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Abstract. Precession and nutation of the Earth depend on the Earth’s dynamical flattening, H, which is closely related to the
second degree zonal coefficient, J2 of the geopotential. A small secular decrease as well as seasonal variations of this coefficient
have been detected by precise measurements of artificial satellites (Nerem et al. 1993; Cazenave et al. 1995) which have to be
taken into account for modelling precession and nutation at a microarcsecond accuracy in order to be in agreement with the
accuracy of current VLBI determinations of the Earth orientation parameters. However, the large uncertainties in the theoretical
models for these J2 variations (for example a recent change in the observed secular trend) is one of the most important causes of
why the accuracy of the precession-nutation models is limited (Williams 1994; Capitaine et al. 2003). We have investigated in
this paper how the use of the variations of J2 observed by space geodetic techniques can influence the theoretical expressions for
precession and nutation. We have used time series of J2 obtained by the “Groupe de Recherches en Géodésie spatiale” (GRGS)
from the precise orbit determination of several artificial satellites from 1985 to 2002 to evaluate the effect of the corresponding
constant, secular and periodic parts of H and we have discussed the best way of taking the observed variations into account.
We have concluded that, although a realistic estimation of the J2 rate must rely not only on space geodetic observations over a
limited period but also on other kinds of observations, the monitoring of periodic variations in J2 could be used for predicting
the effects on the periodic part of the precession-nutation motion.
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1. Introduction

Expressions for the precession of the equator rely on values for
the precession rate in longitude that have been derived from
astronomical observations (i.e. observations that were based
upon optical astrometry until the IAU1976 precession, and then
on Very Long Baseline Interferometry (VLBI) observations for
more recent models). The IAU2000 precession-nutation model
provided by Mathews et al. (2002) (denoted MHB 2000 in
the following), that was adopted by the IAU beginning on
1 January 2003, includes a new nutation series for a non-rigid
Earth and corrections to the precession rates in longitude and
obliquity that were estimated from VLBI observations during a
20-year period. The precession in longitude for the equator be-
ing a function of the Earth’s dynamical flattening H, observed
values for this precession quantity are classically used to derive
a realistic value for H. Such a global dynamical parameter of
the Earth is generally considered as a constant, except in a few
recent models for precession (Williams 1994; Capitaine et al.
2003) or nutation (Souchay & Folgueira 1999; Mathews et al.
2002; Lambert & Capitaine 2004) in which either the secular or
the zonal variations of this coefficient are explicitly considered
through simplified models.

The recent implementation of the IAU2000 A precession-
nutation model guarantees an accuracy of about 200 µas in
the nutation angles, and all the predictable effects that have
amplitudes of the order of 10 µas have therefore to be con-
sidered. One of these effects is the influence of the varia-
tions (∆H) in the Earth’s dynamical flattening, which are not
explicitly considered in the IAU2000 A precession-nutation
model. Furthermore, the IAU2000 precession is based on an
improvement of the precession rates values derived from recent
VLBI measurements, but it does not improve the higher degree
terms in the polynomials for the precession angles ψA, ωA of
the equator (see Fig. 1). This precession model is not dynam-
ically consistent because the higher degree precession terms
are actually dependent on the precession rates (Capitaine et al.
2003) and need to be improved, even though VLBI observa-
tions are unable to discriminate between recent solutions due
to the limited span of the available data (Capitaine et al. 2004).
One alternative way for such an improvement is to improve the
model for the geophysical contributions to the precession an-
gles and especially the influence of ∆H (or equivalently ∆J2).

The H parameter is linked to the dynamical form-
factor, J2 for the Earth (i.e. the C20 harmonic coefficient of
the geopotential) which is determined by space geodetic tech-
niques on a regular basis. Owing to the accuracy now reached
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Fig. 1. Angles ψA and ωA for the precession of the equator: γm is the
mean equinox of the date and γ0 is the equinox of the epoch J2000.0.

by these techniques, the temporal variation of a few Earth grav-
ity field coefficients, especially ∆C20, can be determined (for
early studies, see for example Nerem et al. 1993; Cazenave
et al. 1995; or Bianco et al. 1998). They are due to Earth
oceanic and solid tides, as well as mass displacements of geo-
physical reservoirs and post-glacial rebound for ∆C20. This co-
efficient C20 can be related to the Earth’s orientation param-
eters and more particularly to the Earth precession-nutation,
through H. The purpose of this paper is to use space geode-
tic determination of the geopotential to estimate ∆H, in order
to investigate its influence on the precession-nutation model.
The C20 data used in this study have been obtained from the
positioning of several satellites between 1985 and 2002. We es-
timate also the constant part of H, based on such space geodetic
measurements, and compare its value and influence on preces-
sion results with respect to those based on VLBI determina-
tions.

In Sect. 2 we recall the equations expressing the equatorial
precession angles as a function of the dynamical flattening H.
We provide the numerical values implemented in our model,
compare the values obtained for H by various studies and dis-
cuss the methods on which they rely. In Sect. 3 the relationship
between ∆H and ∆C20 is discussed, depending on the method
implemented. We explain how these geodetic data are taken
into account in Sect. 4. We present our results in Sect. 5, and
discuss them in the last part. We investigate how the use of a
geodetic determination of the variable geopotential can influ-
ence the precession-nutation results, considering first the pre-
cession alone, and second the periodic contribution.

In the whole study, the time scale for t is TT Julian centuries
since J2000, which will be denoted cy.

