be an open set of Rn−1. A transverse section of the vector field is a

differentiable mapping σ : A→ U such that for all points a ∈ A:

(35) Dσ(a)(Rn−1)
⊕

X(S(a)) = Rn,

where D denotes the differential.

Definition 22. Two vector fields f and g are said to be topologically (resp. Ck)

conjugate if there exists an homeomorphism (resp. diffeomorphism of class Ck)

which sends the orbits of f on those of g with preservation of the time t. If φ(t, x)

(resp. ψ(t, x)) denotes the flow of f (resp. g). This writes

(36) h(φ(t, x)) = ψ(t, h(x)).

Theorem 20. Let f be a vector field of class Ck defined on an open set U of

Rn and p a regular point. Let S : A → Σ be a transverse section to f so that

S(0) = p. There exists a neighborhood V of p and a diffeomorphism h of class Ck,

h : V → (−ε,+ε)×B where B is an open ball of Rn−1 centered at the origin so that:

(i) h(Σ ∩ V ) = 0×B

(ii) h is a Ck conjugacy between the vector field f restricted to V eand the constant

vector field g

(37) g : (−ε,+ε)×B → Rn, g = (1, 0, 0, ..., 0) ∈ Rn.
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Proof. Let φ(t, p) be the flow at time t applied to the point p. Define the mapping

F : (t, u) 7→ φ(t, S(u)). The differential DF (0) is an isomorphism and by the inverse

local theorem, F is a local diffeomorphism. Choose a neighborhood (−ε,+ε)×B of

the origin so that F defines a diffeomorphism onto its image V = F ((−ε,+ε)×B).

Set h = F−1 | V which displays

(38)
h(Σ ∩ V ) = 0×B,
Dh−1(t, u).Y (t, u) = dF (t,u)

dt = X(F (t, u)) = X(h−1(t, u)).

�

Corollary 21. Let Σ be a transverse section of f . Let p be a point of Σ. There

exists ε(p) and a neighborhood V of p and a function τ : V → R of class Ck such

that τ(V ∩ Σ) = 0 and

(i) For all point q ∈ V , the integral curve φ(t, q) of f |V exists for t ∈ (−ε,+ε).

(ii) The point q belongs to Σ if and only if τ(q) = 0.

(iii) ξ(q) = φ(τ(q), q) is the only intersection of the orbit passing by q with Σ. The

mapping ξ : V → Σ is of class Ck, Dξ(q) is surjective and q ∈ V and Dξ(q).v = 0

are equivalent to v = αf(q) for some α ∈ R.

Proof. This result is obvious for the constant vector field g and it is preserved by

conjugacy. �

Hereafter the theorem and its corollary will be referred as the Flow-Box theorem.

Definition 23. A periodic orbit is an orbit of the vector field passing by a regular

point x0 so that the solution exists for all t ∈ R and there exists a number T 6= 0

so that

(39) x(t+ T ) = x(t).
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Lemma 22. The set P = {c ∈ R, x(t+ c) = x(t), for all t ∈ R} is an additive

subgroup of R which is closed in R.

Proof. If c, d ∈ P , then c+ d,−c ∈ P , because

(40)
x(t+ c+ d) = x(t+ c) = x(t)
x(t− c+ c) = x(t− c) = x(t),

and the continuity of t 7→ x(t) yields that if a convergence sequence cn → c belongs

to P , then c ∈ P . �

Lemma 23. Any additive subgroup P 6= 0 of R is either of the form τZ, with τ > 0

or is dense in R.

Proof. Suppose P 6= 0, then P ∩ R+ 6= 0 because there exists c ∈ P, c 6= 0 and

either c or −c belongs to P ∩ R+. Consider τ = inf(P ∩ R+). If τ = 0, given any

ε > 0, and t ∈ R, there exists c0 ∈ P ∩R+ so that 0 < c0 < ε0. The set c0Z divides

R into intervals of length less than ε. It follows that for any t ∈ R there exists an

element c ∈ P such that | t − c |< ε. This means that P is dense in R. Consider

now the case τ > 0. If there exists a c ∈ P − τZ, there is a unique K ∈ Z so

that Kτ < c < (K + 1)τ and then 0 < c −Kτ < τ and c −Kτ ∈ P ∩ R+. This

contradiction yields P = τZ. �

Definition 24. The minimal period of the periodic orbit is the smallest real positive

number T0 so that x(t+ T0) = x(t) for all t.

From the two previous lemmas, follows the fact that the set of real numbers T so

that x(t+ T ) = x(t) called the periods of the periodic orbit is the set of multiples

of the minimal period T0Z.
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Let γ be a periodic orbit of a vector field f of class Ck passing by point x0. Let

Σ = {x | (x− x0).f(x0) = 0} be a germ of hyperplane transverse at γ at the point

x0. Denote φt(x) the flow of the vector field at time t applied at point p. The

periodic orbit is identified with γ = {x | x = φt(x0), 0 ≤ t ≤ T}.

Theorem 24. There exists δ > 0 and a differentiable function x 7→ τ(x) of class

Ck defined on x ∈ Σ, | x− x0 |< δ, so that φτ(x)(x) ∈ Σ. This function x 7→ τ(x)

is called the function of the time of first return.

Proof. Given any point q ∈ γ, there exists a neighborhood of q defined by theorem

20. As the periodic orbit γ is compact, it is possible to cover γ by a finite number

of intervals ]− εi,+εi[×B(0, ρi). The minimum ρ = miniρi, defines a neighborhood

of γ on which the flow is defined for all t ∈ [0, A], A > T . We can then define a

Ck funtion F (t, x) = [φt(x) − x0].f(x0). The periodicity displays F (T, x0) = 0.

Furthermore, as x0 is necessarily a regular point,

(41)
∂F (T, x0)

∂t
=
∂φt(x0)

∂t
|t=T .f(x0) = f(x0).f(x0) =| f(x0) |2 6= 0.

By the implicit function theorem, there exists a unique function τ(x) of class Ck

so that τ(x0) = T and F (τ(x), x) = 0, hence φτ(x)(x) ∈ Σ. �

Definition 25. Define the first-return mapping P : x 7→ P (x) = φτ(x)(x). This

mapping is also of class Ck.
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2. Stability and Hyperbolicity

2.1. Lyapunov Stability.

2.1.1. Linear Systems. Consider a linear differential equation:

(42) ẋ = A.x,

where x is a vector in Rn and A a matrix n×n.

Recall that the solution x(t) with initial condition x(0) = x0 is given in that case

by

(43) x(t) = exp(tA).x0.

Let wj = uj+ivj an eigenvector associated to an eigenvalue λj = aj+ibj of A, (j =

1, ..., n). Assume that the k first eigenvalues of A and that 2(m−k) eigenvalues are

complex conjugates. Assume that the real vectors u1, ..., uk;uk+1, vk+1; ...um, vm

display a basis of Rn, n = 2m− k.

Definition 26. The stable space Es, unstable space Eu and neutral space En are

defined respectively by

Es= subspace generated by uj , vj so that aj < 0

Eu= subspace generated by uj , vj so that aj > 0

En= subspace generated by uj , vj so that aj = 0.

Theorem 25. The following properties are equivalent

(a) Eigenvalues of A have negative real parts.

(b) There exists positive constants M, c positive such that for all x0 ∈ Rn and for

all t ∈ R

(44) | exp(tA).x0 |≤M | x0 | exp(−ct).
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(c) For all x0 ∈ Rn, limt→+∞exptA.x0 = 0.

Proof. It is obvious that (a) implies (b) which implies (c). Assume that (c) does

not imply (a) and let λ = a + ib be an eigenvalue with a ≥ 0. Then there exists

a vector x0 so that limt→+∞exp(tA).x0 6= 0. In fact any non-zero real vector x0

of the subspace generated by the real parts and imaginary parts of the eigenvector

associated to λ displays this property. �

With this theorem, it is possible to deduce easily the

Corollary 26. The vector space Rn is decomposed as a direct sum

(45) Rn = Es
⊕

Eu
⊕

En,

of subspaces invariant by the flow t 7→ exp(tA)

2.1.2. Stable and asymptotically stable solutions.

Definition 27. A solution x(t) of a differential equation dx
dt = f(x, t) is stable if

for all ε > 0, there is a δ > 0 so that if another solution y(t) so that for t = t0

|| (x− y)(t) ||≤ δ, then || (x− y)(t) ||≤ ε for all t ≥ t0. If furthermore || y−x ||→ 0

when t→ +∞ the solution x(t) is said asymptotically stable.

In the autonomous case (vector field), if x(t) = x0 is a stationary point, then x0 is

a stable (resp. asymptotically stable) stationary point.

2.1.3. Lyapunov-Poincaré theorem.

Theorem 27. Consider a differential equation

(46)
dx

dt
= A.x+ f(x, t),
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A is a n×n matrix, f(x, t) is continuous on || x ||≤ ρ, t ≥ 0 so that ||f(x,t)||
||x|| → 0

when x→ 0, uniformly relatively to t ≥ 0. If the real parts of the eigenvalues of A

are strictly negative, the solution x = 0 is asymptotically stable.

Proof. Let

(47) m = Sup||x||≤ρ,t≥0 || f(x, t) ||,

c || c ||< ρ and d a positive number so that || c || +d ≤ ρ, this displays

(48) Sup||x||≤ρ,t≥0 || A.x+ f(x, t) ||≤|| A || ρ+m = m′.

By the fundamental theorem of existence of solutions of differential equations, if

0 < t0 <
d
m′ , there exists a unique solution x(t) on t ∈ [0, t0] so that x(0) = c,

x(t) ∈|| x ||≤ ρ.

The matrix solution Y (t)of the linear equation

(49)
dY

dt
= A.Y, Y (0) = I,

tends to 0 as t→ +∞ and

(50)

∫ +∞

0

|| Y (t) || dt < +∞.

The solution y(t) of dy
dt = A.y so that y(0) = c is given by y(t) = Y (t).c. This

yields:

(51) || y ||≤|| Y || . || c ||≤ a || c ||,

for some a independent of A that we can assume larger than 1.

The solution x(t) displays:

(52) x(t) = y(t) +

∫ t

0

Y (t− τ)f(x(τ), τ)dτ.

For c small enough, for all, t ∈ [0, t0] this yields

(53) || x(t) ||< 2a || c || .
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Indeed, let

(54) ε <
1

2
(

∫ +∞

0

|| Y (τ) ||)−1,

and let η so that || x ||≤ η implies || f(x, τ) ||≤ ε || x ||, this displays

(55)
|| x(t) ||≤|| y(t) || +

∫ τ
0
|| Y (t− τ) || ε || x(τ) ||≤

a || c || + 1
2Maxt∈[0,t0] || x(t) ||,

hence

(56)
1

2
|| x(t) ||≤ a || c || .

If the vector c is choosen so that

(57) || c || +d < ρ, || c ||< η

2a
, 2a || c || +d < ρ,

, it follows that i|| x(t0) || +d < ρ. The solution x(t) extends to t ∈ [t0, 2t0] and

satifies the same estimates. By successive extensions, we check that x(t) exists

of all t > 0 and || x(t) || +d < ρ. This shows the stability. For the asymptotic

stability, change x into u so that x = ueλt where λ is a negative real number larger

to the maximum of the real parts of the eigenvalues of A. The function u solves

the equation:

(58)
du

dt
= (A− λI)u+ e−λtf(ueλt, t).

As || u ||≤ η then || eλtu ||≤ η and so || e−λtf(ueλt, t) ||≤ e−λtε || ueλt ||= ε || u || .

