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We report state-of-the-art quantum Monte Carlo calculations of the singlet n → π
∗ (CO) vertical

excitation energy in the acrolein molecule, extending the recent study of Bouabça et al. [J. Chem.
Phys. 130, 114107 (2009)]. We investigate the effect of using a Slater basis set instead of a
Gaussian basis set, and of using state-average versus state-specific complete-active-space (CAS)
wave functions, with or without reoptimization of the coefficients of the configuration state functions
(CSFs) and of the orbitals in variational Monte Carlo (VMC). It is found that, with the Slater
basis set used here, both state-average and state-specific CAS(6,5) wave functions give an accurate
excitation energy in diffusion Monte Carlo (DMC), with or without reoptimization of the CSF and
orbital coefficients in the presence of the Jastrow factor. In contrast, the CAS(2,2) wave functions
require reoptimization of the CSF and orbital coefficients to give a good DMC excitation energy.
Our best estimates of the vertical excitation energy are between 3.86 and 3.89 eV.

I. INTRODUCTION

Quantum Monte Carlo (QMC) methods (see, e.g.,
Refs. 1–3) constitute an alternative to standard quan-
tum chemistry approaches for accurate calculations of
the electronic structure of atoms, molecules and solids.
The two most commonly used variants, variational Monte
Carlo (VMC) and diffusion Monte Carlo (DMC), use
a flexible trial wave function, generally consisting for
atoms and molecules of a Jastrow factor multiplied by a
short expansion in configuration state functions (CSFs),
each consisting of a linear combination of Slater determi-
nants. Although VMC and DMC have mostly been used
for computing ground-state energies, excitation energies
have been calculated as well (see, e.g., Refs 4–15).
The simplest QMC calculations of excited states have

been performed without reoptimizing the determinantal
part of the wave function in the presence of the Jastrow
factor. It has recently become possible to optimize in
VMC both the Jastrow and determinantal parameters
for excited states, either in a state-specific or a state-
average approach [6, 7, 9, 10, 12, 14, 15]. Although this
leads to very reliable excitation energies, reoptimization
of the orbitals in VMC can be too costly for large systems.
In this context, Bouabça et al. [13] studied how to ob-

tain a reliable excitation energy in QMC for the singlet
n → π∗ (CO) vertical transition in the acrolein molecule
without reoptimization of the determinantal part of the
wave function. The acrolein molecule is the simplest
member of the unsaturated aldehyde family whose photo-
chemistry is of great interest. They showed that a good
DMC excitation energy can be obtained by using non-
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reoptimized complete-active-space (CAS) wave functions
if two conditions are fulfilled: a) The wave functions come
from a state-average multiconfiguration self-consistent-
field (MCSCF) calculation (using the same molecular or-
bitals for the two states is indeed expected to improve the
compensation of errors due to the fixed-node approxima-
tion in the excitation energy); and b) a sufficiently large
active space including all chemically relevant molecular
orbitals for the excitation process is used. In comparison,
all the small CAS wave functions and the large state-

specific CAS wave functions (coming from two separate
MCSCF calculations) were found to lead to quite unreli-
able DMC excitation energies, with a strong dependence
on the size of the basis set. These results were obtained
using standard all-electron QMC calculations with Gaus-
sian basis sets, with orbitals appropriately modified near
the nuclei to enforce the electron-nucleus cusp condition,
in the same spirit as in Ref. 16.
In this work, we extend the study of Bouabça et al. by

testing the use of a Slater basis set and the effect of reop-
timization of the determinantal part of the wave function
in VMC. The use of Slater basis functions is motivated
by the observation that they are capable of correctly re-
producing the electron-nucleus cusp condition as well as
having the correct exponential decay at large distances.
In contrast, Gaussian basis functions have no cusp at the
nucleus and a too rapid decay at large distances. As re-
gards the effect of reoptimization, conclusions about the
validity of using non-reoptimized CAS wave functions
are drawn. The paper is organized as follows. In Sec-
tion II, we explain the methodology used. In Section III,
we present and discuss our results. Finally, Section IV
summarizes our conclusions.
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FIG. 1. Schematic representation of the singlet n → π
∗ exci-

tation in the CO moiety of the acrolein molecule.