2. Theoretical effect of ∆H on precession

This section investigates the theoretical effect of the varia-
tions ∆H in the Earth’s dynamical flattening on the precession
expressions.

2.1. Relationship between H and the precession
of the equator

The two basic angles ψA and ωA (see Fig. 1) for the preces-
sion of the equator are provided by the following differential

equations (see Eq. (29) of Williams (1994) or Eq. (24) of
Capitaine et al. (2003)):

sinωA
dψA

dt
=

(
rψ sin εA

)
cosχA − rε sinχA

dωA

dt
= rε cosχA +

(
rψ sin εA

)
sinχA (1)

where rψ and rε are respectively the precession rates in lon-
gitude and obliquity, εA is the obliquity of the ecliptic of
date and χA the planetary precession angle, determining the
precession of the ecliptic. Updated expressions for these pre-
cession quantities are given in Capitaine et al. (2003). An ex-
pression for the precession rates, rψ in longitude and rε in obliq-
uity, is provided in detail in Williams (1994) and Capitaine
et al. (2003) as a function of various contributions. The preces-
sion rate in longitude can be written as rψ = r0+r1 t+r2 t2+r3 t3

where the largest first-order term in r0 is the luni-solar con-
tribution denoted f01 |LS

cos ε0, where ε0 is the obliquity of the
ecliptic at J2000. It is such that (Kinoshita 1977; Dehant &
Capitaine 1997):

f01 |LS
= km M0 + ks S 0 (2)

in which M0 and S 0 are the amplitudes of the zero-frequency
Moon and Sun attractions, respectively, and:

km = 3 H
mm

mm + m⊕
1

F2
3

n2
m

Ω
= H Km (3)

ks = 3 H
m�

m� + mm + m⊕
n2�
Ω
= H Ks. (4)

In the above expressions, H is the Earth’s dynamical flatten-
ing, mm, m� and m⊕ are the masses of the Moon, the Earth and
the Sun, respectively, nm is the Moon mean motion around the
Earth, n� the Earth mean motion around the Sun,Ω is the mean
angular velocity of the Earth and F2 a factor for the mean dis-
tance of the Moon. Current numerical values for such a prob-
lem are (Souchay & Kinoshita 1996):

M0 = 496 303.66× 10−6

S 0 = 500 210.62× 10−6

km = 7546.′′7173289 /cy (5)

ks = 3475.′′1883295 /cy

f01 |LS
cos ε0 = 5040.′′6445 /cy

and (see Kinoshita 1977):

F2 = 0.999093142.

Hence, the link between the precession of the equator
(ψA and ωA angles) and the Earth’s dynamical flattening (H)
is shown by Eqs. (1)−(4) and (7) of Sect. 2.2. Classically, H is
related to f01 |LS

derived from observations by:

H =
f01 |LS

Km M0 + Ks S 0
· (6)
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Table 1. Comparison between constants used for different determinations of the dynamical flattening (H): (1) the precession rate in longi-
tude (ψ1); (2) the speed of the general precession in longitude (p1); (3) the geodesic precession (pg); and (4) the obliquity of the ecliptic
at J2000.0 (ε0). The observational value actually used for each study is written in bold.

(1) (2) (3) (4)
Sources H ψ1 p1 pg ε0

(× 103) (———————– in ′′/cy ———————)

Lieske et al. (1977) 5038.7784 5029.0966 −1.92 23◦26′21.′′448

Kinoshita (1977) and Seidelmann (1982) 3.2739935 5038.7784 5029.0966 −1.92 23◦26′21.′′448

Williams (1994) 3.2737634 5038.456501 5028.7700 −1.9194 23◦26′21.′′409

Souchay & Kinoshita (1996) 3.2737548 – 5028.7700 −1.9194 23◦26′21.′′448

Bretagnon et al. (1997) 3.2737671 5038.456488 5028.7700 −1.919883 23◦26′21.′′412

Bretagnon et al. (2003) – 5038.478750 5028.792262 −1.919883 23◦26′21.′′40880

Fukushima (2003) 3.2737804 5038.478143 5028.7955 −1.9196 23◦26′21.′′40955

Capitaine et al. (2003) 3.27379448 5038.481507 5028.796195 −1.919883 23◦26′21.′′406

Mathews et al. (2002) 3.27379492 5038.478750 5028.7923 −1.9198 23◦26′21.′′410

2.2. Astronomical determination of H

We can write r0 as:

r0 = f01 |LS
cos ε0 + f01 |PL

cos ε0 (7)

+H × lunisolar second order effects

+H × (
J2 and planetary

)
tilt effects

+J4 lunisolar effect

−geodesic precession

+non-linear effects (Mathews et al. 2002)

where f01 |PL
is the first order term of the planetary contribu-

tion (also proportional to H). Classically, H is derived from ob-
servationally determined values of r0. The measurement of r0

should be corrected by removing the modelled contributions
other than the lunisolar first order effect (see Eq. (7)). Hence,
we obtain a value for f01 |LS

, which is the only term with suffi-
ciently large amplitude (of the order of 5000′′/cy) to be sensi-
tive to small changes in the value of the dynamical ellipticity H
of the Earth (see Eq. (6)). So, given the other contributions pro-
vided by the theory, we can derive the value of H from the ob-
served value of r0 and the model for the lunisolar first order
effects.