It is then possible to apply to the equation in u what was proved for the equation

in x because all eigenvalues of A − λ have negative real parts. If u(0) = x(0) is

small, u(t) is bounded and x(t)→ 0 as t→ +∞. �

Definition 28. A linear time-dependent differential equation

(59)
dy

dt
= A(t)y,
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is said to be reducible it there exists a (time-dependent) linear change of variables

y = Q(t)x, with Q(t) differentiable and invertible with

(60)
supt || Q(t) ||< +∞,
supt || Q−1(t) ||< +∞,

so that

(61)
dx

dt
= Bx,

where B is a constant matrix.

The Poincaré-Lyapunov theorem extends immediately to differential equations

(62)
dx

dt
= A(t).x+ f(x, t),

with A(t) a reducible matrix.

2.1.4. Lyapunov theorem and Lasalle invariance principle. Denote here more pre-

cisely a vector field defined on an open set U of Rn by its components:

(63)
dxi
dt

= fi(x1, ..., xn), i = 1, ..., n,

and let x0 ∈ U, f(x0) = 0 be stationary point.

Theorem 28. Assume there exists a function V of class C1 defined on a neigh-

borhood of x0, so V (x0) = 0, V (x) > 0 if x 6= x0 and

(64)
dV

dt
= Σifi(x)

∂V

∂xi
≤ 0,

the stationary point x0 is stable. If furthermore dV
dt (x) < 0 for all x 6= x0, the

stationary point x0 is asymptotically stable. Such a function V is called a Lyapunov

function for the vector field.

Proof. Let ε > 0 and B(x0, ε) the closed ball centered at x0 of radius ε. Set

(65)
Sε = (x ∈ Rn/ | x− x0 |= ε),
mε = Min(V (x), x ∈ Sε).
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As Sε is compact, V which is continuous displays a minima on Sε and mε > 0.

As V is continuous and V (x0) = 0, there exists δ so that: | x − x0 |< δ implies

V (x) < mε. Let x be a point of the ball B(x0, δ). Assume there may exist a value

t1 > 0 so that | φt1(x)−x0 |= ε. This would yield V (φt1(x)) ≥ mε in contradiction

with

(66) V (φt1(x)) ≤ V (x) < mε.

Now let t > 0 a real positive number and tk a sequence which increases to +∞.

There is a rank k0 so that t < tk0 and for all k > k0, then

(67) V (φt(x)) > V (φk0(x)) > V (φk(x).

Taking the limit k → +∞, displays

(68) V (φt(x)) > V (φk0(x)) ≥ V (y0),

which yields V (φt(x) > V (y0) for all t > 0.

Now, as y0 6= x0, function V is strictly decreasing along the orbit of y0. For all

s > 0, this displays

(69) V (φs(y0) < V (y0).

Then by continuity, if tk is large enough, V (φs+tk(x)) < V (y0). Contradiction shows

the asymptotic stability. �

The following is called the “Lasalle invariance principle”:

Theorem 29. Let V be decreasing along the orbits of a dynamical system. Let p

be a point so that the positive orbit γ+(p) through p is relatively compact. Then

Limt→+∞V (φt(p) = c exists and for all q ∈ ω-limit de p, V (q) = c. In other words,

V is constant on the ω-limit of p.
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Proof. The function t 7→ V (φ(t, p)) is decreasing and bouded so that Limt→+∞V (φt(p)) =

c exists. If y ∈ ω(p), there exists a sequence tn → +∞ so that y = Limφtn(p), and

thus V (y) = LimV (φtn(p)) = c. �

Theorem 30. Consider the differential equation

(70)
dx

dt
= A.x+ f(x),

so that A is a n × n-matrix, f is of class C2 so that f(x) = O(| x |2). Assume

that the eigenvalues of A have negative real parts. Then the vector field displays a

Lyapunov function on a neighborhood of the origin.

Proof. Consider the linear differential equation

(71)
dx

dt
= A.x.

For this equation, there exists α > 0 so that for all solutions x(t, x0) for initial data

x(0) = x0:

(72) || x(t) ||≤ C || x(0) || e−αt.

Introduce the quadratic form

(73) W (ξ) =

∫ +∞

0

|| x(t, ξ) ||2 dt.

This quadratic form is positive definite and there exist constants (µ, ν) so that:

(74) µ || ξ ||2≤W (ξ) ≤ ν || ξ ||2,

for all ξ. This yields:

(75)
W (x(τ, ξ)) =

∫ +∞
0
|| x(t+ τ, ξ) ||2=

∫ +∞
τ
|| x(t, ξ) ||2 dt,

Ẇ = d
dtW (x(t, ξ)) |t=0= − || x(t, ξ) ||2|t=0=

− || ξ ||2≤ − 1
µW.
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Consider now the full nonlinear system. The derivative of the function W relatively

to this vector field displays:

(76) Ẇ ≤ − 1

µ
W +

∑
i

fi(x)
∂W

∂xi
.

Each components fi of the vector field verifies:

(77) | fi(x) |≤ k || x ||2≤ k

µ
W (x).

As W is a quadratic form,

(78) | ∂W
∂xi
|≤ l

√
W (x),

and there is a constant q so that

(79)
∑
i

fi(x)
∂W

∂xi
≤ qW (x)3/2.

Consider a neighborhood of the origin so that W (x) < b and choose c so that

(80) c ≤ b, q
√
c ≤ 1

2µ
.

This displays

(81) Ẇ ≤ − 1

2µ
W,

and this shows that the quadratic form W is a Lyapunov function. �

2.2. Hyperbolic stationary points and hyperbolic periodic orbits.

2.2.1. Invariant manifolds of hyperbolic stationary points.

Definition 29. A stationary point x0 of a vector field dx
dt = f(x) is said hyperbolic

if all eigenvalues λj of the Jacobian matrix A = ( ∂fi∂xj
)(x0) have non-zero real parts.

Theorem 31. Let dx
dt = f(x) be a vector field defined on a neighborhood U of

Rn of the origin. Assume that 0 is a hyperbolic stationary point of the vector field.

Assume that the Jacobian matrix of f at the origin displays k eigenvalues of strictly
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negative real parts and n−k eigenvalues of strictly positive parts. Then there exists

an invariant manifold S of dimension k tangent to the stable space of the linear part

of f at the origin so that: for all t ≥ 0, φt(S) ∈ S and x0 ∈ S, limt→∞φt(x0) = 0.

There exists an invariant manifold U of dimension n − k tangent to the unstable

space of the linear part of f at the origin so that: for all t ≤ 0, φt(S) ∈ S and for

x0 ∈ U , limt 7→−∞φt(x0) = 0.

Proof. After a linear change of coordinates, assume:

(82) ẋ = Ax+ F (x), f(x) = 0(| x |2,

A = (P,Q) with P a matrix k×k with eigenvalues λ1, ..., λk of negative real parts

and Q a matrix (n− k)×(n− k) with eigenvalues λk+1, ..., λn of positive real parts.

Set U(t) = (exp(tP ), 0) and V (t) = (0, exp(tQ)). Let α so that

(83) Re(λj) < −α, j = 1, ..., k.

There are constants K and σ so that

(84)
|| U(t) ||< Kexp(−(α+ σ)t), t ≥ 0,
|| V (t) ||< Kexp(σt), t ≤ 0.

Introduce the Duhamel equation depending of a parameter a ∈ Rn:

(85) u(t, a) = U(t)a+

∫ t

0

U(t− s)F (u(s, a))ds−
∫ ∞
t

V (t− s)F (u(s, a))ds.

As F is of class C1 and DF (0) = 0, for all ε there is δ so that if

(86) | x |≤ δ, | y |≤ δ,

then

(87) | F (x)− F (y) |≤ ε | x− y | .
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Consider the sequence of functions t 7→ uj(t, a) defined as

(88)

u0(t, a) = 0,

uj+1(t, a) = U(t)a+
∫ t

0
U(t− s)F (uj(s, a))ds−

∫∞
t
V (t− s)F (uj(s, a))ds.

Assume by induction that if εK
σ < 1

4 , and 2K || a ||< δ, then

(89) | uj(t, a)− uj+1(t, a) |≤ K | a | exp(−αt)
2j−1

.

is true up to order m. Then, this yields:

(90)

| um+1(t, a)− um(t, a) |≤
∫ t

0
|| U(t− s) || ε | um(s, a)− um−1(s, a) | ds

+
∫∞
t
|| V (t− s)ε | um(s, a)− um−1(s, a) | ds

≤ ε
∫ t

0
Kexp(−(α+ σ)(t− s))K|a|exp(−αs)

2m−1 ds

+ε
∫∞

0
Kexp(σ(t− s))K|a|exp(−αs)

2m−1 ds

≤ εK2|a|exp(−αt)
σ2m−1 + εK2|a|exp(−αt)

σ2m−1

leq( 1
4 + 1

4 )K|a|exp(−αt)
2m−1 = K|a|exp(−αt)

2m .

These estimates show that the sequence of functions t 7→ uj(t, a) converges uni-

formly and that its limit displays

(91) | u(t, a) |≤ 2K | a | exp(−αt).

Note that the n− k last components of a do not intervene. It is possible to assume

they are nul.This yields

(92)
uj(0, a) = aj , j = 1, ..., k,
uj(0, a) = −(

∫∞
0
V (−s)F (u(s, a1, ..., ak, 0))ds)j , j = k + 1, ..., n.

Define the functions

(93) ψj(a1, ..., ak) = uj(0, a1, ..., ak), j = k + 1, ..., n.

The stable manifold is defined as a graph:

(94) yj = ψj(y1, ..., yk), j = k + 1, ..., n.

Indeed, if y ∈ S, set y = u(0, a) then y(t) = φt(y) = u(t, a) and limt 7→∞(y(t)) = 0.

Existence of the unstable manifold can be shown analogously after changing t into

−t and permuting U and V in the Duhamel integral equation. �
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Definition 30. The global stable (resp. unstable) manifold of an hyperbolic sta-

tionary point is the set of point φ(t,m), t ∈ R,m ∈ S resp. set of points φ(t,m), t ∈

R,m ∈ U . In other words, the maximal positively invariant set which contains S

(resp negatively invariant set which contains U).

Definition 31. A point p is said to belong to an heteroclinic connexion if there are

two stationary points (x0, x1) so that limt→−∞φ(t, p) = x0 and limt→+∞φ(t, p) =

x1. It is said to belong to an homoclinic connexion if there is a stationary point x0

so that limt→−∞φ(t, p) = x0 and limt→+∞φ(t, p) = x0.

2.2.2. Orbital stability.

Definition 32. Let γ be a periodic orbit with initial data x0 of a vector field. It

is said to be (orbitally) stable if for all ε, there exists a δ so that the solution y(t)

with initial data y0), such that | x0 − y0 |< ε, exists for all values of t and

(95) d(y(t), γ) < ε.

The periodic orbit is said asymptotically (orbitally) stable if it is (orbitally) stable

and

(96) limt→+∞d(x′(t), C) = 0.

In the following, it will be noted “stable” or “unstable” in short for meaning or-

bitally stable (resp. unstable).

2.2.3. Floquet theory of periodic orbits. Let γ be a periodic orbit of a vector field

ẋ = f(x). Linearisation of the vector field along γ displays ẋ = A(t)x, where

A(t) = Df(γ(t)) is a n×n-matrix, T -periodic. Let Φ(t) be the fundamental solution
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of this linear system

(97)
dΦ(t)

dt
= A(t)Φ(t), Φ(0) = I.

The solution x(t) so that x(0) = x0 is

(98) x(t) = Φ(t).x0.

Note that t 7→ Φ(t) is no longer associated to a one-parameter group but to a

process (in Daffermos’ sense). More precisely let Ut0(t) be the solution of the

matrix differential equation

(99)
dU
dt = A(t)U(t),
Ut0(t0) = I.

Unicity of the solution displays

(100) U0(t) = Ut0(t)U0(t0),

and yields in particular the invertibility of U0(t0). It follows that the fundamental

matrix Φ(t) is invertible for all t.

Lemma 32. Any invertible matrix Φ is the exponential of a matrix B (not unique).

