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Double-hybrid density-functional theory made rigorous

Kamal Sharkas,∗ Julien Toulouse,† and Andreas Savin‡

Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, 75005 Paris, France

(Dated: December 28, 2010)

We provide a rigorous derivation of a class of double-hybrid approximations, combining Hartree-
Fock exchange and second-order Møller-Plesset correlation with a semilocal exchange-correlation
density functional. These double-hybrid approximations contain only one empirical parameter and
use a density-scaled correlation energy functional. Neglecting density scaling leads to an one-
parameter version of the standard double-hybrid approximations. We assess the performance of
these double-hybrid schemes on representative test sets of atomization energies and reaction barrier
heights, and we compare to other hybrid approximations, including range-separated hybrids. Our
best one-parameter double-hybrid approximation, called 1DH-BLYP, roughly reproduces the two
parameters of the standard B2-PLYP or B2GP-PLYP double-hybrid approximations, which shows
that these methods are not only empirically close to an optimum for general chemical applications
but are also theoretically supported.

I. INTRODUCTION

Density-functional theory (DFT) [1–3] is a powerful
approach for electronic-structure calculations of atoms,
molecules and solids. In its Kohn-Sham (KS) formu-
lation, a series of approximations for the exchange-
correlation energy have been developed for an ever-
increasing accuracy: local density approximation (LDA),
semilocal approximations (generalized-gradient approxi-
mations (GGA) and meta-GGA), hybrid approximations
introducing Hartree-Fock (HF) exchange, and nonlocal
correlation approximations using virtual KS orbitals [4].
In this context, Grimme [5] recently introduced the

family of so-called double-hybrid (DH) density-functional
approximations which mix HF exchange with a semilo-
cal exchange density functional and second-order Møller-
Plesset (MP2) correlation with a semilocal correlation
density functional:

EDH
xc = axE

HF
x + (1− ax)Ex[n]

+(1− ac)Ec[n] + acE
MP2
c , (1)

where the first three terms are calculated in an usual self-
consistent hybrid KS calculation, and the last perturba-
tive term evaluated with the previously obtained orbitals
is added a posteriori. The B2-PLYP double-hybrid ap-
proximation [5] is obtained by choosing the Becke 88 (B)
exchange functional [6] for Ex[n] and the Lee-Yang-Parr
(LYP) correlation functional [7] for Ec[n], and the em-
pirical parameters ax = 0.53 and ac = 0.27 optimized
for the G2/97 subset of heats of formation. The mPW2-
PLYP double-hybrid approximation [8] uses the modi-
fied Perdew-Wang (mPW) exchange functional [9], and
has very similar optimized parameters ax = 0.55 and
ac = 0.25. These two double-hybrid approximations
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reach on average near-chemical accuracy for the ther-
modynamical data of the G3/05 set [8]. Similar double-
hybrid approximations have also been obtained by reop-
timizing the parameters ax and ac for a spin-restricted
open-shell version of the method [10] or for different test
sets [11, 12]. In particular, targeting both thermochem-
istry and kinetics applications has given the reoptimized
parameters ax = 0.65 and ac = 0.36 which defines the
general-purpose B2GP-PLYP double-hybrid approxima-
tion [12]. The so-called multicoefficient correlation meth-
ods combining HF, DFT and MP2 energies can also be
considered to be a form of double-hybrid approxima-
tion [13–15], and the connection was made explicit in
Ref. 16. Three- or four-parameter double-hybrid approx-
imations have also been proposed [17–19], scaling differ-
ently the LDA and GGA components of the density func-
tionals, in the style of the first hybrid DFT approxima-
tions [20]. For systems with van der Waals interactions,
good accuracy can be obtained by further adding an em-
pirical dispersion term [21] or by increasing the amount
of MP2 correlation at long interelectronic distances [22].
Although the above-mentioned double-hybrid approx-

imations yield very promising results and are already
largely used, they suffer from a lack of theoretical jus-
tification. It has been tried [17] to motivate these ap-
proaches by invoking the adiabatic connection formal-
ism [23] and second-order Görling-Levy perturbation the-
ory (GL2) [24], but several unjustified empirical steps
remain (e.g., dropping the single-excitation term in the
GL2 expression). On the contrary, the range-separated
double-hybrid RSH+lrMP2 method of Ref. 25, which
combines long-range HF exchange and long-range MP2
correlation with a short-range exchange-correlation den-
sity functional, has been rigorously derived using the
formally exact multideterminant extension of the Kohn-
Sham scheme based on range separation. In this work,
we apply an analogous formalism without range sepa-
ration which leads to a rigorous derivation of a form
of double-hybrid approximation. In this double-hybrid
scheme, only one empirical parameter appears, the ap-
propriate correlation energy functional is obtained by
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uniform coordinate scaling of the density, and the MP2
correlation energy expression appears naturally without
the need to neglect single-excitation contributions. We
test the proposed double-hybrid scheme on representative
sets of atomization energies and reaction barrier heights,
and compare with other hybrid approximations.

