M. A. Strehle, P. Rösch, R. Petry, A. Hauck, R. Thull et al., A Raman spectroscopic study of the adsorption of fibronectin and fibrinogen on titanium dioxide nanoparticles, Phys. Chem. Chem. Phys., vol.71, issue.3, p.5232, 2004.
DOI : 10.1039/B406524G

A. Klinger, D. Steinberg, D. Kohavi, and M. N. Sela, Mechanism of adsorption of human albumin to titaniumin vitro, Journal of Biomedical Materials Research, vol.48, issue.3, p.387, 1997.
DOI : 10.1002/(SICI)1097-4636(19970905)36:3<387::AID-JBM13>3.0.CO;2-B

X. Wang, S. Hayakawa, K. Tsuru, and A. Osaka, A comparative study of in vitro apatite deposition on heat-, H2O2-, and NaOH-treated titanium surfaces, Journal of Biomedical Materials Research, vol.14, issue.2, p.172, 2001.
DOI : 10.1002/1097-4636(200102)54:2<172::AID-JBM3>3.0.CO;2-#

S. R. Sousa, P. Moradas-ferreria, and M. A. Barbosa, TiO2 type influences fibronectin adsorption, Journal of Materials Science: Materials in Medicine, vol.155, issue.12, p.1173, 2005.
DOI : 10.1007/s10856-005-4725-4

S. R. Sousa, M. M. Bras, P. Moradas-ferreira, and M. A. Barbosa, Surfaces, Langmuir, vol.23, issue.13, p.7046, 2007.
DOI : 10.1021/la062956e

J. H. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, Journal of Electron Spectroscopy and Related Phenomena, vol.8, issue.2, p.129, 1976.
DOI : 10.1016/0368-2048(76)80015-1