Proof. �

Theorem 33. The fundamental solution Φ(t) is the product

(101) Φ(t) = Q(t)exp(tB),

of a differentiable T -periodic matrix Q(t) by the exponential of tB, B, constant

matrix.

Proof. Consider the fundamental matrix Φ(t) at t = T . As it is invertible, it writes:

(102) Φ(T ) = exp(TB).
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Matrix Φ(t+ T ) solves:

(103) Φ′(t+ T ) = A(t+ T )Φ(t+ T ) = A(t)Φ(t+ T ),

and displays

(104) Φ(t+ T )|t=0 = exp(TB).

Matrix Φ(t).exp(TB), is also solution of the differential equation with the same

initial data. This yields:

(105) Φ(t+ T ) = Φ(t).exp(TB).

Matrix Q(t) = Φ(t)exp(−tB) is differentiable and displays:

(106) Q(t+ T ) = Φ(t+ T ).exp[−(t+ T )B] = Φ(t).exp(−tB) = Q(t),

and thus, it is T -periodic. �

Proposition 34. A differentiable T -periodic matrix P (t) is reducible in Lyapunov’s

sense

Proof. The equation

(107)
dy

dt
= P (t)y,

turns into

(108)
dx

dt
= Bx,

by change of variables y = Q(t).x �

Definition 33. The characteristic exponents of the periodic orbit γ are the eigen-

values λj of the matrix B. The Floquet multipliers of the periodic orbit γ are

exp(λj).
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Let x0 be a point of a periodic orbit γ and Σ a transverse section to γ at x0. Assume

origin of coordinates at the point x0 and Σ is an hyperplane orthogonal to γ en

x0. Let φt(x) be the flow near 0 and Dφt(x) the differential of this mapping which

displays

(109)
∂Dφt(x)

∂t = Df(φt(x))Dφt(x),
Dφ0(0) = I.

This identifies Dφt(0) with the fundamental solution Φ(t). This yields:

(110) Dφt(0) = Q(t).exp(tB),

and thus, in particular DφT (0) = exp(TB).

Theorem 35. One of the characteristic exponents λj is always 0. It is possible

to choose the coordinates so that the differential of the first return map DP (0) is

identified with the (n − 1)×(n − 1)-matrix extracted of DφT (0) by erasing the last

line and the last column.

Proof. The flow restricted to the periodic orbit γ(t) = φt(0) displays

(111) γ′(t) = f(γ(t)),

and thus

(112) γ′′(t) = Df(γ(t))γ′(t).

This yields:

(113) γ′(t) = Φ(t)f(0),

and as γ′(T ) = f(0), DφT (0)f(0) = f(0). Thus f(0) is an eigenvector of exp(TB)

of eigenvalue 1. So, one of the eigenvalues of B is 0. Choose the ordering of the

eigenvalues so that λn = 0. Choose coordinates so that f(0) = (0, ..., 1)t, and thus
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the last column of the matrix exp(TB) becomes (0, ..., 1)t. Denote

(114) h(x) = φτ(x)(x).

The first-return map identifies with h restricted to Σ: P = h(x) | Σ. Differential of

h displays:

(115) Dh(x) =
∂φτ(x)(x)

∂t
Dτ(x) +Dφτ(x)(x).

Setting x = 0, yields

(116) D(h(0)) = f(0)Dτ(0) +DφT (0).

Matrix f(0)Dτ(0) displays non-zero terms only on the last line. Restriction of

D(h(0)) to Σ corresponds to keep only the upper-left block (n− 1)× (n− 1) which

coincides with DφT (0) = exp(TB).

�

Definition 34. Periodic orbit γ is said hyperbolic if all the eigenvalues λj , j =

1, ..., n− 1 of B displays

(117) Re(λj) 6= 0, j = 1, ..., n− 1.

Definition 35. Periodic orbit γ is said stable (resp. unstable) if all eigenvalues

λj , j = 1, ..., n− 1 displays

(118) Re(λj)) < 0(resp. > 0), 0, j = 1, ..., n− 1.

Consider again the fundamental solution Φ(t) of the linear equation dΦ(t)
dt = A(t)Φ(t).

The following proposition is due to Liouville:

Proposition 36. The determinant ∆(t) = detΦ(t) is given by the formula:

(119) ∆(t) = exp(

∫ t

0

TrA(s)ds).
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Proof. Denote ei, i = 1, ..., n the vectors of a basis of Rn. As Φ(t) is always invert-

ible, the vectors Φ(t).ei define also a basis of Rn. In this basis, the matrix A(t)

writes:

(120) A(t)Φ.ei = Σnj=1AijΦ.ej .

Derivative relatively to t of ∆(t) writes now:

(121)
∆(t)

dt
= Σidet(Φ.e1, ...,

dΦ.ei
dt

, ...Φ.en) = ΣiAii(t)∆(t).

This displays ∆(t) as the solution of the differential equation:

(122)
∆(t)

dt
= TrA(t)∆(t),

so that ∆(0) = 1. This yields

(123) ∆(t) = exp(

∫ t

0

TrA(s)ds).

�

In particular, this displays that if a periodic orbit is stable, then

(124)

∫ T

0

DivX(x(s))ds ≤ 0.

2.2.4. Invariant manifolds of hyperbolic periodic orbits.

Theorem 37. Let γ be an hyperbolic periodic orbit of a vector field. Let λj be

the eigenvalues of the matrix B defined by Floquet theory (λn = 1). Assume that

k, 0 ≤ k ≤ n − 1 characteristic exponants λj display negative real parts and n − k

positive real parts. Then there exists δ > 0 so that:

(125) (γ) = {x, | x− x0 |< δ, d(φt(x), γ)→ 0, x→∞},

is a manifold of dimension k+1, left invariant by positive flow and called the stable

manifold of the periodic orbit. Similarly,

(126) U(γ) = {x, | x− x0 |< δ, d(φt(x), γ)→ 0, x→ −∞},
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is a manifold of dimension n − k + 1 invariant by the negative flow and called

the unstable manifold of the periodic orbit. The stable and the unstable manifolds

intersects transversally along the periodic orbit.

Proof. Proceed near γ(t) and write x = γ(t) + v in the equation ẋ = f(x). This

displays

(127) v̇ = Df(γ(t)).v +G(t, v),

with G(t, v) T -periodic in t and G(t, v) = O(|| v ||2), O uniform in t. Write

A(t) = Df(γ(t)), and let U(t) be the fundamental solution of the linear differential

equation dU
dt = A(t)U . Floquet theory displays U(t) = Q(t)exp(tB), with Q(t)

T -periodic and B constant. Writing v = Q(t).y displays

(128) ẏ = B.y + F (t, y),

with F (t, y) T -periodic in t and F (t, v) = O(|| v ||2), O uniform in t. Introduce the

Duhamel equation where the matrix B separates in blocks:

(129) B =

0 0 0
0 B+ 0
0 0 B−

 ,

as follows:

(130)

w(t, a) = exp[t.

0 0 0
0 0 0
0 0 B−

]a+
∫ t

0
exp[(t− s)

0 0 0
0 0 0
0 0 B−−

]F (s, w(s, a))ds

−
∫ +∞
t

exp[(t− s)

0 0 0
0 B+ 0
0 0 0

]F (s, w(s, a))ds.

The proof goes on quite similarly to the case of the stationary points. �

As in the case of hyperbolic stationary points, the existence of these manifolds

is proved only locally. It is convenient to define the global stable and unstable

manifolds as the maximal possible extension pushed by the flow of the vector field.
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2.2.5. Asymptotic phase.

Theorem 38. Under the same asumptions than in the previous theorem, there

exists α so that Re(λj) < −α, j = 1, ..., k and Re(λj) > α. There exists a K, such

that for all x ∈ S(γ), there exists an asymptotic phase t0 so that for all t ≥ 0,

(131) | φt(x)− γ(t− t0) |< Ke−α
t
T .

Analogously, for all x ∈ U(γ),there exists an asymptotic phase t0 such that for all

t ≤ 0,

(132) | φt(x)− γ(t− t0) |< Keα
t
T .

Proof. Assume to simplify that the orbit is attractive. Let γ : t 7→ γ(t) the periodic

orbit. Assume that γ(0) = 0, and consider Σ a transversal section at γ(0). The

first return map writes

(133) P : x0 7→ x1 = A.x0 +D(x0), x0 ∈ Σ,

where a =|| A ||< eα, D with its differential at 0. For all ε small enough, | x0 ||< ε,

|| x1 ||< eα || x0 ||. More generally xn = Pn(x0), displays || xn ||< eαn || x0 ||.

Given ε there exists δ = δ(ε) so that if d(γ, x0) < δ, there exists a value τ0 = τ0(x0)

so that the flow φt(x0) exists for all 0 ≤ t ≤ τ0, φτ0(x0) ∈ Σ, and || φτ0(x0 ||<

ε.Consider again the notation x 7→ τ(x) for the function first return time. Introduce

τ1 = τ(x0), and τn = τn−1+τ(xn). As the function τ is of class C1 and that xn → 0,

there exits L0 so that

(134) | τ(xn−1)− T |< L0 || xn−1 ||< L0e
α(n−1) || x0 || .

The series (τn − nT )− (τn−1 − (n− 1)T ) is thus normally convergent. This yields

convergence of the sequence τn−nT . Let t0 be its limit. Considering a partial sum
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of the series displays:

(135) | τn − (nT + t0) |≤ L1e
αn || x0 ||,

withL1 = L0/(1− eα). This yields

(136) || φt+τ(n)(x0)− φt+nT+t0(x0) ||≤ L3eαn || x0 || .

Furthermore, it yields

(137) || φt+τn(x0)− γ(t) ||=|| φt(xn)− φt(0) ||≤ L2 || x0 ||≤ L2eαn || x0 || .

It then follows:

(138) || φt+nT+t0(x0)− γ(t) ||≤ (L2 + L3)eαn || x0 || .

Changing t+ nT into t, finally yields:

(139) || φt+t0(x0)− γ(t) ||≤ (L2 + L3)eα
t
T || x0 || .

�

2.2.6. Persistence of hyperbolic stationary points and hyperbolic orbits. Consider a

family of differentiable vector fields which depends differentiably of a parameter λ:

(140)
dx

dt
= f(x, λ).

Assume that if λ = λ0, the vector field displays a stationary point x0:

(141) f(x0, λ0) = 0.

By the implicit function theorem, if

(142) DetJacxf(x0, λ0) 6= 0,

There exists a solution x(λ) which depends C1 in λ to the equations:

(143) f(x(λ), λ) = 0.
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In this case, it is said that the stationary point is persitent to a small deformation

of the parameter. If furthermore, the stationary point x0 is hyperbolic, then as the

eigenvalues µ(λ) of the matrix

(144) Jacxf(x(λ), λ),

depends continuously of λ, there exists a neighborhood of λ0 in the parameter space

so that for all λ in this neighborhood,

(145) Re(µ(λ)) 6= 0.

There is thus persistence of hyperbolic stationary points.

Proposition 39. Assume that the vector field displays for λ = λ0 an hyperbolic

periodic orbit γλ0 Then there exists a neighborhood of λ0 so that for all λ in this

neighborhood, the vector fielf displays an hyperbolic periodic orbit γλ which tends to

γλ0
as λ→ λ0.

Proof. Let Σ a transverse section to the flow of the vector field dx
dt = f(x, λ0), near

γλ0
and let

(146) P : Σ→ Σ, P : u 7→ P (u, λ0),

be the first return mapping. The regularity theorems of the solutions of differential

equations depending of a parameter show that the vector field dx
dt = f(x, λ), displays

a return mapping

(147) u 7→ P (u, λ),

whicg depends differentiably of (u, λ). Existence of the periodic orbit γ0 displays

the existence of a solution u0 to the equation

(148) P (u, λ0)− u = 0.
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The fact that the orbit is assumed to be hyperbolic yields

(149) DetJacu[P (u, λ)− u] |u=u0,λ=λ0
6= 0.