II. THEORY

We consider the usual adiabatic connection of DFT
linking the non-interacting Kohn-Sham Hamiltonian
(λ = 0) to the exact Hamiltonian (λ = 1) by linearly
switching on the Coulombic electron-electron interaction
λŴee [23],

Ĥλ = T̂ + V̂ext + λŴee + V̂ λ
Hxc[n], (2)

where T̂ is the kinetic energy operator, V̂ext is a scalar
external potential operator (e.g., nuclei-electron), and

V̂ λ
Hxc[n] is the Hartree-exchange-correlation potential op-

erator keeping the one-electron density n constant for all
values of the coupling constant λ ≥ 0. Using the formal-
ism of the multideterminant extension of the Kohn-Sham
scheme (see, e.g., Refs. 25 and 26), for any λ, the exact

energy can be expressed as the following minimization
over multideterminant wave functions Ψ:

E = min
Ψ

{

〈Ψ|T̂ + V̂ext + λŴee|Ψ〉+ Ēλ
Hxc[nΨ]

}

, (3)

where nΨ is the density coming from Ψ and Ēλ
Hxc[n] =

EHxc[n] − Eλ
Hxc[n] is the complement λ-dependent

Hartree-exchange-correlation density functional, i.e. the
difference between the usual Kohn-Sham density func-
tional EHxc[n] and the λ-dependent density functional
Eλ

Hxc[n] corresponding to the Hamiltonian (2). This
complement density functional generates the potential
in Eq. (2) which keeps the density constant: V̂ λ

Hxc[n] =
∫

dr n̂(r) δĒλ
Hxc[n]/δn(r), where n̂(r) is the density oper-

ator. Since the Hartree and exchange contributions are
first order in the electron-electron interaction, their de-
pendence on λ is just linear,

Ēλ
H[n] = (1− λ)EH[n], (4)

Ēλ
x [n] = (1− λ)Ex[n], (5)

where EH[n] and Ex[n] are the usual Kohn-Sham Hartree
and exchange density functionals. The correlation contri-
bution is not linear in λ but can be obtained by uniform
coordinate scaling of the density [27–30],

Ēλ
c [n] = Ec[n]− Eλ

c [n]

= Ec[n]− λ2Ec[n1/λ], (6)

where Ec[n] is the usual Kohn-Sham correlation func-
tional, Eλ

c [n] is the correlation functional corresponding
to the Hamiltonian (2), and n1/λ(r) = (1/λ)3n(r/λ) is
the scaled density.

To avoid possible confusions with previous work, we
note that numerous exchange-correlation functional ap-
proximations have been constructed using the adiabatic-
connection integral formula (see, e.g., Refs. 31–42),

Exc[n] =
∫ 1

0
Uxc,α dα where Uxc,α is the integrand (ex-

change + potential correlation energy) that needs to be
approximated. In the same language, the complement
exchange-correlation functional used in the present work

would write Ēλ
xc[n] =

∫ 1

λ Uxc,α dα. The confusion is pos-
sible because Uxc,α has sometimes been called Exc,α in
the literature. Although we do not use in practice this
adiabatic-connection integral, it should help to clarify
that in this work the coupling constant λ is fixed and the
complement correlation functional Ēλ

c [n] does include a
kinetic correlation energy contribution.
We now define a density-scaled one-parameter hybrid

(DS1H) approximation by restricting the minimization
in Eq. (3) to single-determinant wave functions Φ:

EDS1H,λ = min
Φ

{

〈Φ|T̂ + V̂ext + λŴee|Φ〉+ Ēλ
Hxc[nΦ]

}

,

(7)

obtaining an energy which necessarily depends on λ. The
minimizing single-determinant wave function Φλ is calcu-
lated by the self-consistent eigenvalue equation:

(

T̂ + V̂ext + λV̂ HF
Hx [Φλ] + V̂ λ

Hxc[nΦλ ]
)

|Φλ〉 = Eλ
0 |Φ

λ〉,(8)

where V̂ HF
Hx [Φλ] is the nonlocal HF potential opera-

tor evaluated with the DS1H wave function Φλ and
V̂ λ
Hxc[nΦλ ] is the previously introduced local Hartree-

exchange-correlation potential operator evaluated at the
DS1H density nΦλ . Evidently, in practice, Eq. (8) is de-
composed into usual one-particle hybrid KS equations.
For simplicity, we will now refer to this DS1H wave func-
tion and associated density as just Φ and n, respectively,
the λ-dependence being implicit. The DS1H energy is
thus finally written as

EDS1H,λ = 〈Φ|T̂ + V̂ext|Φ〉+ EH[n] + λEHF
x [Φ]

+(1− λ)Ex[n] + Ec[n]− λ2Ec[n1/λ], (9)

where the full Coulombic Hartree energy EH[n] has been
recomposed, EHF

x [Φ] is the HF exchange energy and in
practice density-functional approximations must be used
for Ex[n] and Ec[n]. In the appendix, we give the explicit
formulas for calculating the scaled functional Ec[n1/λ]
and associated potential for LDA and GGA approxima-
tions. Neglecting the density scaling in the correlation
functional, Ec[n1/λ] ≈ Ec[n], in Eq. (9) gives an one-

parameter hybrid (1H) approximation,

E1H,λ = 〈Φ|T̂ + V̂ext|Φ〉+ EH[n] + λEHF
x [Φ]

+(1− λ)Ex[n] + (1− λ2)Ec[n], (10)

which has a similar form than the standard one-
parameter hybrid functionals such as B1LYP [43] or
PBE1PBE (also known as PBE0) [44, 45], except that
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FIG. 1. (Color online) MAEs for the AE6 (left) and BH6 (right) test sets as functions of the parameter λ for the 1DH and
DS1DH approximations with LDA, PBE, and BLYP exchange-correlation density functionals. All calculations were carried out
with the cc-pVQZ basis set.