A major problem consists in choosing the constant value
of H. Indeed, depending on the authors, it differs by about 10−7

(Table 1). This is due to the different measurements and models
implemented (see Fig. 1 of Dehant & Capitaine 1997; Fig. 5 of
Dehant et al. 1999). On the one hand the optical measurements
give values of the general precession in longitude pA referred to
the ecliptic of date, whereas VLBI gives measurements relative
to space. On the other hand, the various constants and models
used for obtaining the value for H from a measured value (op-
tical, Lunar laser ranging or VLBI) are different depending on
the study considered (see Eq. (7)).

Classically, ψA is developed in a polynomial form of t
as: ψA = ψ0 + ψ1 t + ψ2 t2 + ψ3 t3. In Table 1, we recall the
different values used (i) for ψ1 (i.e. the precession rate in lon-
gitude, ψ1 = r0), directly obtained from VLBI measurements,

and (ii) for p1 which is the observationally determined value of
precession in the optical case: ψ1 = p1+χ1 cos ε0 (Lieske et al.
1977).

The computation of the IAU2000 precession-nutation
model by Mathews et al. (2002) is based on a new method
which uses geophysical considerations. They adjust nine Basic
Earth Parameters (BEP), including the Earth dynamical flatten-
ing H.

2.3. Method and parameters used in this study

Based on the paper by Capitaine et al. (2003), denoted here-
after P03, we use differential Eq. (1) in which H has been re-
placed by H + ∆H (using Eqs. (2)−(4) and (7)). We start from
the P03 initial values for the variables ωA, ψA, εA, χA and pA,
that are represented as polynomials of time and rely on the
numerical values given in Table 2. We solve Eq. (1) together
with the other precession equations (e.g. see Eqs. (26) and (28)
of P03) with the software GREGOIRE (Chapront 2003) that
can process Fourier and Poisson expressions. We iterate this
process until we obtain a convergence of the solution.

3. Relationship between C20 and H

3.1. Relation

From the geodetic C20 variation series we can derive the cor-
responding variations of the dynamical flattening H. Indeed,
knowing that J2 = − C20 = −

√
5 C̄20, in the case of a rigid

Earth, we can write (see Lambeck 1988):

H =
(
C − A + B

2

)
/C =

M Re
2

C
J2 (8)

= −M Re
2

C
C20

= −√5
M Re

2

C
C̄20
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Table 2. Numerical values used in this study. H, ψ1 and ω1 are inte-
gration constants.

Initial values at J2000.0

H HMHB = 3.27379492 × 10−3

ψ1 5038.′′481507/cy

ω1 −0.′′02575/cy

p1 5028.′′796195/cy

χ1 10.′′556403/cy

ε0 84 381.′′406 = 23◦26′21.′′406

Contributions to the precession rate in longitude (in ′′/cy)

Lunisolar first order 5494.062986 × cos ε0 � 5040.7047

Planetary first order 0.031

Geodesic precession −1.919882

where A, B and C are the mean equatorial and polar moments
of inertia of the Earth. M and Re are respectively the mass and
the mean equatorial radius of the Earth. C̄20 is the normalized
Stokes coefficient (of degree 2 and order 0) of the geopotential.

But the Earth is elastic, so let us consider small variations
of H, C20 and the third principal moment of inertia of the Earth
(C being its constant part and c33 its variable part). Then we
obtain:

H total =
M Re

2

C
1

1 + c33
C

J2 total (9)

c33/C being a small quantity of the order of 10−6, we consider
the Taylor development of (1 + c33/C)−1. Then the total expres-
sion of H can be written as:

H total =
MRe

2

C
J2 total

(
1 − c33

C
+

(c33

C

)2
+ ...

)
(10)

where MRe
2/C × (c33/C)n J2 for n ≥ 1 is smaller than 10−11.

So, in Eq. (10), considering (i) constant and variable parts sep-
arately; and (ii) Eq. (8), we obtain:

∆H =
MRe

2

C
∆J2 = −

√
5

MRe
2

C
∆C̄20 (11)

where∆J2 = −∆C20 = −
√

5∆C̄20 corresponds to the variations
of the Stokes coefficient J2. Generally, we can write: ∆J2 ∝
c33/C (Lambeck 1988).

3.2. Computation of the ratio MRe
2/C

The coefficient MRe
2/C is usually obtained from the H and J2

values (see Eq. (8)). In order to determine the constant part
of H, we can use (i) the Re, M and C values; or (ii) the Clairaut
theory (see Table 3).

First, recall the Earth geometrical flattening ε:

ε =
Re − Rp

Re
(12)

where Rp and Re are respectively the polar and equatorial mean
radii of the Earth. Second, recall the assumptions that the
Earth (i) is in hydrostatic equilibrium; and (ii) is considered as
a revolutional ellipsoid. Hence, the first Clairaut equation gives
the Earth geometrical flattening as a function of J2 and q. The
approximations to the first and second order are respectively:

ε =
q
2
+

3
2

J2 (13)

ε =
q
2
+

3
2

J2 +
9
8

J2
2 − 3

14
J2 q − 11

56
q2 (14)

where the geodynamical constant is:

q =
ω2Re

3

GM
(15)

= 3.461391× 10−3, IAG (Groten 1999).

Then, the following Radau equation can help us to determine
the expression of MRe

2/C:

ε − q/2
H

= 1 − 2
5

√
1 + η =

1
λ

(16)

where λ is the d’Alembert parameter and η the Radau parame-
ter, as:

η =
5q
2ε
− 2. (17)

Hence, replacing ε with Eq. (13) in Eq. (16) and using Eq. (8)
gives the Darwin-Radau relation as following:

C

MRe
2
=

2
3λ
=

2
3

(
1 − 2

5

√
1 + η

)
. (18)

Our tests have shown that Eq. (14) for ε, in the expression (17)
of η, gives more reliable results.