The implicit function theorem implies existence of a solution u(λ) to:

(150) P (u(λ), λ)− u(λ) = 0.

Continuity of the eigenvalues of JacP (u(λ), λ) in function of λ implies that the orbit

remains hyperbolic. �
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3. Planar vector fields

In this paragraph, notation is slightly changed as follows: a vector field of the plane

is given by:

(151)
dx
dt = f(x, y),
dy
dt = g(x, y),

where the two function (x, y) 7→ f(x, y), (x, y) 7→ g(x, y) assumed to be at least of

class C1 are called the components of the vector field. The local solution (x(t), y(t))

with initial point (x(0), y(0)) determines a local flow (x0, y0) 7→ (x(t), y(t) at time

t. Another possible notation for a planar vector field is

(152) X = f(x, y)
∂

∂x
+ g(x, y)

∂

∂y
,

which enables a coordinate-free approach. Note that given a differentiable function

(x, y) 7→ F (x, y) the time-derivative of F computed along the flow d
dtF (x(t), y(t))

is

(153) f(x(t), y(t))
∂F

∂x
(x(t), y(t)) + g(x(t), y(t))

∂F

∂y
(x(t), y(t)).

This justifies the notation used for X which is seen as a derivation of the algebra

of differential functions in the sense that:

(154) X : F 7→ X.F = f(x, y)
∂F

∂x
+ g(x, y)

∂F

∂y
,

displays

(155)
X.(λF + µG) = λX.F + µX.G, λ, µ ∈ R,
X.(FG) = (X.F )G+ F (X.G).

3.1. Stationary points, first integral. A stationary point is thus, in this new

notation a point (x0, y0) such that f(x0, y0) = g(x0, y0) = 0.
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Definition 36. A stationary point is said to be elementary (or simple) if the Ja-

cobian matrix:

(156) Jac(f, g)(x0), y0) = (
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
)(x0, y0),

is not 0.

Definition 37. Let λ and µ be the two eigenvalues of the matrix Jac(f, g)(x0, y0),

assume that λ.µ 6= 0. It the two eigenvalues are real and of opposite signs, the

stationary point is called a saddle. If the two eigenvalues are real of same sign, the

stationary point is called an attractive (or stable) node if λ < µ < 0 and is called

a repulsive (or unstable) node if λ > µ > 0. It the two eigenvalues are complex

conjugate and if the real part if negative (resp. positive), the stationary point is

called an attractive or stable (resp. repulsive or unstable) focus.

In these previous cases, the stationary point is hyperbolic. The previous theorem of

the existence of stable and unstable manifolds applies. In particular, in the saddle

case, there are two invariant manifolds (curves) one stable and one unstable which

are defined locally near the stationary point.

In the case, where the two eigenvalues are purely imaginary the nature of the

stationary point, which is not hyperbolic, cannot be decided only on the linear

approximation of the vector field near the stationary point. A special study has to

be done and it is called the center-focus problem.

Definition 38. A differentiable function (x, y) 7→ H(x, y) is a first integral of the

vector field if

(157) f(x, y)
∂H

∂x
+ g(x, y)

∂H

∂y
= 0.

The function H is then constant along the orbits of the vector field.
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Definition 39. The hamitonian vector field XH associated to the function H is

the vector field defined as:

(158)
ẋ = ∂H

∂y ,

ẏ = −∂H∂x .

It is easily verified that the Hamiltonian vector field displays the function H as

first integral. The stationary points of XH are exactly the critical points of the

Hamiltonian H.

3.2. Periodic orbits. Periodic orbits of planar vector fields are traditionally called

cycles.

Definition 40. A limit cycle is a periodic orbit which is isolated among the set of

periodic orbits.

Recall to study the solutions near a periodic orbit γ(t), it is useful to introduce the

matrix A(t) = Df(γ(t)) and Liouville formula yields:

(159) detΦ(T ) = detexp(TB) = exp

∫ T

0

TrA(s)ds.

In dimension 2, the differential of the first-return mapDP (0) is the matrix extracted

from Φ(t) by erasing the last line and the last column, it yields the derivative of P

at 0:

(160) P ′(0) = exp

∫ T

0

DivX(x(s), y(s))ds.

Thus, an hyperbolic limit cycle is such that P ′(0) = exp
∫ T

0
DivX(x(s), y(s))ds 6= 0.

It is necessarily attractive (or repulsive) both on each side of the limit cycle. There

are although limit cycles which are not hyperbolic.
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A planar vector field which displays a C1 first integral may have periodic orbits

(cycles) but there are no isolated periodic orbits (limit cycles).

3.3. The Poincaré-Bendixson theorem.

Definition 41. A singular cycle Γ of the vector field is an invariant compact set

which is a finite union of stationary points {p1, ..., pk} and of orbits so that the

ω-limit and α-limit of the orbits are among the stationary points pk, k = 1, ..., s.

Theorem 40. Consider a planar vector field

(161)
ẋ = f(x, y),
ẏ = g(x, y),

with components f, g of class C1. Let γm = {φ(t,m), t ∈ R} be a solution defined for

all values of t > 0, so that the orbit of m : γ+
m = (φ(t,m), t ≥ 0) is precompact.

Assume that the vector field displays a finite number of stationary points in ω(m).

Then:

a) If there are no stationary points in ω(m), ω(m) is a cycle.

c) If there are no regular point in ω(m), then ω(m) is a stationary point.

b) It there are both stationary points and regular points in ω(m), then ω(m) is a

singular cycle.

Proof is consequence of several lemmas of independent interest.

Lemma 41. Let Σ be a transversal section to the flow near an orbit γ = {φ(t, q), t ∈

R} and let p ∈ Σ ∩ ω(γ). There exists a sequence φ(τn)(q), n→∞ of points in Σ,

so that

(162) p = limn→∞φ(τn, q).
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Proof. As p is a regular point, there exists a neighborhood V of p and a function

τ : V → R defined by the Flow-Box theorem. As p ∈ ω(γ), there exists a sequence

tn such that tn → ∞ and φ(tn, q) → p as n → ∞. Assume the points of the

sequence φ(tn, q) are inside V (up to some rank). Set:

(163) τn = tn + τ(φ(tn, q)),

and so

(164) φ(τn, q) = φ(τ(φ(tn, q)), φ(tn, q)) ∈ Σ.

Furthermore, continuity of τ yields:

(165) limn→∞φ(τn, q) = φ(τ(φ(tn, q)), φ(tn, q)) = φ(0, p) = p.

�

Section Σ is an interval, hence there is a natural ordering on Σ associated to its

orientation.

Lemma 42. Let Σ be a transversal section. A positive orbit γ+(p) = {φ(t, p), t ≥

0}, intersects Σ in a monotonous sequence of points p1, p2, ..., pn, ....

Proof. With the natural ordering, the set

(166) D = {t ≥ 0, φ(t, p) ∈ Σ} = {0 < t1 < t2 < ... < tn < ...}.

Set p1 = p, p2 = φ(t1, p) and inductively pn = φ(tn−1, p). If p1 = p2, the orbit is

periodic and pn = p, for all n. If p1 6= p2, say for instance that p1 < p2. If there

exists p3 6= p2, then necessarily p2 < p3.

As Σ is connected, the orbits cut the section in “the same direction” for instance

from left to right. Consider the Jordan curve obtained by the segment p1p2 on Σ
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followed by the arc of solution {φ(t, p), 0 ≤ t ≤ t1} between p1 and p2. By Jordan’s

theorem, this closed curve displays an interior and an exterior. The orbit γ enters

the interior in p1 and cannot get out. It then follows that p1 < p2 < p3. Inductively

this yields the result. �

Lemma 43. For all point p ∈ V , the set ω(p) contains at most one point in Σ.

Proof. By the first lemma, a point of Σ ∩ ω(p) is necessarily the limit of points

of the orbit on Σ. By the second lemma, this sequence is monotonous. It is then

necessarily convergent and any subsequence would converge to the same and unique

point. �

Lemma 44. Let p be a point of V so that γ+(p) is precompact. Let γ be an orbit

contained in ω(p). If ω(γ) contains a regular point, then γ is a closed orbit and

ω(p) = γ.

Proof. Let q ∈ ω(γ) be a regular point. Consider the neighborhood U of q with an

associated transversal section σ. From first lemma there is a sequence tn → ∞ so

that γ(tn) ∈ σ. As γ(tn) ∈ ω(p), by the second lemma, this sequence is reduced to

a single point and the orbit γ is periodic.

Let p be an arbitrary point of γ. Let Vp the neighborhood and σp the transverse

section provided by the Flow-Box theorem. There is the obvious inclusion

(167) Vp ∩ γ ⊂ Vp ∩ ω(p).

Assume there is a point q′ ∈ Vp ∩ ω(p) which does not belong to γ. Then, there

exists a t ∈ R so that φ(t, q′) ∈ ω(p) ∩ Σp andφ(t, q′) 6= p. This is a contraction
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because these two points belong both to ω(p) and σp, d’après le lemme 3. This

displays the equality

(168) Vp ∩ γ = Vp ∩ ω(p).

Define then the open set U = ∪p∈γVp so that U ∩ ω(p) = U ∩ γ = γ which yields

that γ is open ω(p). As γ is closed and ω(p) is connected, this displays the equality

γ = ω(p). �

Finally, the proof of the Poincaré-Bendixson theorem can be achieved as follows:

Proof. Assume first that all points of ω(p) are regular. Consider q ∈ ω(p) a regular

point. The orbit γq is contained in ω(p). As ω(p) is compact, ω(γq) is not empty.

As ω(γq) is contained in ω(p) it contains only regular points. From previous lemma,

follows that ω(p) = γq is a periodic orbit.

If ω(p) contains only stationary points, as it is connected then ω(p) is a stationary

point.

Assume now that ω(p) contains both regular and stationary points. Let γ be an

orbit contained in ω(p) which is not a stationary point. As both ω(γ) and α(γ)

cannot contain regular points and are connected, they are stationary points and

ω(p) is a singular cycle.

�

Proposition 45. Assume that Γ = ω(γ) contains a regular point p0, then there

exists a transverse section σ to the vector field p0 ∈ Γ and a first-return mapping

P differentiable on σ with P (p0) = p0.
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Proof. Let U a neighborhood of p0 and a transversal section Σ given by the Flow-

Box theorem. From previous lemma, it is known that p0 is a limit of points in γ∩Σ.

Let q0 ∈ γ ∩Σ be one of them and choose an ordering on Σ between q0 and p0. By

Jordan’s theorem, for all points q between q0 and p0, there exists a return P (q) on

Σ. The differentiability of this mapping P on ]p0, q0[ is secured by the regularity

theorems of the flow. �

In the following we denote by X a planar vector field defined on a relatively compact

open set. The vector space E(U) of C1 vector fields defined on U is equiped with

the C1-norm.

Definition 42. Let X ∈ E(U) be a vector field defined on U . A compact invariant

set Γ of X is a limi-periodic set if there exists a sequence of vector fields Xn defined

on U , which converges to X, Xn → X and a sequence of periodic orbits γn of Xn

which tends to Γ in the sense of the Hausdorff topology on compact sets.

Proposition 46. Let Σ be a transverse section to the vector field X and Γ be a

limit-periodic set X then Γ intersects Σ in at most a point.

Proof. If Γ would intersect Σ in two distinct points, as Xn → X, for n large enough,

section Σ would also be transverse to Xn and the periodic orbit γn would also cut

the section in more than a point. �

Proposition 47. If all points of a limit-periodic set Γ are regular, then Γ is a

periodic orbit.