II. METHODOLOGY

We are concerned with the vertical electronic transi-
tion in the acrolein (or propenal) molecule, CH2=CH-
CHO (symmetry group Cs), from the spin-singlet ground
state (symmetry A’) to the first spin-singlet excited state
(A”). This transition is identified as the excitation of an
electron from the lone pair (n) of the oxygen to the anti-
bonding π∗ orbital of the CO moiety. We use the s-trans
experimental geometry of Ref. 17, obtained by microwave
spectroscopy in the gas phase.
We use Jastrow-Slater wave functions parametrized

as [18, 19]

|Ψ(p)〉 = Ĵ(α)eκ̂(κ)
NCSF∑

I=1

cI |CI〉, (1)

where Ĵ(α) is a Jastrow factor operator, eκ̂(κ) is the or-
bital rotation operator and |CI〉 are CSFs. Each CSF
is a symmetry-adapted linear combination of Slater de-
terminants of single-particle orbitals which are expanded
in Slater basis functions. The parameters p = (α, c,κ)
that are optimized are the Jastrow parameters α, the
CSF coefficients c and the orbital rotation parameters
κ. The exponents of the basis functions are kept fixed
in this work. We use a Jastrow factor consisting of
the exponential of the sum of electron-nucleus, electron-
electron, and electron-electron-nucleus terms, written as
systematic polynomial and Padé expansions [20] (see also
Refs. 21 and 22).
For each state, we start by generating standard re-

stricted Hartree-Fock (RHF), and state-average and
state-specific MCSCF wave functions with a complete ac-
tive space generated by distributing N valence electrons
in M valence orbitals [CAS(N ,M)], using the quantum
chemistry program GAMESS [23]. As in Ref. 13, we con-
sider a minimal CAS(2,2) active space containing the two
molecular orbitals n (A’) and π∗

CO (A”) involved in the
excitation, and a larger CAS(6,5) active space containing
the 5 molecular orbitals that are expected to be chemi-
cally relevant: πCO (A”), n (A’), πCC (A”), π∗

CO (A”),
π∗

CC (A”). Note that, since the two states have different
symmetries, the purpose behind using the state-average
procedure is not the usual one of avoiding a variational
collapse of the excited state onto the ground state, but

rather to possibly improve the compensation of errors in
the excitation energy by using the same molecular or-
bitals for the two states. We use the triple-zeta quality
VB1 Slater basis of Ema et al. [24]. For C and O, this
basis contains two 1s, three 2s, three 2p and one 3d sets
of functions; for H, it contains three 1s and one 2p sets of
functions. Each Slater function is actually approximated
by a fit to 10 Gaussian functions [25–27] in GAMESS.
Theses wave functions are then multiplied by the Jas-
trow factor, imposing the electron-electron cusp condi-
tion, and QMC calculations are performed with the pro-
gram CHAMP [28] using the true Slater basis set rather
than its Gaussian expansion. The wave function pa-
rameters are optimized with the linear energy minimiza-
tion method in VMC [18, 19, 29], using an accelerated
Metropolis algorithm [30, 31]. Two levels of optimization
are tested: optimization of only the Jastrow factor while
keeping the CSF and orbital parameters at their RHF
or MCSCF values, and simultaneous optimization of the
Jastrow, CSF and orbital parameters. For all wave func-
tions, even the state-average ones, we always optimize
a separate Jastrow factor for each state, rather than a
common Jastrow factor for the two states. Although the
electron-nucleus cusp condition is not enforced during the
optimization in our current implementation, the orbitals
obtained from Slater basis functions usually nearly satisfy
the cusp condition. Once the trial wave functions have
been optimized, we perform DMC calculations within
the short-time and fixed-node (FN) approximations (see,
e.g., Refs. 32–36). We use an efficient DMC algorithm
with very small time-step errors [37]. For a given trial
wave function, the evolution of the ground- and excited-
state total DMC energies and of the corresponding ex-
citation energy when the imaginary time step τ is de-
creased from 0.01 to 0.001 hartree−1 is shown in Table I.
While the time-step bias is clearly seen for the total ener-
gies, it largely cancels out for the excitation energy for all
the time steps tested here and cannot be resolved within
the statistical uncertainty. In the following, we always
use an imaginary time step of τ = 0.001 hartree−1. Note
that the Jastrow factor does not change the nodes of the
wave function, and therefore it has no direct effect on the
fixed-node DMC total energy (aside from of course the
time-step bias and the population-control bias). Improv-
ing the trial wave function by optimization of the Jastrow
factor is nevertheless important for DMC calculations in
order to reduce the fluctuations and to make the time-
step error very small and the population-control bias neg-
ligible. Of course, when the Jastrow factor is optimized
together with the CSF and/or orbital parameters, then
it has an indirect effect through those parameters on the
nodes of the wave function.