In Table 3 we compare the various H values obtained. We
denote (i) H∗ the value obtained with the Clairaut method
and (ii) H∗∗ the value obtained using directly the Re, C
and M values. Both are computed with Eq. (8) and a value
for J2 of 1.0826358 × 10−3. Note that in contrast, IAG
or MHB values (usually used) are determined from astro-
nomical precession observations and can be used to com-
pute the C/MRe

2 value. We can add that the differences
with HMHB come from (i) the hydrostatic equilibrium hypoth-
esis in Clairaut’s theory for the value H∗; and (ii) the poorly
determined Re, C and M values, for the value H∗∗. This will
introduce errors in the ∆H determination, which we will study
in Sect. 3.3.

In the following, we will use the C/
(
MRe

2
)

value
determined with the Clairaut theory, noted with a (*)
in Table 3, which corresponds to a value for H
of: H∗ = 3.26715240× 10−3.

3.3. Error estimation

We can estimate the error that the use of the Clairaut the-
ory introduces into the ∆H results. Indeed, if we consider the
MHB value as the realistic H value (see Table 3), the relative
error made is:

σH =
HMHB − H∗

HMHB
� 2 × 10−3. (19)



G. Bourda and N. Capitaine: Precession, nutation, and Earth variable gravity field 695

Table 3. Comparison between different values of the coefficient C/
(
MRe

2
)

and of the constant part for H: (1) IAG values (Groten 1999)
– (2) MHB values (Mathews et al. 2002) – (3) Constant part H∗∗ obtained from Eq. (8) using the M, Re and C IAG values – (4) Method of
“Clairaut” (Sect. 3.2), assuming hydrostatic equilibrium. The third and fourth methods use a constant part for C̄20 of −4.841695×10−4 in Eq. (8)
(i.e. J2 = 1.0826358 × 10−3). The sense of the computation is indicated by the arrows.

(1) (2) (3) (4)
IAG (1999) MHB 2000 Separate values for Clairaut

M, Re and C Theory

C/
(
M Re

2
)

0.330701 0.330698 0.330722∗∗ 0.331370∗

±2 × 10−6

⇑ ⇑ ⇓ ⇓
H 3.273763 × 10−3 3.27379492 × 10−3 H∗∗ = 3.27355562 × 10−3 H∗ = 3.26715240 × 10−3

±2 × 10−8

We estimate that the error is about 0.2%. So, computing the
variable part of H with the C20 data results in a maximum error
of about:

|∆Hreal − ∆H∗| �
(
2 × 10−3

)
×

(
6 × 10−9

)

� 1.2 × 10−11 (20)

assuming that the maximum value for ∆H is of the order of 6×
10−9. Then, regarding the values of the ∆H data and of their
precision, we can consider this error as negligible.

4. Time series of ∆C20 used in this study

The geodetic data used are the time series (variable part) of
the spherical harmonic coefficient C20 of the geopotential,
obtained by the GRGS (Groupe de Recherche en Géodésie
Spatiale, Toulouse) from the precise orbit determination of sev-
eral satellites (like LAGEOS, Starlette or CHAMP) from 1985
to 2002 (Biancale et al. 2002). The combination of these satel-
lites allows the separation of the different zonal geopotential
coefficients, more particularly of J2 and J4. This series in-
cludes (i) a model part for the atmospheric mass redistribu-
tions (Chao & Au 1991; Gegout & Cazenave 1993) and for
the oceanic and solid Earth tides (McCarthy 1996); and (ii) a
residual part (see Fig. 2) obtained as difference of the space
measurements with respect to a model. These various changes
in the Earth system are modelled as variations in the standard
geopotential coefficient C20 and we note the different contribu-
tions ∆C20atm , ∆C20oc , ∆C20soltid and ∆C20res , respectively.

4.1. ∆C20 residuals and its secular trend: Observed
part

Earlier studies already took into account the effect of the sec-
ular variation of C20 on the precession of the equator. Such
a secular variation is attributed to the post-glacial rebound
of the Earth (Yoder et al. 1983), which reduces its flatten-
ing. Williams (1994) and Capitaine et al. (2003) considered
a J2 rate value of −3 × 10−9/cy. Using the numerical value of
Table 2 for the first order contribution ( f01 cos ε0) to the pre-
cession rate r0, which is directly proportional to J2, the con-
tribution J̇2/J2 × f01 cos ε0 of the J2 rate to the acceleration
of precession d2ψA/dt2 is about −0.014′′/cy2, giving rise to

1985 1990 1995 2000
-4e-10

-3e-10

-2e-10

-1e-10

0

1e-10

2e-10

3e-10 C20 residuals without constant part

1985 1990 1995 2000
Years

-2e-10

-1e-10

0

1e-10

2e-10
Filtered C20 residuals without constant part

Fig. 2. Normalized ∆C20 residuals (top: raw residuals, bottom: filtered
residuals, where the high frequency signals have been removed): non-
modelled part of the ∆C20 harmonic coefficient of the Earth gravity
field.

a −0.007′′/cy2 contribution to the t2 term in the expression
of ψA.