the correlation energy in Eq. (10) is weighted by (1−λ2)
while in the standard one-parameter hybrid functionals
it is weighted by a factor of 1.
All what is missing in Eq. (9) is the correlation energy

associated with the scaled interaction λŴee. It can be
calculated by a nonlinear Rayleigh-Schrödinger pertur-
bation theory [25, 46, 47] starting from the DS1H refer-
ence. Consider the following energy expression with the
perturbation parameter α:

Eλ,α = min
Ψ

{

〈Ψ|T̂ + V̂ext + λV̂ HF
Hx [Φ] + αλŴ |Ψ〉

+Ēλ
Hxc[nΨ]

}

, (11)

where λŴ = λ
(

Ŵee − V̂ HF
Hx [Φ]

)

is the scaled Møller-

Plesset fluctuation perturbation operator. For α = 1,
Eq. (11) reduces to Eq. (3), so Eλ,α=1 is the exact en-
ergy, independently of λ. The sum of the zeroth-order
energy and first-order energy correction gives simply the
DS1H energy, EDS1H,λ = Eλ,(0) + Eλ,(1). Thanks to
the existence of a Brillouin theorem just like in standard
Møller-Plesset perturbation theory (see Refs. 25, 46, and
47), only double excitations contribute to the second-
order energy correction which has a standard MP2 form,

Eλ,(2) = λ2
∑

i<j

a<b

|〈ij||ab〉|
2

εi + εj − εa − εb
= λ2EMP2

c , (12)

where i, j and a, b refer to occupied and virtual DS1H
spin-orbitals, respectively, with associated orbital eigen-
values εk, and 〈ij||ab〉 are the antisymmetrized two-
electron integrals. Note that the dependence on λ is not
simply quadratic since the spin-orbitals and their eigen-
values implicitly depend on λ. Our final density-scaled
one-parameter double-hybrid (DS1DH) approximation is
then obtained by adding the second-order correction to
the DS1H energy

EDS1DH,λ = EDS1H,λ + Eλ,(2). (13)

To summarize, the exchange-correlation energy in the
DS1DH approximation is

EDS1DH,λ
xc = λEHF

x + (1− λ)Ex[n]

+Ec[n]− λ2Ec[n1/λ] + λ2EMP2
c . (14)

To make connection with the standard double-hybrid ap-
proximations, we also define an one-parameter double-

hybrid (1DH) approximation, obtained by neglecting the
density scaling in the correlation functional, Ec[n1/λ] ≈
Ec[n],

E1DH,λ
xc = λEHF

x + (1− λ)Ex[n]

+(1− λ2)Ec[n] + λ2EMP2
c , (15)

which exactly corresponds to the double-hybrid approx-
imation of Eq. (1) with parameters ax = λ and ac = λ2.

III. COMPUTATIONAL DETAILS

Except for the B2-PLYP calculations which were car-
ried out with GAUSSIAN 09 [48], all other calculations
have been performed with a development version of the
MOLPRO 2008 program [49], in which the DS1DH and
1DH approximations have been implemented. For Ex[n]
and Ec[n], we use the LDA functional [50] and two
GGA functionals, Perdew-Burke-Ernzerhof (PBE) [51]
and BLYP [6, 7]. For DS1DH approximations, the cor-
responding density-scaled correlation energy is obtained
from the formulas of the appendix. For a given value of
the parameter λ, a self-consistent hybrid calculation is
first performed and the MP2 correlation energy part cal-
culated with the obtained orbitals is then added. The em-
pirical parameter λ is optimized on the AE6 and BH6 test
sets [52]. The AE6 set is a small representative bench-
mark set of six atomization energies consisting of SiH4,
S2, SiO, C3H4 (propyne), C2H2O2 (glyoxal), and C4H8

(cyclobutane). The BH6 set is a small representative
benchmark set of forward and reverse hydrogen barrier
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TABLE I. MAEs and MEs (in kcal/mol) on the AE6 and BH6 test sets for several methods. For the single-hybrid DS1H,
1H, PBE1PBE, and B1LYP approximations and the double-hybrid DS1DH and 1DH approximations, the results are for the
optimal values of λ which minimize the MAEs of the AE6 and BH6 sets, separately. For the range-separated hybrids, this is
the range-separation parameter µ (in bohr−1) which is optimized. All calculations were carried out with the cc-pVQZ basis
set.

