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Self-stabilizing Algorithms

Sébastien Tixeuil

The final version of this book chapter appears in [72].

1 Introduction

The study of distributed systems and algorithms helps in understanding the specific features
of these systems compared to classic centralized systems: information is local (each element of
the system only holds a fraction of the information, and must obtain more by communicating
with other elements), and time is local (the elements of the system can run their instructions at
different speeds). These two factors result in non-deterministic behaviors, as two consecutive
executions of the same distributed system are likely to be different. The fact that certain
elements of the system can become faulty increases even further this non-determinism and
the difficulty of predicting the overall system’s behavior.

When the number of components in a distributed system is increased, the possibility for
one or several of these components to become faulty also increases. When the production costs
of these components are reduced to achieve economies of scale, the rate of potential defects
again increases. Finally, when the system’s components are deployed in an environment that
is not necessarily controlled, the risks of faults occurring become impossible to overlook.

1.1 Fault taxonomy in distributed systems

A first criterion for classifying faults in distributed systems is localization in time. Usually,
three types of possible faults are distinguished:

1. transient faults: faults that are arbitrary in nature can strike the system, but there is
a point in the execution beyond which these faults no longer occur;

2. permanent faults: faults that are arbitrary in nature can strike the system, but there is
a point in the execution beyond which these faults always occur;

3. intermittent faults: faults that are arbitrary in nature can strike the system, at any
moment in the execution.

Transient fault and permanent faults are, of course, specific cases of intermittent faults.
However, with a system in which intermittent faults rarely occur, a system that tolerates
transient faults can be useful, because the useful lifespan can be long enough.

A second criterion is the nature of the faults. An element of the distributed system can
be represented by an automaton, whose states represent the possible values of the element’s
variables, and whose transitions represent the code run by the element. We can then dis-
tinguish the following faults depending on whether they involve the state or the code of the
element:
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1. state related faults: changes in an element’s variables may be caused by disturbances
in the environment (electromagnetic waves, for example), attacks (buffer overflow, for
example) or simply faults on the part of the equipment used. For example, it is possible
for some variables to have values that they are not supposed to have if the system is
running normally;

2. code-related faults: an arbitrary change in an element’s code is most often the result of
an attack (the replacement, for example, of an element by a malicious opponent), but
certain, less serious types correspond to bugs or a difficulty in handling the load. There
are several different sub-categories of code-related faults:

(a) crashes: at a given moment during the execution, an element stops its execution
permanently and no longer performs any action;

(b) omissions: at different moments during the execution, an element may omit to
communicate with the other elements of the system, either in transmission, or in
reception;

(c) duplications: at different moments during the execution, an element may perform
an action several times, even though its code states that this execution must be
performed once;

(d) desequencing : at different moments during the execution, an element may perform
the right actions, but in the wrong order;

(e) Byzantine faults: these simply correspond to an arbitrary type of fault, and are
therefore the faults that cause the most harm.

Crashes are included in omissions (an element that no longer communicates is perceived by the
rest of the system as an element that has ended its execution). Omissions are trivially included
in Byzantine faults. Duplications and desequencing are also included in Byzantine faults, but
are generally regarded as behaviors strictly related with communication capabilities.

A third criterion is the extent (or span) of the faults, i.e., how many of the individual
system components can be hit by faults or attacks.

1.2 Fault-tolerant algorithm categories

When faults occur on one or several of the elements that comprise a distributed system, it is
essential to be able to deal with them. If a system tolerates no fault whatsoever, the failure
of a single one of its elements can compromise the execution of the entire system: this is
the case for a system in which an entity has a central role (such as the DNS). In order to
preserve the system’s useful lifespan, several ad hoc methods have been developed, which are
usually specific to a particular type of fault that is likely to occur in the system in question.
However, these solutions can be categorized depending on whether the effect is visible or not
to an observer (a user, for example). A masking solution hides the occurrence of faults to the
observer, whereas a non-masking solution does not present this characteristic: the effect of
faults is visible over a certain period of time, then the system resumes behaving properly.