Proof. Let q ∈ Γ a regular point, γ(q) ⊂ Γ and ω(γ(q)) ⊂ Γ is non-empty and

union of regular points. Let p ∈ ω(γ(q)) and Σ a transverse section by p. There is
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a sequence of points of Γ(q)∩Σ which converges to p. As these points are in Γ,γ(q)

is a periodic orbit. Let p be a point of γ = γ(q) anf Vp a neighborhood of p given

by the Flow-Box theorem. Assume there may exist a point q ∈ Vp ∩ Γ which does

not belong to Vp ∩ γ. In that case, there would exist two distinct points in Σ ∩ Γ.

Connexity of Γ implies that Γ = γ is a periodic orbit. �

Proposition 48. A limit-periodic set of a planar vector field can be a stationary

point, a periodic orbit or an union of orbits whose α-limit and ω-limit sets are

stationary points.

Proof. This follows the lines of the previous proof of the Poincaré-Bendixson theo-

rem. �

3.4. Perturbative theory of periodic orbits. In this section, it is convenient

to associate to a planar vector field X = f(x, y) ∂
∂x + g(x, y) ∂∂y a 1-form

(169) ω = f(x, y)dy − g(x, y)dx.

This 1-form vanishes identically along the solutions of the vector field X. For

instance, the 1-form corresponding to the Hamiltonian vector field associated with

H is ω = dH.

Assume that the connected components of the level sets H = c, c0 < c < c1 are

compact and non critical.

Lemma 49. The connected components of the level sets H = c, c0 < c < c1 are

periodic orbits of the Hamiltonian vector field XH .

Proof. Consider p a point on the curve H = c. Let γ be the orbit of p for the vector

field XH . Consider ω(γ) ⊂ H−1(c). By the Poincaré-Bendixson theorem, ω(γ) = γ
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is a periodic orbit. It is closed in H = c and obviously open, by the fundamental

theorem of existence of local solutions. As H = c is connected, γ is equal to the

connected component of H = c �

Consider now a perturbation of the Hamiltonian vector field:

(170) Xε = XH + εX,

so that the associated 1-form is

(171) ωε = dH + εω.

Let Σ be a transversal section to the flow of XH to a periodic orbit H = c. For ε

small enough, Σ remains transversal to the perturbed flow and there is a return map

Lε : Σ → Σ. To simplify the notations, we take as coordinate on the transversal

section, the value of the Hamiltonian. Let γε be the arc of solution of ωε = 0

between the point c ∈ Σ and the point of first return of the flow F (c, ε). This

displays:

(172)

∫
γε

ωε = 0.

Assume that both H and X are C1. Then the first return map is also C1 Lε : c 7→

c+ L1(c)ε+O(ε) and at first order in ε this yields

(173) L1(c) =

∫
H=c

ω.

Assume now (in view for instance to application to polynomial vector fields) that

both H and X are analytic. Then the return map is itself analytic. The periodic

orbits displaid by the perturbed vector field in the neighborhood of H = c are in

one-to-one correspondence with the solutions of the analytic equations:

(174) L(c, ε)− c = 0.
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Two situations can occur. Assume first that the solutions of L1(c) = 0 are isolated.

Then by the Weierstrass preparation theorem, the isolated zeros of the abelian

integral gives birth to periodic orbits of the perturbed vector field for ε small. No

other periodic orbits may occur in that case. In contrast, the function c 7→ L1(c)

may be identically zero. In that case, it is useful to introduce the following condition

(*-property):

Definition 43. The function H displays the *-property near H = c0 if for all

polynomial form ω such that
∫
H=c

ω = 0 for all c close to c0, there exists two

polynomials g and R so that

(175) ω = gdH + dR.

If this condition is satisfied, then considering

(176) (1− εg)ωε = dH + ε(gdH + dR)− εgdH + o(ε2) = d(H + εR),

with:

(177)

∫
γε

(1− εg)ωε = 0,

yields

(178)
L(c, ε) = c+ ε2L2(c) + o(ε3),
L2(c) = −

∫
H=c

gω.

Again, two possibilites occur. Either the abelian integral
∫
H=c

gω displays isolated

zeros and then the possible isolated periodic orbits of the perturbed vector field can

be born near the zeros of this integral (by Weierstrass preparation theorem) or this

abelian integral vanishes identically. Again, in that last case, the ∗-property yields

existence of two polynomials g2 and R2 so that with g1 = g,

(179) g1ω = g2dH + dR2,
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then considering the 1-form [1 − εg1 + ε2g2](dH + εω) yields the expression of the

third derivative

(180) L3(c) =

∫
H=c

g2ω.

In general, this process allows to compute the first derivative of the return map

which is not identically zero. In case it never stops, it yields both a first integral

(181) F = H + εR1 + ε2R2 + ...

and an integrating factor

(182) 1− εg1 + ε2g2 + ...

In this case, of course no limit cycle can appear.

3.5. The center-focus problem. Consider the set of polynomial planar vector

fields Xn of type:

(183)
ẋ = −y +

∑
i,j/i+j=d ai,jx

iyj = −y + P (x, y),

ẏ = x+
∑
i,j/i+j=d bi,jx

iyj = −y +Q(x, y).

The coefficients of the vector fields (a, b) can take any real values and thus (a, b)

should be considered as a point in the vector space R2(d+1). Write the vector field

in polar coordinates (r, θ):

(184) x = rcos(θ), y = rsin(θ).

This displays:

(185)

2rṙ = 2(xẋ+ yẏ),
rṙ = xP + yQ = rd+1A(θ),

θ̇ = (xẏ − yẋ)/(x2 + y2) = 1 + rd−1B(θ),
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where A(θ) and B(θ) are two trigonometric polynomials (in cos(θ), sin(θ)) linear in

the parameters (a, b).

This yields:

(186) dr/dθ = rdA(θ)/[1 + rd−1B(θ)],

and thus

(187) dr/dθ =

∞∑
k=0

(−1)krk(d−1)+dA(θ)B(θ)k.

This equation may be rewritten as:

(188) dr/dθ =
∑
k≥d

rkRk(θ),

where the coefficients Rk(θ) are trigonometric polynomials in (cos(θ), sin(θ)) and

polynomials in the parameters (a, b). To simplify the notations, the dependence

on the parameters (a, b) is not made explicit. Look for a solution r = r(θ) so that

r(0) = r0, given as an expansion:

(189) r = r0 + v2(θ)r2
0 + ...+ vk(θ)rk0 + ...

The identification of the unknown coefficients vk can be done:

(190)

v2(θ) = ... = vd−1(θ) = 0,
v′d(θ) = Rd(θ),

v′k(θ) =
∑k
i=2Bik[vd(θ), ..., vk−1(θ)]Ri(θ), k ≥ d+ 1.

The polynomial Bik[ad, ..., ak−1] is the coefficient of Xk−i in (X + adX
d + ... +

apX
p + ...)i and thus it displays integer coefficients.

The equation determines inductively the functions vk(θ):



54

(191) vk(θ) =

∫ θ

0

[

k∑
i=2

Bik[vd(φ), ..., vk−1(φ)]Ri(φ)]dφ.

Two facts can be easily derived from this construction:

i) vk(θ) is polynomial in θ (of degree less than k) and in (sin(θ), cos(θ)).

ii) vk(θ) is polynomial in the parameters (a, b) of the vector field. Thus in particular

the coefficients vk(2π) of the return mapping are polynomials in (a, b).

Definition 44. A planar vector field displays a center at the origin(0, 0) if all orbits

of a neighborhood of the origin are periodic.

What precedes show in particular the following

Theorem 50. The set of polynomial vector field of Xn which displays a center at

the origin is an algebraic manifold.

Proof. This set is defined by the simultaneous vanishing of the coefficients vk(2π)

of the return mapping which are polynomials in (a, b). �

Let fλ(x) =
∑
ak(λ)xk be an analytic series in x with polynomial coefficients in

the parameters λ = (λ0, ..., λD). Denote | ak | (norm of the polynomial ak(λ)) as

the sum of the absolute value of the coefficients.

Definition 45. The series fλ is called an A0-series if the following two conditions

are satisfied:

There are positive constants K1,K2,K3,K4 such that:

1- deg(ak) ≤ K1k +K2,

2- | ak |≤ K3K
k
4 .
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A0-series form a subring of the ring of formal power series in x with polynomial

coefficients in λ. All the usual analytic operations, like substitution to a given

analytic function, composition, inversion, etc... transform A0-series into themselves.

Lemma 51. An A0-series fλ(x) converges in the disc D(0, R) of radius R =

[1/(K4(1+ | λ |))K1 ].

Proof. This is an easy fact proved by majorizing series. �

In the following, we also denote by fλ the complex analytic function defined for all

λ ∈ CD on the disc D(0, R) by the A0-series.

Proposition 52. For all θ, the series
∑
k≥d x

kRk(θ), is an A0-series with K1 =

1/(d− 1), K2 = −1/(d− 1), K3 = 1/[2(d+ 1)]1/d−1, K4 = [2(d+ 1)]1/d−1.

Proof. This is indeed a simple consequence of the previous computations. For all

θ, the norms of the polynomials A(θ) and B(θ) (seen as polynomials in (a, b)),

(192)
A(θ) = (xP + yQ)[cos(θ), sin(θ)],
B(θ) = (xQ− yP )[cos(θ), sin(θ)],

are bounded by:

(193) | A(θ) |≤ 2(d+ 1), | B(θ) |≤ 2(d+ 1).

Write:

(194) dr/dθ =
∑
k≥d

rkRk(θ) =
∑
j≥0

(−1)jrd+j(d−1)A(θ)B(θ)j .

Denote k = d+ j(d− 1), then this yields:

(195) deg[Rk(θ)] ≤ 1 + j ≤ 1 + [(k − d)/(d− 1)] ≤ [(k − 1)/(d− 1)].
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Furthermore, the norm of Rk(θ) as polynomial in the parameters (a, b) is estimated

by:

(196) | Rk(θ) |=| A(θ)B(θ)j |≤| A(θ) || B(θ) |j≤ [2(d+ 1)][(k−1)/(d−1)].

Theorem 53. For all θ, the series
∑
k≥d x

kvk(θ), is an A0-series with K ′1 =

1/(d − 1), K ′2 = 0, K ′3 = [2πK3/4K
2
4 ][K4 − 2C + ((K4 − 2C)2 − K2

4 ]2, 1/K ′4 =

|K4 − 2C + ((K4 − 2C)2 −K2
4 |/[2K2

4 ], C = K4 + 2πK3K
2
4 .

Proof. First observe that deg(vd(θ)) = deg(Rd(θ)) = 1 (The degree as polynomial

in the parameters). Thus we have deg(vd(θ)) ≤ d/(d−1). Assume inductively that:

(197) deg(vj(θ)) ≤ j/(d− 1)forj = d, ..., k − 1.

The recurrency relation displays:

(198) deg[vk(θ)] ≤ max[deg(Bik[vd(φ)), ...,deg(vk−1(φ)]Ri(φ))], i = 2, ..., k.

This shows that:

(199) deg[Bik[vd(φ), ..., vk−1(φ)]Ri(φ)] ≤ K1(k − i) +K1i+K2 ≤ K1k.

This shows the first part of the theorem on the bound of the degrees of the coeffi-

cients vk(θ). For the second part of the proof related to the bound on the norms

of the coefficients, we use standard methods of majorant series. �

Definition 46. The formal series Ψ(x) =
∑
k≥1 Ψkx

k with positive coefficients

dominates the formal series Φ(x) =
∑
k≥1 Φkx

k with positive coefficients if and

only if for all coefficients Φk ≤ Ψk, k ≥ 1.
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The series x+
∑
k≥2 | vk(θ) | xk is dominated by the series x+

∑
k≥2 Ψkx

k so that:

(200) ψk = 2π

k∑
i=d

Bik(ψd, ..., ψk−1) | Ri | .