AE6 BH6
Method λ or µ MAE ME λ or µ MAE ME
HF 145.1 -145.1 12.2 12.2
LDA 76.9 76.9 18.0 -18.0
PBE 15.5 12.4 9.61 -9.61
BLYP 6.52 -1.18 8.10 -8.10
MP2 6.86 4.17 3.32 3.11

Single-hybrid approximations

DS1H-LDA λ = 0.45 5.90 -5.20 λ = 0.50 1.62 -1.62
1H-LDA λ = 0.45 7.04 1.38 λ = 0.60 1.98 -0.59
DS1H-PBE λ = 0.20 5.18 -3.85 λ = 0.45 1.00 0.35
1H-PBE λ = 0.20 4.43 -2.00 λ = 0.45 0.97 -0.02
DS1H-BLYP λ = 0.05 5.71 -3.72 λ = 0.35 1.70 -0.15
1H-BLYP λ = 0.05 5.62 -3.53 λ = 0.40 1.80 -0.24
PBE1PBE λ = 0.30 5.28 -2.06 λ = 0.55 1.22 -0.01
B1LYP λ = 0.05 5.52 -3.25 λ = 0.45 1.94 -0.77
B3LYP 2.51 -1.95 4.95 -4.95
RSHX-PBE(GWS) µ = 0.65 7.78 1.08 µ = 0.55 1.82 -0.33
RSHX-PBE(HSE) = LC-ωPBE µ = 0.40 4.57 -1.96 µ = 0.45 1.09 -0.25

Double-hybrid approximations

DS1DH-LDA no minimum∗ λ = 0.85 1.59 0.22
1DH-LDA no minimum∗ λ = 0.90 2.29 0.27
DS1DH-PBE λ = 0.65 3.78 1.30 λ = 0.80 1.32 0.48

1DH-PBE λ = 0.55† 8.64† 7.06† λ = 0.80 1.42 0.12
DS1DH-BLYP λ = 0.80 4.73 -2.52 λ = 0.65 0.60 0.24
1DH-BLYP λ = 0.55 1.46 0.07 λ = 0.75 0.80 -0.18
B2-PLYP 1.39 -1.09 2.21 -2.21
RSH-PBE(GWS)+lrMP2 µ = 0.50 3.48 -1.91 µ = 0.70 1.55 0.73
∗ There is no minimum for 0 < λ < 1. The global minimum is for λ = 1.0, i.e. MP2.
† This is a local minimum. The global minimum is for λ = 1.0, i.e. MP2.

heights of three reactions, OH + CH4 → CH3 + H2O, H
+ OH→ O +H2, and H + H2S→ HS + H2. We compute
mean errors (MEs) and mean absolute errors (MAEs) as
functions of the parameter λ. All the calculations for
the AE6 and BH6 sets were performed at the optimized
QCISD/MG3 geometries [53]. The best double-hybrid
approximations are also compared on larger benchmark
sets which consist of the set of 49 atomization energies of
Ref. 54 (G2-1 test set [55, 56] except for the six molecules
containing Li, Be, and Na) at MP2(full)/6-31G* geome-
tries, and the DBH24/08 test set [15, 57] of 24 forward
and reverse reaction barrier heights with QCISD/MG3
geometries. One practical advantage of these benchmark
sets is that, as for the AE6 and BH6 sets, they come
with reference values with zero-point energies removed
and which can therefore be directly compared to the
differences of electronic energies. We use the Dunning
cc-pVTZ, cc-pVQZ, and aug-cc-pVQZ basis sets [58–61].
Core electrons are kept frozen in all our MP2 calcula-
tions. Spin-restricted calculations are performed for all
the closed-shell systems, and spin-unrestricted calcula-
tions for all the open-shell systems.

IV. RESULTS AND DISCUSSION

Figure 1 shows the MAEs for the AE6 and BH6 test
sets as functions of the parameter λ for the DS1DH and

1DH approximations with the LDA, PBE, and BLYP
exchange-correlation density functionals. For λ = 0, each
double-hybrid approximation reduces to the correspond-
ing standard Kohn-Sham density-functional approxima-
tion. For λ = 1, all our double-hybrid approximations
reduce to MP2 with HF orbitals. The MAEs and MEs
at the optimal values of λ which minimize the MAEs
on the AE6 and BH6 sets are also reported in Table I,
and compared to those obtained with standard HF, LDA,
PBE, BLYP, and MP2, as well as with other hybrid ap-
proximations.
Let us start by discussing the double-hybrid results for

the AE6 atomization energies. Both DS1DH-LDA and
1DH-LDA have a larger MAE than MP2 for all λ < 1,
which makes these double-hybrid approximations of lit-
tle value. While 1DH-PBE also gives a larger MAE than
MP2 for all λ < 1, DS1DH-PBE is much more accurate
than both standard PBE and MP2 near the optimal pa-
rameter value of λ = 0.65. In contrast, DS1DH-BLYP
appears to be less accurate than 1DH-BLYP. On the
AE6 set, the latter leads to the smallest MAE among
our one-parameter double-hybrid approximations with a
minimal MAE of 1.46 kcal/mol for the optimal parame-
ter λ = 0.55. The B2-PLYP double-hybrid gives a sim-
ilar MAE of 1.39 kcal/mol (though with a ME farther
away from zero). In fact, 1DH-BLYP is just an one-
parameter version of the B2-PLYP double hybrid with
optimal parameters ax = λ = 0.55 and ac = λ2 ≃ 0.30
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TABLE II. MAEs and MEs (in kcal/mol) on the AE6 and BH6 test sets for the DS1DH-PBE and RSH-PBE(GWS)+lrMP2
approximations with the cc-pVTZ and cc-pVQZ basis sets. The results are for the optimal values of λ or µ which minimize the
MAEs of the AE6 and BH6 sets, separately.