Since 1998, a change in the secular trend of the J2 data has
been reported (Cox & Chao 2000). This change can be seen in
the series of ∆C̄20 residuals (see Fig. 2). An attempt to model
this effect, with oceanic data, water coverage data and geo-
physical models, has been investigated by Dickey et al. (2002).
Using the residuals ∆C̄20 of the GRGS, we can estimate a secu-
lar trend for J2 = −

√
5 C̄20 from 1985 to 1998 (see Fig. 3). We

find a J2 rate of the order of: −2.5 (±0.2)×10−9/cy, which gives
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1985 1990 1995 2000

-5e-10

0

5e-10

J2 residuals
Linear regression

1985 1990 1995 2000
Years

-4e-10

-2e-10

0

2e-10

4e-10

6e-10

J2 filtered residuals
Linear regression

Fig. 3. J2 GRGS residuals (top: raw residuals, bottom: filtered residu-
als, where the high frequency signals have been removed): estimation
of the linear trend, from 1985 to 1998.

a change of about −0.006′′/cy2 in the t2 term of the polynomial
development of the precession angle ψA.

As this secular trend is not the same in the total data span,
we will also model the long term variations in the C20 resid-
ual series with a periodic signal. Such a long-period term in
the J2 residual series may come from mismodelled effects, par-
ticularly from the 18.6-yr solid Earth tides. We will make such
an assumption and adjust for the period 1985−2002, a secu-
lar trend and a long-period term in the ∆C20 residual series
(see Sect. 4.3).

However, it should be noted that a secular trend for J2,
of the order of −3 × 10−9/cy, is more consistent with long
term studies of the Earth rotation variations by Morrison &
Stephenson (1997), based upon eclipse data over two millen-
nia (they found J̇2 = (−3.4 ± 0.6) × 10−9/cy).

4.2. ∆C20 geophysical data used: Modelled part

The geophysical models that have been previously subtracted
from the C20 data (i.e. atmospheric, oceanic and solid Earth
tides effects) must be added back to these data in exactly the
same way they had been subtracted to reconstruct the relevant
geophysical contributions.

For each contribution we give the associated potential U at
the point (r, φ, λ, t) (limited to the degree 2 and order 0) that
we identify with the Earth gravitational potential. Hence, we
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5e-11
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1,5e-10

Filtered and interpolated atmospheric C20

Fig. 4. Normalized atmospheric ∆C20 (top: raw data, bottom: filtered
data, where the high frequency signals have been removed): atmo-
spheric modelled part of the ∆C20 harmonic coefficient of the Earth
gravity field, obtained with ECMWF pressure data.

obtain the ∆C̄20 coefficient contribution of each geophysical
source.

• The atmospheric contribution is due to pressure changes
in time, measured and given by the European Centre for
Medium-range Weather Forecasts (ECMWF) (see Fig. 4).
The simple-layer atmospheric potential, limited to degree 2
and order 0, can be expressed as:

Uatm = 4πGRe
1 + k

′
2

5g

(Re

r

)3

∆C̄20ECMWF(t) P̄20(sinφ) (21)

where G = 6.672×10−11 m3 kg−1 s−2 is the gravitational con-
stant, k

′
2 = −0.314166 is a Love number (Farrell 1972), g =

9.81 m s−2, and P̄20(sinφ) is the Legendre function of de-
gree 2 and order 0. The C̄20ECMWF(t) atmospheric coefficient,
expressed in Pascals, comes from the spherical harmonic de-
composition of the ECMWF atmospheric pressure grids, ev-
ery 6 h, over continents (see Gegout & Cazenave 1993; or
Chao & Au 1991):

∆C̄20ECMWF(t) =
∫

S
∆p (φ, λ, t)

(
3
2

sin2 φ − 1
2

)
dS (22)

where S is a surface grid pressure around the Earth and ∆p
is the difference of pressure with a constant part prefixed, at
the point (φ, λ). Hence, identifying Eq. (21) with the Earth
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Filtered and interpolated ocean tides C20

Fig. 5. Normalized oceanic ∆C20 (top: raw data, bottom: filtered data,
where the high frequency signals have been removed): oceanic-tide-
modelled part of the ∆C20 harmonic coefficient of the Earth gravity
field; IERS Conventions 1996.

gravitational potential, we obtain the atmospheric pressure
contribution to the ∆C̄20 harmonic coefficient:

∆C̄20atm(t) =
4π Re

2 (1 + k
′
2)

5Mg
∆C̄20ECMWF(t)· (23)

• The contribution of the oceanic tides (see Fig. 5) is modelled
in the IERS Conventions 1996. The Earth responds to the dy-
namical effects of ocean tides, and the associated potential,
limited to the degree 2 and order 0, is:

Uoc = 4π G Re ρw
1 + k

′
2

5

(Re

r

)3

P̄20(sin φ) α(t) (24)

where we note α, depending on time, as:

α =
∑

n

−∑

+

C±n,2,0 cos(θn(t)+ χn)+ S ±n,2,0 sin(θn(t)+ χn).(25)

The sum over n corresponds to the Doodson development
whose associated arguments are θn and χn. The parame-
ter ρw (=1025 kg m−3) is the mean density of sea wa-
ter. Furthermore, C±n,2,0 = Ĉ±n,2,0 sin(ε±n,2,0) and S ±n,2,0 =
Ĉ±n,2,0 cos(ε±n,2,0), where Ĉ±n,2,0 and ε±n,2,0 are the normalized
amplitude and phase of the harmonic model of the oceanic
tides limited to degree 2 and order 0. Identifying Eq. (24)
with the Earth gravitational potential gives the oceanic tide
contribution to the ∆C̄20 harmonic coefficient:

∆C̄20oc(t) =
4π Re

2 (1 + k′2) ρW

5 M
α(t). (26)
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Filtered and interpolated solid earth tides C20

Fig. 6. Normalized solid tides ∆C20 (top: raw data, bottom: filtered
data, where the high frequency signals have been removed): solid-
Earth-tide-modelled part of the ∆C20 harmonic coefficient of the Earth
gravity field; IERS Conventions 1996.