Denote

(201) R̄(x) =
∑
i≥2

K3K
i
4x
i = K3(K4x)2/[1−K4x],

This yields:

(202)
∑
i≥d

| Ri | xi is dominated by R̄(x).

The series Ψ(x) = x+
∑
k≥2 Ψkx

k is then dominated by the solution Ψ̄(x) solution

of the equation:

(203) Ψ̄(x)− x = 2πR̄[Ψ̄(x)] = 2πK3[K4Ψ̄(x)]2/[1−K4Ψ̄(x)].

At this point we have obtained that Ψ̄(x) is a solution of an algebraic equation of

degree two. Estimates of the constant K ′4 is then obtained by the distance to the

first zero of the discriminant and constant K ′3 is then adjusted from the first term

of the development. �

Definition 47. The center set C is the set of values of parameters (a, b) so that

the corresponding vector field X has a center at the origin.

From now on, it is appropriated to change of notations and denote Lk(a, b) = vk(2π)

the coefficients of the return mapping to emphasize their dependence in terms of

the parameters (a, b). We denote:

(204) r 7→ L(r) = r + Ld(a, b)r
d + ...+ Lk(a, b)rk + ...

the return mapping defined for θ = 2π.
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Definition 48. The Bautin ideal is the ideal generated in the ring R[a, b] by the

coefficients Lk(a, b).

Definition 49. The Bautin index is the first integer k0 so that the polynomials

Ld(a, b), ..., Lk0(a, b) generate the Bautin ideal.

Note that the existence of the Bautin index just follows from the fact that the ring

R[a, b] is Noetherian.

The local Hilbert’s 16th problem is finding a bound depending only on d to the

number of limit cycles of X in a neighborhood of the origin. Isolated periodic

orbits of X defined in the domain of definition of the return mapping correspond

exactly to the isolated solutions of the equation:

(205) L(r)− r = 0.

We gradually change into notations more pertinent to the general algebraic geom-

etry setting. Let Φ(x, λ) be an analytic series in x with polynomial coefficients in

the parameter λ = (λ1, ..., λD).

Definition 50. The Bautin ideal of the series Φ(x, λ) is the ideal generated in the

ring R[λ] by the coefficients Φk(x, λ). The center set of the series Φ(x, λ) is the

zero set of its Bautin ideal. The Bautin index d of the series Φ(x, λ) is the minimal

integer d such that the coefficients Φ1(x, λ), ...Φd(x, λ) generate the Bautin ideal of

the series Φ(x, λ).

Definition 51. Two series Φ(x, λ) and Ψ(x, λ) with polynomial coefficients in the

parameters λ are said to be φ-equivalent if for all integers k ≥ 1, the polynomial

Φk(λ)−Ψk(λ) belongs to the ideal generated by (Φ1(λ), ...,Φk−1(λ)).
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Let Φ(x, λ) be an analytic series in x with polynomial coefficients in the parameters

λ and with Bautin index d. Assume that Φ(0, λ) = 0 and Φ(x, 0) = 0.

Theorem 54. There is a ball B ∈ RD, centered at 0, in the space RD and an

interval I containing 0 such that for all λ ∈ B, the number of zeros of Φ(x, λ)

contained in I is less than or equal to d.

Proof. Using the definition of the Bautin index d, we write:

(206) Φ(x, λ) =

d∑
i=1

Φi(λ)[1 + Ψi(x, λ)]xi,

with Ψi(x, λ) analytic in x, with polynomial coefficients in λ such that Ψi(0, λ) =

Ψi(x, 0) = 0. Assume that B and I are small enough so that (for instance) |

Ψi(x, λ) |≤ 1/2 on I ×B. Then divide Φ(x, λ) by [1 + Ψd(x, λ)] and write:

(207) [Φ(x, λ)]/[1 + Ψd(x, λ)] = Φ1(λ) + Φ2(λ)[1 + Ψ′i(x, λ)]x2 + ...

Then from Rolle’s lemma, the number of zeros of Φ(x, λ) is less than 1+ number

of zeros of the derivative [Φ(x, λ)]/[1 + Ψd(x, λ)]′. Write then this derivative as

(208) Φ2(λ)[1 + Ψ
(2)
i (x, λ)]x+ ...Φd−1(λ)[1 + Ψ

(2)
i (x, λ)]xd−1.

Then repeat the process (sometimes referred to as the division-derivation algo-

rithm). We obtain the result by an easy induction. �

It is posible to formulate this last result in terms of projection of analytic sets.

Let Φ : R× RD 7→ R be an analytic series with polynomial coefficients:

(209) Φ(x, λ) = x+ Φ2(λ)x2 + ...+ Φk(λ)xk + ...
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We consider the subset Σ ⊂ R× RD defined as the zero-set of Φ(x, λ)− x:

(210) Σ = [(x, λ)/Φ(x, λ)− x = 0].

Let π : Σ 7→ RD be the restriction to Σ of the natural projection π : R×RD 7→ RD.

The center set associated to the analytic series Φ(x, λ) − x is the set C ⊂ RD of

parameters λ such that the fiber of the projection π−1(λ) is contained in the set Σ.

The last theorem can be reformulated as follows

Theorem 55. There is a neighborhood I ×B of (0, 0) in R×RD such that for all

points λ of B the number of isolated points of the fibers π−1(λ) restricted to Σ is

less than the Bautin index d of the analytic series Φ(x, λ)− x.

3.6. The Poincaré compactification of polynomial planar vector fields.

Consider a polynomial vector field of the plane:

(211)
ẋ = f(x, y)
ẏ = g(x, y),

where f et g are two polynomials so that n = max(degf, degg). The Poincaré

transformation maps the plane R2 on the half-sphere of R3:

(212) {(u, v, w);u2 + v2 + w2 = 1, w > 0,

by:

(213)

x = u
w ,

u = x√
1+x2+y2

,

v = y√
1+x2+y2

,

w = u = 1√
1+x2+y2

.

This yields:

(214)
u̇w − uẇ = w2f( uw ,

v
w ),

v̇w − vẇ = w2g( uw ,
v
w ).

This displays:

(215) −ẇwn−2 = wnuf(
u

w
,
v

w
) + wnvg(

u

w
,
v

w
) = uf1(u, v, w) + vg1(u, v, w),
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where f1 et g1 are polynomials. Function t 7→ wn−1 is strictly positive so that it is

possible to divide the time t by wn−1 and this yields:

(216)
u̇ = (v2 + w2)f1(u, v, w)− uvg1(u, v, w),
v̇ = −uvf1(u, v, w) + (u2 + w2)g1(u, v, w),
ẇ = −uwf1(u, v, w)− vwg1(u, v, w).

This vector field displays the first integral u2 + v2 + w2. Compactification of the

plane produces a circle ta infinity which is globally invariant and identified to the

equator (w = 0) of the sphere. Setting u = cosθ and v = sinθ, the system displays

at infinity w = 0,:

(217) θ̇ = −sinθf1(cosθ, sinθ, 0) + cosθg1(cosθ, sinθ, 0).

The zeroes of the second member of the equation are called stationary points at in-

finity of the Poincaré compactification. These stationary points can be studied with

the same methods as the usual ones. Note that they appear by symmetric pairs.

Their study is usefull to understand the asymptotics of unbounded trajectories. For

instance,

(218)
ẋ = y
ẏ = x,

displays

(219)
u̇ = (1− 2u2)v
v̇ = (1− 2v2)u
ẇ = −2uvw,

It yields four stationary points at infinity which are symmetric pairs ± 1√
2
(1, 1, 0)

and ± 1√
2
(1,−1, 0). One is an attractive node and the other is a repulsive node.

With the Airy system:

(220) ẋ = x2 − y, ẏ = ε,
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the Poincaré transformation yields:

(221)

u̇ = uµ+ u2 − vw
v̇ = vµ+ εw2

ẇ = wµ
µ = −(u3 − uvw + εvw2.

This displays as stationary points at infinity (1, 0, 0) which is an attractive node,

its symmetric (−1, 0, 0) which is a repulsive node, (0, 1, 0) and (0,−1, 0) which are

repulsive but not elementary.

3.7. Structural stability and dangerous boundaries of stability domains.

Consider the set C1(K) of planar vector fields of class C1 defined on a compact

K ⊂ R2. Assume that the boundary ∂K is a smooth curve not tangent to the

vector field. This set, endowed with the norm

(222) || X ||= Supx∈K(|| X || + || ∂X
∂x
||,

becomes a Banach space.

Definition 52. A vector field X is said to be rough (structurally stable) if for all

ε there is a δ so that:

1) All Y in a δ-neighborhood of X is topologically equivalent to X and moreover

2) The homeomorphism, which establishes the topological equivalence, is ε-close to

the identity.

Lemma 56. A structurally stable vector field X displays hyperbolic stationary

points.

Proof. Assume that the vector field X displays a non elementary stationary point

which, after translation is the origin. The Taylor developement of X near the origin

writes:

(223)
f(x, y) = f2(x, y) + f3(x, y) + ...
g(x, y) = g2(x, y) + g3(x, y) + ...
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Then consider a pertubation by an arbitrarily small linear vector field:

(224)
ξ = ελx
η = εµy,

With ε arbitrarily small. The Poincaré-Lyapunov theorem tells that the perturbed

vector field displays, depending of sign of λ and µ either a saddle or a node and

there is no structural stability. Assume that the vector field would display a linear

center at the origin, the same pertubation would yield a stable or unstable focus.

This shows that stationary points of a structurally stable vector field are necessarily

hyperbolic. �

Consider a family of vector fields depending of p parameters ε = (ε1, ..., εp):

(225)
dx
dt = f(x, y, ε),
dy
dt = g(x, y, ε),

The notion of safe and dangerous boundaries of stability was proposed by Bautin

who studied boundaries of stability domains for stationary points. It was latter

extended to stability domains of periodic orbits.

Definition 53. A point ε0 on the boundary of stability of the stationary point

Oε(resp. periodic orbit) is said to be safe if Oε0 is asymptotically stable (resp.

orbitally asymptotically stable). It is said to be dangerous if O(ε0) is Lyapunov

unstable.

Definition 54. A stability boundary is dynamically definite if upon crossing the

boundary the behaviour of the representative solution is uniquely defined (The un-

stable set of the stationary point contains at most an attractor). In contrast, if the

new regime is not well defined, such a boundary is dynamically indefinite.
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For instance,

(226) ẋ = εx− x3,

displays a safe boundary which is dynamically indefinite at ε = 0.

Take a family which displays for ε > 0 a repulsive limit cycle around an attractive

focus. As ε→ 0, this limit cycle shrinks to 0 and this boundary is dangerous as the

only point of that boundary is an unstable focus. This dangerous boundary may

be dynamically undefined if, for instance, the system displays a singular cycle with

two attractive nodes and two saddle nodes.

The classification of the “principal” cases of stability boundaries displays 11 + 2

cases). We list the cases which can occur in planar systems.

(1) Let Oε be a stationary point and assume that O0 displays a couple of purely

imaginary complex eigenvalues. In this case, the system Xε writes (generically):

(227)
ẋ = ρ(ε)x− ω(ε)y + [L1(ε)x− Ω1(ε)y](x2 + y2) + ....
ẏ = ω(ε)x+ ρ(ε)y + [Ω1(ε)x+ L1(ε)y](x2 + y2) + ...
ω(0) 6= 0, ρ(0) = 0, ρ(ε)ε > 0, ifε 6= 0.

If L1(0) < 0 then this boundary is safe. This is the so-called Andronov-Poincaré-

Hopf bifurcation: when ε increases from 0, a unique stable cycle emerges from the

weak attractive focus O0.

(2) A stable stationary point can loose its stability in a saddle-node or saddle-focus

bifurcation. This means that a stable node (or focus) approaches another stationary

point (saddle) and at the bifurcation they merge into a single stationary point. At

the bifurcation the stationary point O0 is no longer stable and this is a dangerous

boundary.