AE6 BH6
Method basis λ or µ MAE ME λ or µ MAE ME
DS1DH-PBE cc-pVTZ λ = 0.60 3.91 -3.71 λ = 0.75 1.15 0.02

cc-pVQZ λ = 0.65 3.78 1.30 λ = 0.80 1.32 0.48
RSH-PBE(GWS)+lrMP2 cc-pVTZ µ = 0.50 4.72 -3.84 µ = 0.70 1.45 0.78

cc-pVQZ µ = 0.50 3.48 -1.91 µ = 0.70 1.55 0.73

very close to the original B2-PLYP parameters ax = 0.53
and ac = 0.27.
The fact that neglecting the density scaling in the cor-

relation functional, Ec[n1/λ] ≈ Ec[n] (i.e., going from
Eq. (14) to Eq. (15)), yields a greater accuracy on the
AE6 set for the double-hybrid approximation based on
the BLYP functional but worsen the double-hybrid ap-
proximation based on the PBE functional can be clarified
by looking at the (signed) MEs. It appears that, in both
cases, the 1DH approximation always gives a more posi-
tive ME in comparison to the DS1DH approximation, at
the optimal values of λ, and in fact also for all λ (not
shown). Since DS1DH-PBE gives a positive ME (1.30
kcal/mol) at the optimal λ, inherited from the large pos-
itive ME of standard PBE (12.4 kcal/mol), it follows that
neglecting density scaling makes the ME even more pos-
itive (7.06 kcal/mol), thus deteriorating the accuracy of
this double hybrid. On the contrary, since DS1DH-BLYP
gives a negative ME (2.52 kcal/mol) at the optimal λ, in-
herited from the negative ME of standard BLYP (-1.18
kcal/mol), neglecting density scaling makes the ME vary
in the right direction, reaching a ME of 0.07 kcal/mol
and also improving the MAE.
Let us consider now the double-hybrid results for the

BH6 barrier heights. The MAE curves of all the DS1DH
and 1DH approximations now display a marked mini-
mum at an intermediate value of λ, thus improving upon
both the corresponding standard Kohn-Sham density-
functional approximations and MP2. In comparison to
AE6, the minimal MAEs for the BH6 set are obtained for
larger values of λ, from 0.65 to 0.90, which is consistent
with the commonplace experience that a larger fraction
of HF exchange improves barrier heights (by decreasing
the self-interaction error). For this BH6 set, the DS1DH
approximations are found to give smaller MAEs than the
1DH approximations for all the three density-functional
approximations tested here. The best double-hybrid ap-
proximation is DS1DH-BLYP with a minimal MAE of
0.60 kcal/mol at λ = 0.65. The B2-PLYP double-hybrid
gives a larger MAE of 2.21 kcal/mol, but it has not been
optimized for barrier heights.
For each of our three best one-parameter double-hybrid

approximations, we have also determined a global opti-
mal value of λ which minimizes the total MAE of the
combined AE6+BH6 set, and which could be used in
general applications: λ = 0.65 for DS1DH-PBE giving
a total MAE of 2.77 kcal/mol, λ = 0.70 for DS1DH-
BLYP giving a total MAE of 2.94 kcal/mol, and λ = 0.65

for 1DH-BLYP giving a total MAE of 1.75 kcal/mol.
Note that the optimal fractions of HF exchange and
MP2 correlation in 1DH-BLYP, ax = λ = 0.65 and
ac = λ2 ≈ 0.42, roughly reproduce the two parameters
of the B2GP-PLYP double hybrid, i.e. ax = 0.65 and
ac = 0.36.
For comparison, we have also reported in Table I the

MAEs and MEs obtained with the single-hybrid DS1H
and 1H approximations, as well as the usual single-hybrid
functionals PBE1PBE [44, 45] and B1LYP [43], both
with reoptimization of the fraction of HF exchange λ, and
the standard B3LYP functional [20, 62, 63] without re-
optimization of the parameters. We have also considered
range-separated single-hybrid functionals (also known as
long-range corrected functionals [64]), here referred to as
RSHX as in Ref. 65, with two short-range exchange PBE
functionals, the Goll-Werner-Stoll (GWS) one [66, 67]
(which is a modified version of the one of Ref. 68) and the
Heyd-Scuseria-Ernzerhof (HSE) one [69]. For notational
consistency, we refer to these two range-separated single-
hybrid functionals as RSHX-PBE(GWS) and RSHX-
PBE(HSE), respectively, although RSHX-PBE(HSE) is
in fact known in the literature as LC-ωPBE [70]. In the
case of range separation, this is the (nonlinear) inverse
range parameter µ which plays the role of λ and which is
optimized. The single hybrids DS1H-PBE and 1H-PBE
give very similar results than PBE1PBE. The same is
true for DS1H-BLYP and 1H-BLYP in comparison with
B1LYP. It appears that PBE1PBE is less accurate than
DS1DH-PBE on the AE6 set and about as accurate on
the BH6 set. The single hybrids B1LYP and B3LYP are
also found to be significantly less accurate than the best
one-parameter double-hybrid approximation constructed
with the BLYP functional, namely 1DH-BLYP, on both
the AE6 and BH6 sets. RSHX-PBE(HSE) gives slightly
smaller MAEs than PBE1PBE, but it is still less accurate
than DS1DH-PBE on the AE6 set and only slightly more
accurate on the BH6 set. Quite unexpectedly, RSHX-
PBE(GWS) is much less accurate than PBE1PBE, which
points to a weakness of the short-range exchange PBE
functional of Ref. 67, at least when combined with the
standard (full-range) correlation PBE functional. All
these results globally confirm the greater potentiality of
double hybrids over single hybrids.
We discuss now the results obtained with the range-