III. RESULTS AND DISCUSSION

Table II reports the ground-state energy E0, the first
excited-state energy E1, and the excitation energy E1 −
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TABLE I. Ground-state energy E0, first excited-state energy E1, and vertical excitation energy E1 −E0 for the singlet n → π
∗

transition in the acrolein molecule at the experimental geometry calculated in DMC with different time steps τ using the VB1
Slater basis set and a state-specific Jastrow-Slater CAS(6,5) wave function with Jastrow, CSF and orbital parameters optimized
by energy minimization in VMC.

τ (hartree−1) E0 (hartree) E1 (hartree) E1 − E0 (eV)
0.01 -191.8734(4) -191.7312(4) 3.87(2)
0.005 -191.8753(4) -191.7319(4) 3.90(2)
0.0025 -191.8762(4) -191.7330(4) 3.90(2)
0.001 -191.8769(3) -191.7350(3) 3.86(1)

E0 calculated by different methods. Since the excited
state is an spin-singlet open-shell state, it cannot be
described by a restricted single-determinant wave func-
tion; however, we report single-determinant results for
the ground state for comparison of total energies. We
take our best estimates of the vertical excitation energy
to be those obtained with the CAS(6,5) wave functions
in DMC. They range from 3.86 to 3.89 eV, depending
whether a state-average or state-specific approach is used
and whether the determinantal part of the wave func-
tion is reoptimized in QMC. Previously reported cal-
culations include (a) time-dependent density-functional
theory (TDDFT): 3.66 eV [39] and 3.78 eV [38]; (b)
complete-active-space second-order perturbation theory
(CASPT2): 3.63 eV [39], 3.69 eV [40], and 3.77 eV [41];
(c) multireference configuration interaction: 3.85 eV [42];
(d) different variants of coupled cluster: 3.83 eV [43], 3.93
eV [38], 3.75 eV [38]. The most recent experimental es-
timate is 3.69 eV, which corresponds to the maximum
in the UV absorption band in gas phase and which is in
agreement with previous experimental data [44–47]. Be-
side different treatment of electron correlation, the dis-
crepancies between these values may be due to the high
sensitivity of the excitation energy to the C=C and C=O
bond lengths [38]. Moreover, the comparison with exper-
iment relies on the approximation that the vertical exci-
tation energy corresponds to the maximum of the broad
UV absorption band. In view of all these data, a safe
estimate range for the exact vertical excitation energy is
from about 3.60 to 3.90 eV.
Even without reoptimization of the CSF and orbital

coefficients, our state-specific Jastrow-Slater CAS(6,5)
wave functions give a DMC excitation energy, 3.88(2)
eV, as accurate as the one obtained with the fully opti-
mized wave functions, even though the total energies E0