• The solid Earth tide contribution (see Fig. 6) is due to the
gravitational effect of the Moon and the Sun on the Earth
(IERS Conventions 1996). This force derives from a poten-
tial, developed in spherical harmonics, which limited to de-
gree 2 and order 0 is:

Usoltid = G M
Re

2

r3
P̄20(sin φ) C̄20Moon+Sun (t) (27)

where

C̄20Moon+Sun(t) =
k20 Re

3

5 M

sun∑

p=moon


mp

r3
p

P̄20(sinφp)

 (28)

where k20 = 0.3019 is the nominal degree Love number for
degree 2 and order 0, mp the mass of the body p, and rp

the geocentric distance and φp the geocentric latitude at each
moment of the body p. The Love number depends on the
tidal frequencies acting on the Earth. Hence, the contribu-
tion to ∆C̄20 from the long period tidal constituents of vari-
ous frequencies ν must be corrected (see IERS Conventions
1996). Equation (27) corrected for the frequency dependence
of the Love number, can be identified with the Earth gravita-
tional potential. We obtain the Earth solid tide contribution
to the ∆C̄20 harmonic coefficient:

∆C̄20soltid (t) = C̄20Moon+Sun + “frequency correction”. (29)



698 G. Bourda and N. Capitaine: Precession, nutation, and Earth variable gravity field

1985 1990 1995 2000

-5e-10

0

5e-10

1e-09

1985 1990 1995 2000
Years

-3e-10

-2e-10

-1e-10

0

1e-10

2e-10

3e-10

Fig. 7. Normalized total ∆C20: top is the total series including atmo-
spheric, oceanic tides and solid earth tides effects and the residuals;
bottom is the total series without the solid earth tides effect.

This contribution comprises a constant part in the ∆C̄20 solid
Earth tide, which is called “permanent tide”. We have
estimated it and obtained: −4.215114 × 10−9 (the IERS
Conventions value is −4.201×10−9). We must remove it from
our ∆C̄20 data coming from solid Earth tides.
• Finally, we must consider a series including all the effects

described before. Hence, we add them back to the residuals
(Fig. 2), interpolating and filtering the data. Then we obtain
the total series (Fig. 7).

4.3. Adjustments in ∆H data

Equation (11) allows us to transform the geodetic ∆C̄20 tempo-
ral variations into the dynamical flattening variations∆H. They
can then be introduced into the precession Eq. (1), replacing H
with (H + ∆H) (Eqs. (2)–(4) and (7)) and using the process
already described in Sect. 2.3.

It is generally considered that VLBI observations of the
Earth’s orientation in space are not sensitive to the atmospheric
and oceanic contributions to the variations in C20 (de Viron
2004). However the amplitudes of these effects have been eval-
uated in Table 11 for further discussion and in any case we can
notice that they have a negligible effect on precession.

The analytical and semi-analytical approach to solving the
precession-nutation equations provides polynomial develop-
ments of the ψA and ωA quantities. The ∆H data are then con-
sidered as a linear expression plus Fourier terms with periods

Table 4. Summary of the constant parts for H and C20 (Constant part +
Permanent tide) used in this study.

HMHB 3.2737942 × 10−3

C̄20 −4.841695 × 10−4

J2 1.0826358 × 10−3

H∗ 3.2671524 × 10−3

H∗ with geophysical 3.2671521 × 10−3

constant parts

H∗∗ 3.2735556 × 10−3

derived from a spectral analysis (18.6-yr, 9.3-yr, annual and
semi-annual terms) (see Tables 4–7). Note that the phase
angles used for adjusting the ∆H periodic terms are those of the
corresponding nutation terms. This implies changes in the de-
velopment of the equatorial precession angles (ψA, ωA), which
we describe in the next section.

For the residual contribution of ∆H, we will consider (i) an
adjustment of a secular trend over the interval from 1985
to 1998 (see Table 6 and Eq. (30)), and (ii) an adjustment
of a secular trend plus a 18.6-yr periodic term (see Table 5
and Eq. (31)), both added to the seasonal terms. The fit (i) of
the secular trend gives:

Ḣ � −7.4 × 10−9/cy ⇔ J̇2 � −2.5 × 10−9/cy (30)

and the fit of model (ii) gives:

∆H =
(
74 × 10−11

)
× t +

(
20.9 × 10−11

)
× sin(ωt)

+
(
32.5 × 10−11

)
× cos(ωt) (31)

with ω = 2π/0.186.
We must recall that these adjustments have been made to-

gether with the fit of annual and semi-annual terms. In contrast,
the higher frequency terms appearing in the ∆H data have been
filtered and we therefore did not take into account other con-
tributions, as for example the diurnal effects of the geophysical
contributions in ∆H.

5. Effects of the ∆H contributions
on the precession angles

On the basis of the models fitted to the time series of ∆H in
the previous section, obtained with geodetic ∆C20 series, we
investigate the influence of these geodetic data on the preces-
sion angle developments. First, we evaluate the effect of the
secular trend considered in the ∆C̄20 residual series. Second,
we report on the influence of each geophysical contribution, on
the influence of the residuals and on that of the total contribu-
tion. Finally we focus on the periodic effects resulting from the
various ∆H contributions.