separated double-hybrid approach of Ref. 25, using
the short-range exchange-correlation PBE functional of
Ref. 67, referred to as RSH-PBE(GWS)+lrMP2. For the
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TABLE III. Atomization energies (in kcal/mol) of the 49 molecules of the set of Ref. 54 (G2-1 test set except for the six
molecules containing Li, Be, and Na). The calculated values were obtained using the double hybrids 1DH-BLYP and B2-PLYP,
and the range-separated double hybrid RSH-PBE(GWS)+lrMP2 with the cc-pVQZ basis set and MP2(full)/6-31G* geometries.
The results are for the optimal value of λ = 0.65 for 1DH-BLYP and the optimal value of µ = 0.58 for RSH-PBE(GWS)+lrMP2
which minimize the total MAE of the combined AE6+BH6 set. The zero-point energies are removed in the reference values.
For each method, the value with the largest error is indicated in boldface.

Molecule 1DH-BLYP B2-PLYP RSH-PBE(GWS)+lrMP2 Referencea

CH 83.12 83.70 78.38 84.00
CH2 (3B1) 190.61 190.57 190.19 190.07
CH2 (1A1) 178.51 178.84 170.26 181.51
CH3 307.74 307.90 302.91 307.65
CH4 419.70 419.19 410.84 420.11
NH 83.83 84.89 81.09 83.67
NH2 183.02 183.94 177.12 181.90
NH3 297.74 297.69 288.76 297.90
OH 106.64 106.43 104.49 106.60
OH2 231.43 229.81 225.48 232.55
FH 140.47 139.00 137.20 141.05
SiH2 (1A1) 151.11 151.77 143.21 151.79
SiH2 (3B1) 131.56 131.78 133.05 131.05
SiH3 226.10 226.67 220.05 227.37
SiH4 321.41 321.95 311.89 322.40
PH2 153.32 154.80 146.37 153.20
PH3 239.45 240.73 229.18 242.55
SH2 180.83 180.58 174.18 182.74
ClH 105.69 105.01 101.63 106.50
HCCH 406.96 404.45 399.05 405.39
H2CCH2 563.66 562.15 554.55 563.47
H3CCH3 711.68 710.22 701.94 712.80
CN 180.09 179.61 172.93 180.58
HCN 316.61 314.12 305.21 313.20
CO 261.67 258.28 254.60 259.31
HCO 282.86 280.62 277.00 278.39
H2CO 376.06 373.56 367.85 373.73
H3COH 512.96 510.38 505.00 512.90
N2 231.77 229.24 218.09 228.46
H2NNH2 439.16 438.77 428.92 438.60
NO 156.75 155.04 151.17 155.22
O2 125.03 122.71 119.73 119.99
HOOH 268.15 265.44 259.77 268.57
F2 38.01 36.29 31.64 38.20
CO2 396.70 391.23 390.46 389.14
Si2 71.33 70.58 67.21 71.99
P2 116.60 115.84 107.27 117.09
S2 103.29 102.27 100.90 101.67
Cl2 56.89 55.48 54.19 57.97
SiO 193.94 190.82 185.82 192.08
SC 171.31 168.86 163.07 171.31
SO 127.14 125.33 122.46 125.00
ClO 62.63 62.70 60.81 64.49
ClF 61.37 59.85 57.94 61.36
Si2H6 528.92 529.02 517.07 530.81
CH3Cl 394.30 392.62 388.23 394.64
CH3SH 472.15 470.71 463.90 473.84
HOCl 164.43 162.27 158.46 164.36
SO2 257.24 251.10 244.46 257.86
MAE 1.4 1.6 6.5
ME 0.3 -1.0 -6.4
aFrom Ref. 54.

AE6 set, we obtain an optimal value of µ = 0.50 bohr−1,
corresponding to the value actually used in previous stud-
ies [25, 71–75], and a minimal MAE of 3.48 kcal/mol.
This value is only marginally better than the MAE of
the DS1DH-PBE double hybrid, 3.78 kcal/mol. For the
BH6 set, the optimal value µ = 0.70 corresponds to a
larger range treated by HF exchange and MP2 correla-
tion, and the minimal MAE of 1.55 kcal/mol is again
very similar to the MAE of DS1DH-PBE, 1.32 kcal/mol.
This suggests that standard double hybrids and range-
separated double hybrids can be comparably accurate
for atomization energies and barrier heights, provided

that similar density-functional approximations are used.
However, range-separated double hybrids have the ad-
vantage of having a much weaker basis dependence. This
is shown in Table II which reports the MAEs and MEs
on the AE6 and BH6 sets for the DS1DH-PBE and RSH-
PBE(GWS)+lrMP2 approximations using the cc-pVTZ
and cc-pVQZ basis sets. The basis dependence is clearly
seen on the MEs. The absolute differences in MEs be-
tween the two basis sets for DS1DH-PBE, 5.01 kcal/mol
and 0.46 kcal/mol for AE6 and BH6, respectively, are
far greater than those of RSH-PBE(GWS)+lrMP2, 1.93
kcal/mol and 0.05 kcal/mol for AE6 and BH6, respec-
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TABLE IV. Forward (F) and reverse (R) reaction barrier heights (in kcal/mol) that constitute the DBH24/08 test set. The
calculated values were obtained using the double hybrids 1DH-BLYP and B2-PLYP, and the range-separated double hybrid
RSH-PBE(GWS)+lrMP2 with the aug-cc-pVQZ basis set and QCISD/MG3 geometries. The results are for the optimal value
of λ = 0.65 for 1DH-BLYP and the optimal value of µ = 0.58 for RSH-PBE(GWS)+lrMP2 which minimize the total MAE of
the combined AE6+BH6 set. The zero-point energies are removed in the reference values. For each method, the value with the
largest error is indicated in boldface.