A masking approach may seem preferable at first, since it applies to a greater number
of applications. Using a non-masking approach to regulate air traffic would make collisions
possible following the occurrence of faults. However, a masking solution is usually more
costly (in resources and in time) than a non-blocking solution, and can only tolerate faults
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so long as they have been anticipated. For problems such as routing, where being unable
to transport information for a few moments will not have catastrophic consequences, a non-
masking approach is perfectly well-suited. Two major categories for fault-tolerant algorithms
can be distinguished:

1. robust algorithms: these use redundancy on several levels of information, of communi-
cations, or of the system’s nodes, in order to overlap to the extent that the rest of the
code can safely be executed. They usually rely on the hypothesis that a limited number
of faults will strike the system, so as to preserve at least a majority of correct elements
(sometimes more if the faults are more severe). Typically, these are masking algorithms.

2. self-stabilizing algorithms: these rely on the hypothesis that the faults are transient (in
other words, limited in time), but do not set constraints regarding the extent of the faults
(which may involve all of the system’s elements). An algorithm is self-stabilizing [21, 22]
if it manages, in a finite time, to present an appropriate behavior independently from
the initial state of its elements, meaning that the variables of the elements may exist in a
state that is arbitrary (and impossible to achieve by running the application normally).
Typically, self-stabilizing algorithms are non-masking, because between the moment
when the faults cease and the moment when the system has stabilized to an appropriate
behavior, the execution may turn out to be somewhat erratic.

Robust algorithms are quite close to what we conceive intuitively as fault-tolerance. If an
element is susceptible to faults, then each element is replaced with three identical elements,
and each time an action is undertaken, the action is performed three times by each of the
elements, and the action actually undertaken is the one that corresponds to the majority of
the three individual actions. Self-stabilization would seem to be related more to the concept
of convergence in mathematics or control theory, where the objective is to reach a fixed
point regardless of the initial position; the fixed point corresponds here to an appropriate
execution. Being capable of starting with an arbitrary state may seem odd (since it would
seem that the initial states of the elements are always well known), but studies [73] have
shown that if a distributed system is subjected to stopping and restarting-type node failures
(which correspond to a definite failure followed by a reinitialization), and communications
cannot be totally reliable (some communications may be lost, duplicated or, desequenced),
then an arbitrary state of the system can actually be achieved. Even if the probability of
the execution that leads to this arbitrary state is negligible in normal conditions, it is not
impossible for an attack on the system to attempt to reproduce such an execution. In any case,
and regardless of the nature of what led the system to this arbitrary state, a self-stabilizing
algorithm is capable of providing an appropriate behavior in a finite amount of time. In fact,
self-stabilizing distributed algorithms are found in a number of protocols used in computer
networks [48, 66].

Figure 1 sums up the relative capabilities of self-stabilizing and robust algorithms, respec-
tively. The three axes take into account the three possibilities to classify faults in distributed
systems that are described in Section 1.1. With a self-stabilizing algorithm, an external
user may experience erratic behavior (the stabilizing phase) after the faults have actually
ceased, while a robust algorithm will always appear as behaving properly. In contrast, a
self-stabilizing algorithm makes no assumption about the extent or the nature of the faults,
while robust systems will generally put constraints on those. The rest of the chapter is or-
ganized as follows: Section 2 presents the most common hypotheses that are made in the
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Figure 1: Self-stabilization vs. Robustness
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self-stabilizing literature. Section 3 gives several examples of self-stabilizing algorithms, using
various kinds of problems, hypotheses, and proof techniques. Section 4 presents the main
variants of self-stabilization and concludes the chapter.

2 Models

Traditionally, a distributed system is usually represented by a graph, in which the nodes are
the system’s machines and the edges represent the ability for two machines to communicate.
Thus, two machines are connected if they are capable of communicating information to one
another (using a network connection for example). In some cases, the edges of the graph
are oriented so as to represent the fact that the communication can only take place one way
(for example, wireless communication from a satellite to an antenna on the ground). From
now on, we will indiscriminately use the words machine, node or process depending on the
context.