5.1.J̇2 influence

We have already mentioned that the J̇2 influence was taken
into account in previous precession solutions (Williams 1994;
Capitaine et al. 2003) (see Sect. 4.1). But depending on the
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Table 5. Adjustment of periodic terms in the ∆H contributions, for the data span 1985−2002 for various ∆H geophysical sources (atmo-
spheric ∆H atm., oceanic tides ∆H oc. and solid earth tides ∆H soltid., as well as the residuals ∆H res.) – Units are in 10−10 rad.

Period ∆H res. ∆H atm. ∆H oc. ∆H soltid.
(in years) sin cos sin cos sin cos sin cos

1 2.17 −4.02 0.96 −1.66 −3.92 1.41 −4.64 0.89

0.5 −0.43 3.71 0.76 1.56 −0.34 28.04

18.6 2.09 3.25 −0.46 −26.29

9.3 −0.17 −1.65 −0.01 0.29

Table 6. Specific adjustment of the ∆H residual series (∆H res.),
from 1985 to 1998. The secular trend is considered as in Eq. (30) –
Units are in 10−10 rad.

Period ∆H res.
(in years) sin cos

1 2.57 −3.84

0.5 −0.50 3.80

Table 7. Adjustment of the total series of ∆H (∆H tot.), from 1985
to 2002 – Units are in 10−10 rad.

Period ∆H tot.
(in years) sin cos

1 −5.39 −3.39

0.5 0.07 33.67

18.6 0.92 −23.11

9.3 −0.08 −0.50

value adopted, the polynomial development of the ψA preces-
sion angle is different. Indeed, if we take J̇2 = −2.5 × 10−11/cy
like in our study, or J̇2 = −3 × 10−11/cy like in Capitaine et al.
(2003), the contribution in ψA varies by about 1.5 mas/cy2 (see
Table 8). So we must carefully take into account this J2 rate.
Furthermore, (i) we already noticed that such a secular trend
has been recently discussed because of the change in this trend
in 1998 (see Fig. 2); and (ii) the uncertainty in this secular
trend, derived from space measurements of J2, is significant.
Therefore we can conclude that until there is a better determi-
nation of the J2 rate, the accuracy of the precession expression
is limited to about 1.5 mas/cy2.

5.2. Precession

First, we can compare the polynomial part of our solution
Geod04 for the precession angles, based on the constant
part HMHB of H and on its variable part provided by ex-
pression (31), with previous precession expressions (IAU2000
and P03) (see Table 9). The differences larger than one µas
concern the ψA precession angle and more particularly its t2

and t3 terms. The differences (of 7 mas and 2 µas, respec-
tively) with respect to P03 are due to considering or not con-
sidering the J̇2 effect. Actually, P03 includes a J2 secular

trend, whereas Geod04 includes instead a 18.6-yr periodic term
(see (3) in Table 9 or (2) in Table 10). Comparing Geod04 with
the IAU2000 precession (which does not consider the J2 rate)
shows differences of 0.6 mas and 5 µas in the t2 and t3 terms,
respectively. This results from the improved dynamical con-
sistency of the Geod04 solution (based on the P03 precession
equations) with respect to IAU2000. Note that such results re-
garding the t2 and t3 terms will not be affected if changes of
the order of 1 mas/cy in the precession rate would occur in an
updated P03 solution.

Second, we can evaluate the differences introduced in
the ψA (and ωA) polynomial development by the use of a con-
stant part for H determined with the geodetic J2 (as used in
Geod04-H* and Geod04-H**) instead of the Hastro determined
by VLBI and used in Geod04. Table 9 shows that the differ-
ences are very large, but it should be noted that using J2 for
deriving H suffers from the too large errors introduced by the
mismodelled C/MRe

2.

5.3. Periodic contributions

On the basis of the adjustments made in Sect. 4.3 for the dif-
ferent ∆H contributions, we estimate here the periodic effects
appearing in the expressions of the precession angles. We can
focus on the Fourier terms in the ψA precession angle, which
are the most sensitive to the ∆H effects. The corresponding re-
sults are presented in Table 11.

• First, we note that the major effect is due to the 18.6-yr peri-
odic term in the solid Earth tides (contribution number (3) of
Table 11): about −2 µas and 120 µas in cosine and sine, re-
spectively. The tidal annual and semi-annual effects are neg-
ligible as well as the atmospheric and oceanic effects (con-
tributions number (4) and (5) of Table 11).
• Second, note that the ∆H variation strictly limited to its

residual part, not modelled into the geodetic orbit restitu-
tion, introduces negligible Fourier terms into the ψA devel-
opment. But we can note that the way the long term effect
is considered in such data (i.e. either with a secular trend
term (contribution number (1) of Table 11) or a 18.6-yr pe-
riodic term (contribution number (2) of Table 11)) is impor-
tant. Modelling the long term variation in the geodetic resid-
uals over the total data span as a 18.6-yr variation induces a
term with an amplitude of 15 µas in the ψA development. But
at present the ∆C20 data span is not long enough to allow us
to discriminate between the two models.
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Table 8. Influence of J̇2 on the polynomial development of ψA (more particularly on the t2 and t3 terms): (1) IAU2000 (Mathews et al. 2002);
(2) P03 (Capitaine et al. 2003); and (3) Same computation as in P03 but with other J̇2 values. The J2 secular trend estimation based on our C20

residuals series is: J̇2 = −2.5 × 10−9/cy.