Reactions 1DH-BLYP B2-PLYP RSH-PBE(GWS)+lrMP2 Referencea

F/R F/R F/R F/R
Heavy-atom transfer

H+N2O −→ OH +N2 19.15/77.74 16.53/77.02 19.34/77.14 17.13/82.47
H+ClH −→ HCl + H 17.26/17.26 15.94/15.94 19.77/19.77 18.00/18.00
CH3+FCl −→ CH3F + Cl 5.29/58.78 3.02/56.24 8.22/64.21 6.75/60.00

Nucleophilic substitution

Cl−...CH3Cl −→ ClCH3
...Cl− 11.55/11.55 10.76/10.76 15.40/15.40 13.41/13.41

F−...CH3Cl −→ FCH3
...Cl− 2.20/27.25 1.59/27.01 4.72/31.46 3.44/29.42

OH−+CH3F −→ HOCH3 + F− -3.51/16.04 -3.68/15.90 -1.59/21.58 -2.44/17.66

Unimolecular and association

H+N2 −→ HN2 14.63/10.33 12.29/10.50 14.04/13.10 14.36/10.61
H+C2H4 −→ CH3CH2 2.96/43.04 1.77/42.53 2.701/45.76 1.72/41.75
HCN −→ HNC 49.34/33.39 48.65/33.35 48.52/34.81 48.07/32.82

Hydrogen transfer

OH+ CH4 −→ CH3 + H2O 4.68/18.54 4.26/17.10 6.03/19.75 6.70/19.60
H + OH −→ O +H2 9.96/10.80 8.06/9.72 13.44/10.03 10.10/13.10
H+ H2S −→ H2 + HS 2.82/16.53 1.85/16.65 4.73/15.35 3.60/17.30
MAE 1.4 2.0 2.1
ME -0.8 -1.8 1.1
aFrom Ref. 15.

tively. Notice that, for AE6, because the ME of DS1DH-
PBE changes sign when going from the cc-pVTZ to the
cc-pVQZ basis, the variation of the corresponding MAE
turns out to be fortuitously small, and so at first glance
this hides the large basis dependence of DS1DH-PBE.
Note also that the optimal value of the parameter λ is
more dependent on the basis than the range-separation
parameter µ. For RSH-PBE(GWS)+lrMP2, we have de-
termined a global optimal value of µ = 0.58 which min-
imizes the total MAE of the combined AE6+BH6 set,
giving a total MAE of 2.63 kcal/mol.
Finally, we compare our best one-parameter double-

hybrid approximation 1DH-BLYP (with the optimal pa-
rameter λ = 0.65), the standard double hybrid B2-
PLYP and the range-separated double hybrid RSH-
PBE(GWS)+lrMP2 (with the optimal parameter µ =
0.58) on larger benchmark sets, the 49 atomization ener-
gies of the set of Ref. 54 (Table III) and the DBH24/08
set of 24 reaction barrier heights (Table IV). For the
set of atomization energies in Table III, 1DH-BLYP is
somewhat more accurate than B2-PLYP, with a slightly
smaller MAE (1.4 vs. 1.6 kcal/mol) and a significantly
smaller ME (0.3 vs. -1.0 kcal/mol). By contrast, the
range-separated double hybrid RSH-PBE(GWS)+lrMP2
gives a MAE as large as 6.5 kcal/mol. This is most likely
due to the fact that the short-range exchange-correlation
functional used is based on PBE. Indeed, the previous
results for the AE6 set (Table I) show that PBE is a
much less accurate functional than BLYP for atomiza-
tion energies. Unfortunately, there is no short-range
exchange-correlation functional based on BLYP available
yet. In fact, it is a practical advantage of the double

hybrids without range separation that they do not re-
quire development of new density functional approxima-
tions. The range-separated coupled-cluster calculations
on an extension of the G2/97 set of atomization ener-
gies by Goll et al. [67] show that a better accuracy can
be reached by using a short-range exchange-correlation
functional based on the TPSS functional [76]. For the
reaction barrier heights of Table IV, 1DH-BLYP is on
average more accurate than B2-PLYP, with a smaller
MAE (1.4 vs. 2.0 kcal/mol) and an even smaller ME
(-0.8 vs. -1.8 kcal/mol). The range-separated double
hybrid RSH-PBE(GWS)+lrMP2 performs about equally
well for the barrier heights, with a MAE of 2.1 kcal/mol
and a ME of 1.1 kcal/mol. Notice that we have used the
aug-cc-pVQZ basis for this DBH24/08 set. Diffuse basis
functions are indeed important for describing the charged
species in the nucleophilic substitutions, particularly for
1DH-BLYP and B2-PLYP and to a lesser extent for RSH-
PBE(GWS)+lrMP2. For comparison, the MAEs of these
three methods with the cc-pVQZ basis are 2.1, 2.7, and
2.4 kcal/mol, respectively.