2.1 System hypotheses

In the context of self-stabilization, the hypotheses made for the system generally do not
include, as with robust algorithms, conditions on the completeness or the globality of the
communications. Many algorithms run on systems with nodes that only communicate locally.
However, several hypotheses may be crucial for the algorithm to run properly, and involve
the hypotheses made regarding the scheduling of the system:

1. atomicity of the communications: most of the self-stabilizing algorithms discussed in
the literature use communication primitives with a high level of atomicity. At least
three historic models are found in the literature:

(a) the state model (or shared memory model [21]): in one atomic step, a node can
read the state of each of the neighboring nodes, and update its own state;

(b) the shared register model [26]: in one atomic step, a node can read the state of one
of its neighboring nodes, or update its own state, but not both simultaneously;

(c) the message passing model [1, 27, 52]: this is the classic model for distributed
algorithms, for which in one atomic step, a node sends a message to one of the
neighboring nodes, or receives a messages from one of the neighboring nodes, but
not both simultaneously.

With the recent study of the self-stabilization property in wireless and ad hoc sensor
networks, several models for local diffusion with potential collisions have appeared. In
the model that presents the highest degree of atomicity [55], a node can, in one atomic
step, read its own state and partially write the state of each of the neighboring nodes.
If two nodes simultaneously write the state of a common neighbor, a collision occurs
and none of the information is written. A more realistic model [45] consists of defining
two distinct and atomic actions for local diffusion on one hand and the reception of a
locally diffused message on the other.

In the case of bidirectional communications, it is possible to simulate a model using
another model. For example, [22] shows how to transform the shared memory model
into a message passing model. In the models that are specific to wireless networks, [54]
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shows how to transform the local diffusion model with collisions into a shared memory
model; in a similar fashion [43] shows that the model in [45] can be transformed into a
shared memory model. There are two problems with these transformations:

(a) the transformation uses up resources (time, memory, energy in the case of sensors),
which could be avoided using a direct solution in the model closest to the considered
system;

(b) the transformation is only possible in systems with bidirectional communications:
this is due to the fact that acknowledgments have to be sent regularly to ensure
that the highest level model is properly simulated.

2. spatial scheduling : historically, self-stabilizing algorithms relied on the hypothesis that
two neighboring nodes cannot execute their codes simultaneously. This makes it possible
to break symmetry in certain configurations [4, 67]. Usually, three main possibilities
are distinguished for scheduling, depending on which constraints are wanted:

(a) central scheduling : at a given moment, only one of the system’s nodes can run its
code;

(b) global (or synchronous) scheduling : at a given moment, all of the system’s nodes
run their codes;

(c) distributed scheduling : at a given moment, an arbitrary subset of the system’s
nodes runs its code. This type of spatial scheduling is the most realistic.

Other variations are also possible (for example, a k-locally central scheduling [62]: at a
given moment, in each neighborhood of node at distance at most k, only one of the nodes
executes it code), but in practice, they are equivalent to one of the three models above
(see [69, 71]). The more constrained the spatial scheduling model is, the easier it is to
solve problems. For example, [4] shows that it is impossible to color an arbitrary graph
in a distributed and deterministic fashion. On the other hand, [38] shows that if the
spatial scheduling is locally central, then such a solution is possible. Some algorithms,
which rely on the hypothesis of one of these models, can be run in another model, at the
price of a greater consumption of resources, as before. Because the most general model
is the distributed model, it may be transformed into a more constrained model using
a mutual exclusion algorithm [21, 14, 40] (for the central model), or a synchronization
algorithm [2] (for the global model).