(3) The limit of a periodic orbit is a (homoclinic) singular cycle Γ composed of

a saddle-node stationary point and its separatrix. The stability boundary in that
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case is safe since the curve Γ is stable. Beyond the bifurcation, a stable stationary

point appears.
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4. Fast-slow systems

In this part, we use Landau notations for asymptotics.

Definition 55. If ε is a small parameter, f et g are functions of ε, denote

(228) f(ε) = O(g(ε)),

if there exists K so that for ε small enough,

(229) | f | / | g |< K.

Denote

(230) f(ε) = o(g(ε)),

if furthermore

(231) limε→0
f(ε)

g(ε)
= 0.

Definition 56. A function F (ε) displays an asymptotic development

(232)

∞∑
n=0

anfn(ε),

if for all pour tout N ,

(233) F (ε) =

N∑
0

anfn(ε) + o(fN (ε)).

4.1. Basic theorems of asymptotics.

Definition 57. A slow-fast system of type m + k, defined on an open set U de

Rn = Rm
⊕

Rk is given by

(234)
εẋ = f(x, y)
ẏ = g(x, y), (x, y) ∈ Rm

⊕
Rk.
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The variables x ∈ Rm are called fast variables, variables y are slow. Parameter ε,

which measures the ratio of time scales between x and y is assumed to be small.

Change of time t into εt yields a new system (defined on another time sale):

(235)
ẋ = f(x, y)
ẏ = εg(x, y),
(x, y) ∈ Rm

⊕
Rk.

Take the singular limit ε→ 0. The first system tends to a differential system with

constraints:

(236) ẏ = g(x, y), f(x, y) = 0.

The second system displays the so-called fast system:

(237) ẋ = f(x, y), ẏ = 0.

Definition 58. The set defined by the equations f(x, y) = 0 is called the critical

set.

Definition 59. Points of the critical set where Dxf(x, y) is singular are called fold

points.

To keep the course self-contained, we stick to a basic level which suffices to analyse

the relaxation oscillations.

Consider differential equations

(238)
dx

dτ
= F (x, τ, ε), x(0, ε) = x0,

where F : Rn×R×R→ R satisfies:

(i) F is C0 and uniformly bounded in G,

(239) G = {x ∈ D}×{0 ≤ τ < A}×{0 ≤ ε ≤ ε0},

with D open and bounded in Rn.
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(ii) F is Lipschitz-continuous in x ∈ G.

(iii) D0 ⊂ D compact so that the distance δ(D0, ∂D) to the boundary of D is

bounded independently of ε.

Theorem 57. Consider two function F1 and F2 satisfying the conditions above.

Let assume that the two solutions

(240)
x1(τ, ε) = x1

0 +
∫ τ

0
F 1(x1(u, ε), u, ε)du

x2(τ, ε) = x2
0 +

∫ τ
0
F 2(x2(u, ε), u, ε)du,

display:

(i) x1
0, x

2
0 ∈ D0, | x1

0 − x2
0 |≤ δ0(ε) = o(1).

(ii) For all x ∈ D, 0 ≤ τ ≤ A,

(241) | F1 − F2 |≤ δf (ε) = o(1).

(iii)Solution x2(τ, ε) exists for 0 ≤ τ ≤ T , T < A and x2 ∈ D0.

Then solution x1(τ, ε) exists for 0 ≤ τ ≤ T and in this interval:

(242) | x1(τ, ε)− x2(τ, ε) |= o(δ0(ε)) + o(δf (ε)).

Proof. The complete proof is not included here but it follows the lines of the regu-

larity theorems of solutions of differential equations proved in the first chapter. �

Theorem 58. Suppose that x2 is an approximation of x1: | x1(τ, ε) − x2(τ, ε) |=

o(1) for all 0 ≤ τ ≤ T where T can be an arbitrarily large positive number, then

there exists an order function δ(ε) = o(1) so that | x1(τ, ε)− x2(τ, ε) |= o(1) for all

0 ≤ t ≤ 1
δ(ε) . Similarly if | x1(τ, ε) − x2(τ, ε) |= o(1) for 0 < d ≤ τ ≤ T where d

can be an arbitrarily small number, then there exists an order function η(ε) = o(ε)

so that the approximation holds for η(ε) ≤ τ ≤ T .
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4.2. Relaxation oscillations. In 1920, Balthazar van der Pol introduced the fa-

mous differential equation now bearing his name:

(243)
d2x

dτ2
− µ(1− x2)

dx

dτ
+ x = 0,

where µ is a positive parameter. Relaxation oscillations arise when µ is large.

Change time τ = µt, µ = ε−1/2, displays:

(244) ε
d2x

dt2
− (1− x2)

dx

dt
+ x = 0.

Introducing f(x) = −
∫ x

0
(1− u2)du = −x+ x3

3 yields the planar vector field:

(245)
εdxdt = y − f(x)
dy
dt = −x.

In this part, we explain how asymptotic developments and the two technical theo-

rems of the first paragraph can be used to analyse this system.

4.2.1. The fast part of the orbit. Consider an initial data (x0, f(x0) so that y0 −

f(x0) 6= o(1). Transform t into τ = t
ε . Equation becomes:

(246)
dx
dτ = y − f(x)
dy
dτ = −εx.

Use previous regularity theorem and get

(247)
y(τ)− y0 = o(ε)
x(τ)− x(τ) = o(ε),

where x(τ) solves:

(248)
dx

dτ
= y0 − f(x), x(0) = x0.

Introduce x0 such that y0 = f(x0). For large values of τ , independently of ε, one

has:

(249) x(τ) = x0 +O(exp(−f ′(x0)τ).

Trajectories, thus enter a o(1) neighborhood of the critical set y = f(x).
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4.2.2. The stable slow curves. To study behaviour of trajectories in a o(1) neigh-

borhood of y = f(x), introduce

(250) y = f(x) + σ(ε)Φ.

This displays:

(251)
dΦ
dτ = −f ′(x)Φ− ε

σ(ε)x
dx
dτ = σ(ε)Φ.

Take for σ(ε) any order so that: σ(ε) = o(1) and ε
σ(ε) = o(1). The approximation

theorem shows easily that the solution enters a smaller order neighborhood. This

allows to reduce to order σ(ε) = ε. The approximation theorem then yields that all

trajectories starting in D0 are attracted within time t− t0 = o(1) to the curve

(252)
y = f(x) + ε[Φ0(x) + o(1)],
Φ0(x) = − x

f ′(x) ,

which is called a stable slow curve. Time evolution along this curve follows from

(253)
dx

dτ
= Φ0(x) + o(1).

4.2.3. Leaving the stable slow curve at the fold. In this part, we consider the equa-

tion

(254)

εdxdt = y − f(x)
dx
dt = −(x+ α),
0 < α < 1, α 6= o(1), α+ 1 6= o(1),
f(x) = 1

2x
2 + x2O(x).

Introduce scalings:

(255) ξ = xε−1/3, η = yε−2/3,

which yields:

(256)
ε2/3 dηdt = −(α+ ε2/3ξ

ε2/3 dξdt = η − 1
2ξ

2 − ξ2O(ε1/3ξ).

Trajectories are given by:

(257)
dξ

dη
= −

η − 1
2ξ

2 − ξ2O(ε1/3ξ)

−(α+ ε2/3ξ
,
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whose solutions are approximated by those of a Ricatti equation:

(258) α
dξ

dη
= −η +

1

2
ξ2.

Asymptotics of the Airy function shows that after time interval t1 − t0 = O(ε1/3)

the flow escapes toward the second attractive branch of the critical curve.

4.3. Existence of solutions asymptotic to the unstable part of the critical

set. Consider now

(259)
εdxdt = y − f(x)
dy
dt = −(x+ α),

with α = o(1), where f(x) is a polynomial so that its derivative writes f ′(x) =

xg(x), g(0) = 1. Note that f(x) = 1
2x

2 + o(x3).

First assume that g(x) = 1. Observe that for α = 0, the curve y = f(x) − ε is a

solution. Try to find a curve y − f(x) = −ε+ ε2Φ1(x, ε) for α 6= 0. The equations

yield:

(260)
εdΦ1

dt = −xΦ1 − α
ε

dx
dt = −1 + εΦ1.

Such a function Φ1 should solve:

(261) ε[−1 + εΦ1]
dΦ1

dx
= −xΦ1 −

α

ε
.

The objective is to study perturbations of the phase portrait for α 6= 0 and find out

under which conditions on α, there exists solutions Φ1(x, ε) that remain bounded

for ε→ 0 and are defined for x ∈ [x0, x1] with x0 > 0 and x1 < 0. The solution Φ1

should solve the following integral equation:

(262)
Φ1(x) = e

Q(x)
ε [Φ1(x0)e−Q(x0) + α

ε2

∫ x
x0

e−
Q(u)
ε du]

Q(x) = 1
2x

2 + ε2Φ1(x).

Introduce the new function:

(263) ψ1(x) = Φ1(x0)e
1
ε [
x2−x20

2 ] +
α2

ε2
e

1
2ε2

x2
∫ x

x0

e
1

2ε2
u2

du.
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Let V be the vector space of continuous functions v(x, ε) defined on [x0, x1] bounded

for ε→ 0. Consider the operator L on V defined by

(264)
L.v = e

Q(x)
ε [Φ1(x0)e−Q(x0) + α

ε2

∫ x
x0

e−
Q(u)
ε du]

Q(x) = 1
2x

2 + ε2v(x).

By easy estimates, one gets

(265) L.v = Ψ1(x)[1 +O(ε)].

If ψ1 is bounded (ε→ 0), then L.v is bounded and L is strictly contracting. Hence

there exists a unique solution Φ1 to L.v = v and furthermore Φ1 = ψ1[1 + O(ε)].

The converse is also true.

What are now the conditions on α so that the function ψ1(x) remains bounded as

ε→ 0? Consider x0 > 0 and x < 0. Elementary asymptotics yield

(266) ψ1(x) = Φ1(x0)e
1
ε [
x2−x20

2 ] +
α

ε3/2
e

1
2εx

2

[−
√

2π + o(e−
1
2εx

2

) + o(e−
1
2εx

2
0)].

In order to keep the second term bounded, one must take:

(267) α = σε3/2e−
k
2ε ,

where k and σ are constants. If σ is positive, the stationary point is an unstable fo-

cus. The first term is dominant when x2
0 < k2 whereas the second term is dominant

if x2
0 > k2.

4.4. Enhanced delay. The classical transcritical bifurcation occurs when the pa-

rameter λ in the equation:

(268) ẋ = −λx+ x2

crosses λ = 0. Equation displays two equilibria, x = 0 and x = λ. For λ > 0, x = 0

is stable and x = λ is unstable. After the bifurcation, λ < 0, x = 0 is stable and

x = λ is unstable. The two axis have “exchanged” their stability.
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The terminology “Dynamical Bifurcation” refers to the situation where the bi-

furcation parameter is replaced by a slowly varying variable. In the case of the

transcritical bifurcation, this yields:

(269)
ẋ = −yx+ x2

ẏ = −ε

where ε is assumed to be small. This yields:

(270) ẋ = −(−εt+ y0)x+ x2, (y0 = y(0))

which is an integrable equation of Bernoulli type. Its solution is:

(271) x =
x0 exp[−Y (t)]

1− x0

∫ t
0

exp[−Y (u)]du
, (x0 = x(0))

where:

(272) Y (t) =

∫ t

0

y(s)ds =

∫ t

0

(−εs+ y0)ds = −εt
2

2
+ y0t

If we fix an initial data (x0, y0), y0 > 0, 0 < x0 < y0/2, and we consider the

solution with this initial data we find easily that it takes time t = y0/ε to reach

the axis y = 0. If x0 is quite small, that means the orbit stays closer and closer of

the attractive part of the critical manifold until it reaches the axis x = y and then

coordinate x starts increasing. But now consider time cy0/ε, 1 ≥ c ≥ 2. Then a

straightforward computation shows that:

(273) Y (t) = c(1− c

2
)
y2

0

ε
=
k

ε

and:

(274) x(t) = O

(
x0e−

k
ε

1− 2x0

y0

)
< x0

This shows that, despite the repulsiveness of the axis x = 0, y < 0, the orbit remains

for a very long time close to x = 0, indeed x(t) < x0. Note that after a larger time,

the orbit blows away from this repulsive axis. This phenomenon, although quite
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simply explained, is of the same nature as the existence of trajectories lingering

along the unstable critical set that was presented previously.