V. CONCLUSIONS

We have rigorously derived a class of double-hybrid
approximations, combining HF exchange and MP2 cor-
relation with a semilocal exchange-correlation density
functional. These double-hybrid approximations contain
only one empirical parameter and uses a density-scaled
correlation energy functional. Neglecting density scal-
ing leads to an one-parameter version of the standard
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double-hybrid approximations. Calculations on the rep-
resentative test set of atomization energies AE6 show
that in practice neglecting density scaling in an ap-
proximate functional can either make the double-hybrid
method less accurate (case of PBE) or more accurate
(case of BLYP). Neglecting density scaling always leads
to a less accurate double-hybrid method on the repre-
sentative test set of reaction barrier heights BH6, for all
the density-functional approximations tested here. Our
best one-parameter double-hybrid approximation, 1DH-
BLYP, roughly reproduces the two parameters of the
standard B2-PLYP or B2GP-PLYP double-hybrid ap-
proximations, which shows that these methods are not
only empirically close to an optimum for general chemical
applications but are also theoretically supported. More
intensive tests on larger benchmark sets of atomization
energies and reaction barrier heights confirm that the
double hybrid 1DH-BLYP with a fraction of HF exchange
of λ = 0.65 can reach on average near-chemical accuracy
for these properties.
The range-separation double hybrid RSH+lrMP2 us-

ing the short-range exchange-correlation PBE functional
of Ref. 67 is competitive with the best global double
hybrids for reaction barrier heights but gives larger er-
rors for atomization energies. Nevertheless, the range-
separated double hybrids have the advantage of a weaker
basis dependence and a correct long-range behavior (im-
portant, e.g., for van der Waals interactions). One could
try to improve the performance of the range-separated
double hybrids for thermochemistry by either using bet-
ter short-range exchange-correlation functionals (such as
in Ref. 77), or combining them with global double hybrids
in a similar way as done for exchange in the CAM-B3LYP
approximation [78].
Beside providing a rigorous derivation of the double-

hybrid approximations, the formalism used in this work
also paves the way toward other rigorous formulation of
double-hybrid methods, replacing the MP2 part by some
other approaches. For example, using the random phase
approximation would generate a hybrid method similar
to the one proposed in Ref. 79, or using a configuration-
interaction or multiconfiguration self-consistent-field ap-
proach would lead to a hybrid method capable of dealing
with static electron correlation, in a similar but alterna-
tive way to the range-separated approaches [80–82].
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Appendix A: Density-scaled correlation energy and

potential

In this appendix, we give explicit expressions for the
density-scaled correlation energy functional which ap-
pears in Eq. (14)

Eλ
c [n] = λ2Ec[n1/λ], (A1)

and its associated potential

vλc [n](r) =
δEλ

c [n]

δn(r)
. (A2)

1. Density-scaled local-density approximations

For local-density approximations (LDA),

Ec,LDA[n] =

∫

ec(n(r))dr, (A3)

where ec is the energy density, the density-scaled corre-
lation energy is obtained as

Eλ
c,LDA[n] = λ2

∫

ec
(

n1/λ(r)
)

dr

= λ2

∫

ec
(

n(r/λ)/λ3
)

dr

= λ5

∫

ec
(

n(r)/λ3
)

dr, (A4)

where the coordinate transformation r → λr has been
used. The associated potential is simply

vλc,LDA[n](r) = λ2 dec
dn

(

n(r)/λ3
)

.

(A5)

2. Density-scaled generalized-gradient

approximations

For generalized-gradient approximations (GGA), usu-
ally written as a function of the density and the square
of density gradient norm |∇rn(r)|

2
,

Ec,GGA[n] =

∫

ec

(

n(r), |∇rn(r)|
2
)

dr, (A6)

the density-scaled correlation energy is

Eλ
c,GGA[n] = λ2

∫

ec

(

n1/λ(r),
∣

∣∇rn1/λ(r)
∣

∣

2
)

dr,

= λ2

∫

ec

(

n(r/λ)/λ3, |∇rn(r/λ)|
2
/λ6

)

dr,

= λ5

∫

ec

(

n(r)/λ3, |∇rn(r)|
2 /λ8

)

dr, (A7)
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where the coordinate transformation r → λr, and conse-
quently ∇r → ∇λr = ∇r/λ, has been used. The associ-
ated potential is

vλc,GGA[n](r) = λ2 ∂ec
∂n

(

n(r)/λ3, |∇rn(r)|
2
/λ8

)

−2∇r ·

[

1

λ3

∂ec

∂ |∇n|
2

(

n(r)/λ3, |∇rn(r)|
2
/λ8

)

∇rn(r)

]

.

(A8)

The same scaling relations apply for spin-dependent
functionals Ec[n↑, n↓], i.e. the scaling of the spin den-
sities n↑ and n↓ is the same as the scaling of the total
density n, and the scaling of the spin-density gradients
|∇n↑|

2
, |∇n↓|

2
, and ∇n↑ · ∇n↓ is the same as the scaling

of total density gradient |∇n|
2
.
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