3. temporal scheduling : the first self-stabilizing [21] algorithms were independent of the
concept of time, that is, they were written in a purely asynchronous model, where
no hypothesis is stated regarding the relative speeds of the system’s nodes. Later
on, scheduling models with heavier constraints began to appear, particularly for the
description of real systems. Schedulers are usually divided into three main types:

(a) arbitrary ( aka unfair, adversarial) scheduling : no hypothesis is made regarding
the respective execution properties of the system’s nodes, other than the simple
progression (at each moment, at least one node executes some actions);

(b) fair scheduling : each node runs local actions infinitely often;

(c) bounded scheduling : between the executions of two actions for the same system
node, each node executes a bounded number of actions.
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Figure 2: Taxonomy of system hypotheses in Self-stabilization

Other variations are possible (for example, [50] makes a distinction between weak fair-
ness and strong fairness), but as before, the more constrained the temporal scheduling
model is, the easier it is to solve problems. Bounded scheduling can be constrained fur-
ther in order to obtain synchronous (or global) scheduling. As with the variations on the
previous models, there are algorithms for transforming the execution from one model
to another. For example, alternators [37, 47, 56] can be used to construct a bounded
model based on a fair or arbitrary model. On the other hand, because of its unbounded
nature, the strict fair model cannot be (strictly) constructed from the arbitrary model.

The general taxonomy of common system hypotheses made in self-stabilizing literature
are presented in Figure 2. An arrow from a hypothesis a to a hypothesis b implies that a is
stronger than b, that is an algorithm pa assuming a is weaker than an algorithm pb assuming
b. That is, pb will work under hypotheses b and a, but pa will only work with hypothesis a.
Since the kinds of scheduling presented in this section are quite different from the notion of
scheduling used e.g. in parallel algorithms, the most used term to refer to those hypoteses in
the self-stabilizing literature is the daemon. The two terms are used interchangeably in the
remaining of the text.

2.2 Program model

For the formal description of our program we use simplified UNITY notation [35]. A program
consists of a set of processes. A process contains a set of constants that it can read but not
update. A process maintains a set of variables. Each variable ranges over a fixed domain of
values. We use small case letters to denote singleton variables, and capital ones to denote
sets. Some variables are persistent from one activation of the process to the next, and are
called state variables, while some other are wiped out between two activations of a process,
and are called local variables. When there is no ambiguity, the generic term variable refers to
a state variable.

An action has the form 〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a Boolean predicate.
In the shared memory model, this predicate is over the variables of the process and its
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communication neighbors. In the shared register model, this predicate is over the variables
of the process and a single input register. In the message passing model, this predicate is
over the variables of the process and the receive(m) primitive. In this context, receive(m)
evaluates to true if a message matching m has been received, and to false otherwise. A
command is a sequence of statements assigning new values to the variables of the process
(in all communication models) and sending messages (using the send(m) primitive) in the
message passing model. Besides assignments, conditionals and loops are also available (with
the if -fi and do-od constructions, respectively). We refer to a variable var and an action
ac of process p as var.p and ac.p respectively. We make use of two operators: [] denotes
alternation (that is a[]b denotes the fact that either a or b is executed, but not both, and the
choice is non-deterministic) while ∗[] denotes iteration (that is, ∗[a] denotes the fact that a
is repetitively evaluated). A parameter is used to define a set of actions as one parametrized
action. For example, let j be a parameter ranging over values 2, 5, and 9; then a parametrized
action ac.j defines the set of actions: ac.(j := 2) [] ac.(j := 5) [] ac.(j := 9).

A configuration of the system is the assignment of a value to every variable of each process
from the variable’s corresponding domain (and possibly a similar assignment of message
contents in channels between processes in case of the message passing model). Each process
contains a set of actions. An action is enabled in some configuration if its guard is true
at this state. A computation is a maximal sequence of configurations such that for each
configuration si, the next configuration si+1 is obtained by executing the command of an
action that is enabled in si. Maximality of a computation means that the computation is
infinite or it terminates in a state where none of the actions are enabled. Such state is a
fix-point.

A configuration conforms to a predicate if this predicate is true in this configuration;
otherwise the state violates the predicate. By this definition every state conforms to predicate
true and none conforms to false. Let R and S be predicates over the configuration of the
system. Predicate R is closed with respect to the program actions if every configuration of
the computation that starts in a configuration conforming to R also conforms to R. Predicate
R converges to S if R and S are closed and any computation starting from a configuration
conforming to R contains a configuration conforming to S. The program stabilizes to R if
true converges to R.

Definition 1 (Self-stabilization) Starting from an arbitrary initial configuration, any ex-
ecution of a self-stabilizing algorithm contains a subsequent configuration from which every
execution satisfies the specification.