and E1 are about 20 mhartree higher. Also, our non-
reoptimized state-average Jastrow-Slater CAS(6,5) wave
functions give an essentially identical DMC excitation en-
ergy of 3.89(2) eV. This agrees well with the DMC result
of Bouabça et al. [13], 3.86(7) eV, obtained with non-
reoptimized state-average Jastrow-Slater CAS(6,5) wave
functions with a Gaussian basis set.
Thus it appears possible to obtain an accurate

excitation energy using non-reoptimized state-specific
CAS(6,5) wave functions in DMC. This is different
from what was observed in Ref. 13 where state-specific
CAS(6,5) wave functions were found to give unreliable

excitation energies. The difference is that we use here a
Slater basis set rather than the Gaussian basis set em-
ployed in Ref. 13. Even though the Gaussian basis con-
tains more basis functions than the VB1 Slater basis, it
gives a higher DMC energy for both states and tends
to favor one state over the other in state-specific calcu-
lations. This example shows the importance of using a
well-balanced basis set in state-specific calculations, even
in DMC.
We comment now on the results obtained with the

CAS(2,2) wave functions. The state-specific MCSCF
CAS(2,2) excitation energy, 3.31 eV, is a strong underes-
timate. The corresponding VMC and DMC state-specific
calculations without reoptimization of the CSF and or-
bital coefficients, give slightly overestimated excitation
energies, 3.94(2) and 4.06(2) eV, respectively. Whereas
the state-average MCSCF CAS(2,2) calculation gives a
much better excitation energy, 3.73 eV, compared to the
state-specific MCSCF calculation, the non-reoptimized
state-average CAS(2,2) wave functions do not seem to
improve the excitation energies in VMC and DMC. In
fact, they give a worse VMC excitation energy of 4.09(2)
eV, and a DMC excitation energy of 4.01(2) eV which
is not significantly better than with the non-reoptimized
state-specific wave functions.
The excitation energies obtained from the CAS(6,5)

wave functions depend very little on whether a) they
are calculated in MCSCF, VMC or DMC, b) the state-
average or the state-specific approach is employed, and c)
the CSF and orbital coefficients are reoptimized or not
in the presence of the Jastrow factor. In contrast, the
excitation energies obtained from CAS(2,2) wave func-
tions do depend on all of the above and, in particular
the reoptimization of the CSF and orbital coefficients in
the presence of the Jastrow factor significantly improves
the VMC and DMC excitation energies, to 3.80(2) and
3.83(1) eV, respectively. The importance of reoptimizing
in VMC the CAS(2,2) expansions but not the CAS(6,5)
expansions suggests that the Jastrow factor includes im-
portant correlation effects that are present in CAS(6,5)
but not in CAS(2,2).
Finally, we note that without reoptimization of the

determinantal part of the wave functions, the ground-
state VMC and DMC energies can actually increase
when going from a single-determinant wave function to
a CAS(2,2) or CAS(6,5) wave function. This behavior
has been observed in other systems as well, e.g. in C2
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TABLE II. Ground-state energy E0, first excited-state energy E1, and vertical excitation energy E1−E0 for the singlet n → π
∗

transition in the acrolein molecule at the experimental geometry calculated by different methods using the VB1 Slater basis set.
The QMC calculations are done with Jastrow-Slater wave functions using a single determinant (JSD), or a state-average (SA)
or state-specific (SS) complete-active-space multideterminant expansion (JCAS). The lists of parameters optimized by energy
minimization in VMC are indicated within square brackets: Jastrow (J), CSF coefficients (c), and orbitals (o). For comparison,
the DMC results of Ref. 13 obtained with state-average CAS(6,5) wave functions and a Gaussian basis set are also shown.