Consider next the equation:

(275)
εẋ = (1− x2)(x− y)
ẏ = x

The fast dynamics displays the invariant lines x = −1, x = 1, and y = x. A quick

analysis shows that, as the slow variable y varies, the fast system undergoes two

transcritical bifurcations near the points (−1,−1) and (1, 1). As we recalled in

the first paragraph, a typical orbit near (−1,−1) first displays a “delay” along the

repulsive part (x = −1, y < −1) of the slow manifold. Then, by hysteresis, it jumps

to the attractive part (x = 1, y < 1) till it reaches the other transcritical bifurcation

where it again displays another delay along the repulsive part (x = 1, y > 1). Then

it jumps again to (x = 1, y > −1) and starts again. There is such a mechanism of

successive enhancements of the delay after several turns generated by the hysteresis.

After this intuitive explanation, we give now a formal proof of the:

Theorem 59. For all initial data inside the strip −1 < x < 1, for all δ and for all

T , the corresponding orbit spends a time larger than T within a distance less than

δ to the repulsive part of the critical set.

Proof. Inside the strip |x| < 1, it is convenient to use the variable u: x = tanhu.

The system yields the equations:

(276)
u̇ = tanhu− y
ẏ = ε tanhu

Consider the function:

(277) Φ(u, y) =
1

2
(tanhu− y)2 + ε ln(coshu)
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and its time derivation along the flow. This displays:

(278)
d

dt
Φ(u, y) = (

u̇

coshu
)2

Hence the function Φ is strictly increasing along the flow – Lyapunov function

for the flow. Note now that if (u(t), y(t)) is a solution then (−u(t),−y(t)) is also a

solution. To study the orbits of the system, we can restrict to initial data u = u0 ≥ 0

and y = y0. The first step of the proof is to show that all orbits intersect both axes

u = 0 and y = u in infinitely many points.

Assume first y0 ≥ tanhu0. Then u̇(0) ≤ 0. But:

(279)
d

dt
(y − tanhu) = ε tanhu+

y − tanhu

cosh2 u

shows that y − tanhu grows hence remains positive. Assume that u would remain

always positive. Then, as y − tanhu > 0, u is monotone decreasing. Hence there

exists l such that u→ l as t→ +∞.

If l > 0, ẏ = ε tanhu implies (via the mean value theorem) y → +∞ but then

u̇→ −∞ and (mean value theorem) contradiction with u > 0.

If l = 0, u̇ + y → 0. But y is monotone increasing. If y → +∞, then u̇ → −∞

and again contradiction. If y tends to a finite limit m, then u̇ → −m and again

contradiction. Hence all orbits with initial data (u0, y0) with y0 ≥ tanhu0 ≥ 0

intersect the axe u = 0.

Consider now the case y0 < tanhu0. The variable u is first strictly increasing (as

soon as y < tanhu), hence positive and so y is increasing. Assume that tanhu− y

would remain positive along the orbit. Then as t → +∞, u would tend to a limit

m (eventually m = +∞).As ẏ → m, mean value theorem would imply y → +∞

and again a contradiction with u̇→ −∞. So the orbit necessarily intersects the axe

y = tanhu and ultimately the axe u = 0 by the preceding argument. By symmetry,
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we can also show the existence of two sequences of times (tn) and (θn) such that:

(280)

tn < θn < tn+1

x(tn) = x(tn+1) = 0
x(θn) = y(θn)
y(tn) = (−1)nan, an > 0

In the second part of the proof we show that the sequence an is unbounded.

Consider now the function:

(281) 2Φ(u, y) = w(x, y) = (x− y)2 − ε ln
∣∣1− x2

∣∣
which satisfies:

(282) ẇ = 2(1− x2)(x− y)2

As w is strictly increasing, this yields:

(283) w(tn) = a2
n < w(θn) = −ε ln(1− ξ2

n) < w(tn+1) = a2
n+1

with ξn = x(θn). Integration along the flow of (̇w) = 2ẋ(x− y) yields:

a2
n+1 − a2

n =

∫ tn+1

tn

2ẋ(x− y)dt = 2

∫ tn+1

tn

xẏdt(284)

= 2ε

∫ tn+1

tn

x2dt ≤ 2ε(tn − tn+1)(285)

This shows that if (tn) converges to a finite limit then so does (an) and (ξn). Now

integration along the flow of ẏ = εu yields:

(286) an + an+1 ≤ ε
∫ tn+1

tn

|tanhu| dt ≤ ε(tn+1 − tn)

and this shows that the sequence of times (tn) is necessarily unbounded.

Now assume that the sequence (an) would be bounded. Then, as the sequence (tn)

tends to +∞, the function w would be bounded on the orbit. But then so would

be both the two functions (x− y)2 and − ln(1− x2). But then there would exist a

constant α such that (1− x2) ≥ α along the orbit and

(287) ẇ ≥ 2α(x− y)2 ≥ 2αw
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hence e−2αtw(t) increasing and contradiction with the fact that w would be bounded.

Last step is classical in slow-fast dynamics, there is for all orbits inside the strip,

all δ and all T a part of the orbit which remains at a distance less than δ of the

repulsive parts of the boundary of the strip for a time larger than T . �

Theorem 60. Given any initial point (x0, y0) outside the strip |x| ≤ 1, the corre-

sponding orbit is asymptotic to y = x.

Proof. We can always assume that x0 > 1 because the system is symmetric rela-

tively to the origin. The equations yield:

(288) ε
dx

dy
=

(
x− 1

x

)
(y − x)

So if y ≥ x and (x0, y0), (x1, y1) are two points on the same orbit with x0 < x1, we

get:

(289)

(
x0 −

1

x0

)
(y − x) ≤ εdx

dy
≤
(
x1 −

1

x1

)
(y − x)

Set:

(290) αi =
1

ε
(xi −

1

xi
), i = 0, 1

this yields:

dx

dy
− α0(y − x) ≥ 0(291)

dx

dy
− α1(y − x) ≤ 0(292)

hence:

d

dy
(eα0yx) ≥ α0yeα0y(293)

d

dy
(eα1yx) ≤ α1yeα1y(294)
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Integration between y0 and y1 yields:

(295) eα0y0

(
y0 − x0 −

1

α0

)
≥ eα0y1

(
y1 − x1 −

1

α0

)
and

(296) eα1y0(y0 − x0 −
1

α1
) ≤ eα1y1(y1 − x1 −

1

α1
)

The second inequality shows that if y0 = x0, then:

(297) eα1y0 ≥ eα1y1(1− α1(y1 − x1))

and thus that the orbit stays above the line y = x. If we now choose x0 (and α0)

large enough, the first inequality displays:

(298) (y1 − x1) ≤ 1

2α0

This proves that the orbit is asymptotic to y = x. �



79

5. Models in Biology

Two example of models are considered. The first relates to modeling neurosciences

and the second relates to population dynamics.

5.1. Excitable Dynamics and Physiology.

5.1.1. The FitzHugh-Nagumo equations. The following equation (or planar vector

field) was introduced independently by FitzHugh and Nagumo in relation with an

approximation of the Hodgkin-Huxley equations for electrophysiology. They can

be written as

(299)
εdxdt = y − f(x) + I
dy
dt = −x+ c,

where f(x) is a cubic polynomial, I, c are parameters. Polynomial f can be conve-

niently scaled to f(x) = −x+ x3

3 so that the case (I, c) = (0, 0) corresponds to van

der Pol equation. The parameter ε is small so that the FitzHugh-Nagumo equation

is a fast-slow system. The critical set is given by the cubic curve y = f(x) − I

which is translated up or down parallel to the y-axis as the parameter I varies.

The critical set displays two folds in x = −1 and x = +1. First assume that I = 0.

Proposition 61. The vector field displays a single stationary point (c, f(c)) which

is a focus if −2
√
ε < f ′(c) < 2

√
ε and a node if f ′(c) < −2

√
ε or f ′(c) > 2

√
ε,

stable if f ′(c) > 0, unstable if f ′(c) < 0.

Proof. The eigenvalues of the jacobian matrix at the stationary point solve:

(300) λ2 +
f ′(c)

ε
λ+

1

ε
= 0.

�
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5.1.2. Excitability. Excitability is a very important notion introduced in electro-

physiology in relation with theso-called action potential. This notion, which is

deeply non linear, finds a simple interpretation with the FitzHugh-Nagumo equa-

tion using the fast-slow asymptotics. We assume here that f ′(c) > 2
√
ε, hence the

stationary point is a stable node. We also assume that c < −1, f(c) > f(1) so that

the stationary point belongs to the stable left branch of the cubic. In relation with

electrophysiology, the variable x is the membrane potential of the axon of a neuron

(like in Hodgkin-Huxley case) or of a cardiac cell. The variable y is so-called a

gate variable of a channel. Consider an initial data with the gate variable fixed

y = y0, f(c) < y0 < f(−1). The unstable branch of the cubic is a threshold. If the

initial potential x0 is below the threshold (x0 < α, f(α) = y0) then the solution

jumps left to a neighborhood of the left attracting branch, then moves slowly down

the stationary point. If the initial potential is above the threshold, the solution

jumps right to a neighborhood of the right attracting branch then slowly down the

branch till it reaches a neighborhood of the fold. The local analysis near that point

showed that the orbit follows by a fast part moving to the left branch of the cubic.

It arrives close to a point below the value c and hence it follows a slow part close

to the left attracting branch untill it reaches the stationary point. To summarize,

if the initial data is above the threshold, the solutions undergo a large excursion in

the phase portrait before coming to the equilibrium. This is called excitability.
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5.2. Ecology and Evolutionary Dynamics.

5.2.1. Replicator dynamics. Consider a population of different phenotypes xi, i =

1, ..., n. Each phenotype comes with a function wi(x) called fitness of the ith phe-

notype. Assume the state of the population evolves according to:

(301) ẋi = [wi(x)− w(x)]xi, i = 1, ..., n

where w(x) = Σnj=1xjWj(x) is the mean fitness of the population. Note that the

simplex Sn−1 = {x ∈ Rn+,Σnj=1xj = 1} is left invariant by the dynamics.

5.2.2. Model of cyclic competition. The model of cyclic competition is given by the

equations:

(302)

dx1

dt = x1(1− x1 − αx2 − βx3)
dx2

dt = x2(1− x2 − αx3 − βx1)
dx3

dt = x3(1− x3 − αx1 − βx2),
0 < β < 1 < α, α+ β ≥ 2.

The phase portrait is limited to x1 ≥ 0, x2 ≥ 0, x3 ≥ 0. Introduce S = x1 +x2 +x3

whose derivative along the flow is

(303) Ṡ = S − (x2
1 + x2

2 + x2
3)− (α+ β)(x1x2 + x2x3 + x1x3).

In the case α + β = 2, this yields Ṡ = S − S2. In that case, both S = 0 (the

origin) and S = 1 (the simplex S2) are invariant. In that case, the function P/S3,

with P = x1x2x3, is another first integral. The phase portrait in restriction to the

triangle S2 is formed of periodic orbits surrounding a center. In general, the system

displays a repulsive focus inside an attractive singular cycle contained in the planes

P = 0.