3 Designing self-stabilizing algorithms

In the context of self-stabilization, depending on the problem that we wish to solve, the
minimum time required for going back to a correct configuration varies significantly. Problems
are generally divided into two categories:

1. static problems: we wish to perform a task that consists of calculating a function that
depends on the system in which it is assessed. For example, it can consist of coloring
the nodes of a network so as to never have two adjacent nodes with the same color;
another example is the calculation of the shortest paths to a destination [23].
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2. dynamic problems: we wish to perform a task that performs a service for upper layer
algorithms. The model transformation algorithms such as token passing fall into this
category.

The example designs that are featured in this section are Maximal Matching (Section 3.1),
Generalized Diners (Section 3.2), Census (Section 3.3), and Token Passing (Section 3.4). The
first two are written for the state model (a.k.a. shared memory model) and the last two for the
message passing model. Maximal Matching and Census are instances of static problems, while
Generalized Diners and Token Passing are instances of dynamic ones. The proof techniques
used to show the self-stabilization properties of the presented algorithms include attractors,
potential functions, and Markov chains. The examples that are presented in this section
previously appeared in [60, 12, 18, 29].

3.1 Maximal Matching

Algorithm. In the following we present and motivate our algorithm for computing a max-
imal matching. The algorithm is self-stabilizing and does not make any assumptions on the
network topology. A set of edges M ⊆ E is a matching if and only if x, y ∈ M implies that
x and y do not share a common end point. A matching M is maximal if no proper superset
of M is also a matching. Note that a maximal matching differs from a maximum matching,
that is required to have maximum cardinality among all possible maximal matchings. In the
remaining of the section, n denotes the number of nodes and m denotes the number of edges,
respectively.

Each process i has a variable points to.i pointing to one of its neighbors or to null. We
say that processes i and j are married to each other if and only if i and j are neighbors and
their points to-values point to each other. In this case we will also refer to i as being married
without specifying j. However, we note that in this case j is unique. A process which is
not married is unmarried. Figure 3 depicts two possible configurations of our algorithm: in
Figure 3.(a), some nodes points at some other without the converse being true (leaving those
nodes unmatched), while Figure 3.(b) depicts a maximal matching configuration.

We also use a variable matched .i to let neighboring processes of i know if process i is
married or not. To determine the value of matched .i we use a predicate PRmarried(i) which
evaluates to true if and only if i is married. Thus predicate PRmarried(i) allows process i to
know if it is currently married and the variable matched .i allows neighbors of i to know if i
is married. Note that the value of matched .i is not necessarily equal to PRmarried(i).

Our self-stabilizing scheme is given in Algorithm 1. It is composed of four mutually
exclusive guarded rules as described below.

The Update rule updates the value of matched .i if it is necessary, while the three other
rules can only be executed if the value of matched .i is correct. In the Marriage rule, an
unmarried process that is currently being pointed to by a neighbor j tries to marry j by
setting points to.i = j. In the Seduction rule, an unmarried process that is not being pointed
to by any neighbor, points to an unmarried neighbor with the objective of marriage. Note
that the identifier of the chosen neighbor has to be larger than that of the current process.
This is enforced to avoid the creation of cycles of pointer values. In the Abandonment rule, a
process i resets its points to.i value to null. This is done if the process j which it is pointing
to does not point back at i and if either (1) j is married, or (2) j has a lower identifier than
i. Condition (1) allows a process to stop waiting for an already married process while the
purpose of Condition (2) is to break a possible initial cycle of points to-values.
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(a) A possible arbitrary initial configuration

(b) A legitimate maximal matching configuration

Figure 3: Possible configurations of Algorithm 1

We note that if PRmarried(i) holds at some point of time then from then on it will remain
true throughout the execution of the algorithm. Moreover, the algorithm will never actively
create a cycle of pointing values since the Seduction rule enforces that j > i before process
i will point to process j. Also, all initial cycles are eventually broken since the guard of the
Abandonment rule requires that j ≤ i.