E0 (hartree) E1 (hartree) E1 −E0 (eV)
RHF -190.83430261
MCSCF CAS(2,2) SA -190.82258836 -190.68568203 3.73
MCSCF CAS(2,2) SS -190.83891553 -190.71709289 3.31
MCSCF CAS(6,5) SA -190.88736483 -190.74691372 3.82
MCSCF CAS(6,5) SS -190.89520291 -190.75181511 3.90

VMC JSD [J] -191.7107(5)
VMC JSD [J+o] -191.7636(5)
VMC JCAS(2,2) SA [J] -191.7121(5) -191.5619(5) 4.09(2)
VMC JCAS(2,2) SS [J] -191.7099(5) -191.5652(5) 3.94(2)
VMC JCAS(2,2) SS [J+c+o] -191.7643(5) -191.6247(5) 3.80(2)
VMC JCAS(6,5) SA [J] -191.7182(5) -191.5747(5) 3.90(2)
VMC JCAS(6,5) SS [J] -191.7221(5) -191.5776(5) 3.93(2)
VMC JCAS(6,5) SS [J+c+o] -191.7795(5) -191.6342(5) 3.95(2)

DMC JSD [J] -191.8613(4)
DMC JSD [J+o] -191.8698(3)
DMC JCAS(2,2) SA [J] -191.8608(5) -191.7133(5) 4.01(2)
DMC JCAS(2,2) SS [J] -191.8606(4) -191.7113(4) 4.06(2)
DMC JCAS(2,2) SS [J+c+o] -191.8700(3) -191.7293(3) 3.83(1)
DMC JCAS(6,5) SA [J] -191.8568(5) -191.7138(5) 3.89(2)
DMC JCAS(6,5) SS [J] -191.8585(4) -191.7160(4) 3.88(2)
DMC JCAS(6,5) SS [J+c+o] -191.8769(3) -191.7350(3) 3.86(1)

DMC JCAS(6,5) SA [J]a -191.8504(20) -191.7086(23) 3.86(7)

Experimental estimateb 3.69
aQMC calculations with a Gaussian basis, Ref. 13.
bMaximum in the UV absorption band in gas phase, Ref. 38.

and Si2 [29]. Of course, if the CSF and orbital coeffi-
cients are reoptimized in VMC, then the VMC total en-
ergies must decrease monotonically upon increasing the
number of CSFs. In practice, it is found that the DMC
also decrease monotonically although there is in princi-
ple no guarantee that optimization in VMC necessarily
improves the nodes of the wave function.

IV. CONCLUSION

In this work, we have extended the study of Bouabça
et al. [13] on how to obtain a reliable excitation energy
in QMC for the singlet n → π∗ (CO) vertical transition
in the acrolein molecule. We have tested the use of a
Slater basis set and the effect of reoptimization of the
determinantal part of the wave function in VMC and
of the corresponding changes in the nodal structure in
fixed-node DMC. Putting together the conclusions of
the study of Bouabça et al. and the present one, we can
summarize the findings on acrolein as follows:
a) It is possible to obtain an accurate DMC excitation

energy with non-reoptimized CAS wave functions,
provided that a sufficiently large chemically relevant
active space is used. In the case of a too small active
space, reoptimization of the CSF and orbital coefficients
in the presence of the Jastrow factor appears to be
necessary in order to get a good DMC excitation energy.
b) When using Gaussian basis sets of low or intermediate
quality, reliable DMC excitation energies could be ob-
tained only by using state-average wave functions (i.e.,
with the same molecular orbitals for the two states).
In contrast, when using a good quality Slater basis set
such as the VB1 basis, state-specific wave functions were
found to also give reliable DMC excitation energies.
Thus, this provides some support for using Slater,
rather than Gaussian, basis sets in all-electron QMC
calculations. Note that other authors also advocate the
use of Slater basis sets in all-electron QMC calculations
(see, e.g., Refs. 48–50).

It remains to check whether these conclusions are gen-
erally true for other systems. It would be indeed de-
sirable for calculations on large molecular systems if ac-
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curate DMC excitation energies could be obtained with
state-specific or state-average CAS expansions without
the need of an expensive reoptimization of the determi-
nantal part of the wave functions in QMC.
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