J̇2 t2 t3

(1) IAU2000 None −1.′′07259 −0.′′001147

(2) P03 −3 × 10−9/cy −1.′′079007 −0.′′001140

Differences wrt P03︷���������������������������������������︸︸���������������������������������������︷
0 /cy −7.000 mas 2 µas

−2 × 10−9/cy −2.871 mas 1 µas
(3) −2.3 × 10−9/cy −1.954 mas 1 µas

−2.5 × 10−9/cy −1.495 mas 1 µas

Table 9. Polynomial part of the ψA and ωA developments (units in arcseconds): comparison of (1) IAU2000 (Mathews et al. 2002) – (2) P03
(Capitaine et al. 2003) – (3) Differences of Geod04 (this study) with respect to P03, considering all the contributions for ∆H (Table 7, ∆Htot) –
(4) Differences of Geod04 with respect to P03, obtained with a H constant part different from HMHB, but not used in the following (see Table 3
for the H∗ and H∗∗ constant values).

Angle Source t0 t t2 t3

(1) IAU2000 5038.′′478750 −1.′′07259 −0.′′001147

(2) P03 5038.′′481507 −1.′′079007 −0.′′001140

ψA

Differences wrt P03︷���������������������������������������������������︸︸���������������������������������������������������︷
(3) Geod04 HMHB 0′′ −7 mas 2 µas

(4) Geod04

{
H∗

H∗∗
�10.′′23
�0.′′37

−9.177 mas
−7.079 mas

−3 µas
2 µas

(1) IAU2000 84381.′′448 −0.′′025240 0.′′05127 −0.′′00772

(2) P03 84381.′′406 −0.′′025754 0.′′051262 −0.′′007725

ωA

Differences wrt P03 in µas
︷�������������������������������������������������������������������︸︸�������������������������������������������������������������������︷

(3) Geod04 HMHB 0 0 0 0

(4) Geod04

{
H∗

H∗∗
0
0

0
0

104
3

−35
−1

Finally, we can conclude that the geodetic determination of the
total variable C20 (contribution number (6) of Table 11) intro-
duces Fourier terms into the ψA precession angle development,
mainly a 18.6-yr periodic one, of the order of 4 µas and 105 µas
in cosine and sine, respectively.

6. Discussion

This study was based on new considerations: the use of a
geodetic determination of the variable geopotential to inves-
tigate its influence on the developments of the precession an-
gles. The major effect on the precession is due to the J2 secular
trend which implies an acceleration of the ψA precession angle.
But for the moment, the available time span for J2 satellite se-
ries is not as long as we need to determine a reliable J̇2 value.
The J2 secular trend estimation based on our C20 residuals

series from 1985 to 1998 is: J̇2 = −2.5× 10−9/cy. The accuracy
of the precession expression is limited to about 1.5 mas/cy2 due
to the uncertainty in this J2 rate value.

Then, we can notice that the main periodic effect is due
to the 18.6-yr periodic term in ∆C20 due to solid Earth tides.
But we must say that computing the ∆C20 with satellite po-
sitioning observations requires making some assumptions on
the geophysical contributions to ∆C20, for instance from atmo-
spheric pressure, and oceanic or solid Earth tides. Actually,
models are used, but they are not perfect and we may have
some errors. So the ∆C20 residuals obtained may be affected by
these errors, which is why the total ∆C20 contributions (resid-
uals observed + models assumed) constitute a better series to
evaluate the effects on the precession angles. This introduces
Fourier terms into the ψA development (4 µas and 105 µas in
cosine and sine respectively; see Table 11) that we should
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Table 10. Polynomial part of theψA development (units in arcseconds) for various ∆H sources used in our study, with respect to P03: comparison
of (1) P03 (Capitaine et al. 2003) – (2) Difference between P03 and Geod04 (i.e. the effect of the total ∆H) – (3) Difference between P03 and
the effect of the ∆H residuals.

Angle Source t t2 t3

(1) P03 5038.′′481507 −1.′′079007 −0.′′001140

ψA

Differences wrt P03 in µas
︷������������������������������������������︸︸������������������������������������������︷

(2) Geod04 total contributions 0 −7000 2

(3) Geod04 residuals

{
1985−1998
1985−2002

0
0

−1495
−7000

1
2

Table 11. Fourier part of the ψA development, depending on the contribution considered for the ∆H periodic effect (units in µas).

Periodic contribution for the t0 term of ψA

µas

cos sin

(1) Residuals Annual −1 −1
(1985−1998) Semi-annual − 1

(2) Residuals 18.6-yr 10 −15
(1985−2002) 9.3-yr − 4

Annual −1 −1
Semi-annual − 1

∆H (3) Solid tides 18.6-yr −2 120
periodic 9.3-yr − −1
contributions Annual 1 −

Semi-annual − 3

(4) Ocean tides Annual 1 −
Semi-annual − −

(5) Atmosphere Annual − −
(6) Geod04 18.6-yr 4 105

total 9.3-yr − 1
contributions Annual 1 −1

Semi-annual − 4

compare to the MHB2000-nutations. Indeed, the different
terms of the total ∆H (or ∆C20) contributions have same pe-
riods as the (∆ψ, ∆ε) nutations. This implies that there is some
coupling between the observed ∆H effects and the nutations,
which may not have been included in the MHB2000-nutations.

In the future, we will be able to compare the J2 data with
geophysical models and data, in order to have better ideas on
the different contributions and on the secular trend. We will
also be able to proceed to numerical study of this problem, and
to implement a refined and more realistic Earth model.
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