Proof of Correctness. The proof of correctness presented in this section demonstrates
how to cope with an adversarial daemon. Intuitively, we can only assume progress of the
computation (i.e. at least one node that is activatable makes a move), so the main goal of the
proof is to show that whatever the choices of the daemon are, only a finite number of moves
can be made by each node before reaching a legitimate configuration, as there exists no chain
of consecutive configurations that form a loop in the set of illegitimate configurations (see
Figure 4). For the maximal matching problem, the situation is facilitated by the fact that a
final configuration is eventually reached, in which a maximal matching is constructed.

In the following we will first show that when Algorithm 1 has reached a stable configuration
it also defines a maximal matching. We will then bound the number of steps the algorithm
needs to stabilize for the adversarial daemon. We now proceed to show that if Algorithm 1
reaches a stable configuration then the points to and matched -values will define a maximal
matching M where (i, j) ∈ M if and only if (i, j) ∈ E, points to.i = j, and points to.j = i
while both matched .i and matched .j are true. A configuration is stable (or terminal) if no
processes are eligible to execute a move. In order to perform the proof, we define the following
five mutual exclusive predicates:

PRmarried(i) ≡ ∃j ∈ N(i) : (points to.i = j and points to.j = i)
PRwaiting(i) ≡ ∃j ∈ N(i) : (points to.i = j and points to.j 6= i and ¬PRmarried(j))
PRcondemned(i) ≡ ∃j ∈ N(i) : (points to.i = j and points to.j 6= i and PRmarried(j))
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Algorithm 1 MM: a self-stabilizing maximal matching algorithm

process i
const

N : communication neighbors of i
parameter

r : N
var

matched .i : {true, false}
points to.i : {null} ∪N

predicate
PRmarried(i) ≡ (points to.i = r ∧ points to.r = i)

∗[
update: matched .i 6= PRmarried(i) −→

matched .i := PRmarried(i)
[]

marriage: matched .i = PRmarried(i) ∧ points to.i = null ∧ points to.r = i −→
points to.i := r

[]
seduction: matched .i = PRmarried(i) ∧ points to.i = null ∧ ∀k ∈ N : points to.k 6= i

∧(points to.r = null ∧ r > i ∧ ¬matched .r) −→
points to.i := Max{j ∈ N : (points to.j = null ∧ j > i ∧ ¬matched .j)}

[]
abandonment : matched .i = PRmarried(i) ∧ points to.i = j ∧ points to.j 6= i

∧(matched .j ∨ j ≤ i) −→
points to.i := null

]
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Figure 4: Proving Self-stabilization with unfair scheduling

PRdead(i) ≡ (points to.i = null) and (∀j ∈ N(i) : PRmarried(j))
PRfree(i) ≡ (points to.i = null) and (∃j ∈ N(i) : ¬PRmarried(j))

Note first that each process will evaluate exactly one of these predicates to true. Moreover,
also note that PRmarried(i) is the same as in Algorithm 1. We now show that in a stable
configuration each process i evaluates either PRmarried(i) or PRdead(i) to true, and when
this is the case, the points to-values define a maximal matching. To do so, we first note that
in any stable configuration the matched -values reflects the current status of the process.

Lemma 1 In a stable configuration we have matched .i = PRmarried(i) for each i ∈ V .

Proof: This follows directly since if matched .i 6= PRmarried(i) then i is eligible to execute
the update rule. 2

We next show in the following three lemmas that no process will evaluate either PRwaiting(i),
PRcondemned(i), or PRfree(i) to true in a stable configuration.

Lemma 2 In a stable configuration PRcondemned(i) is false for each i ∈ V .

Proof: If there exists at least one process i in the current configuration such that PRcondemned(i)
is true then points to.i is pointing to a process j ∈ N(i) that is married to a process k
where k 6= i. From Lemma 1 it follows that in a stable configuration we have matched .i =
PRmarried(i) and matched .j = PRmarried(j). Thus in a stable configuration the predicate
(matched .i = PRmarried(i)∧points to.i = j∧points to.j 6= i∧matched .j) evaluates to true.
But then process i is eligible to execute the Abandonment rule contradicting that the current
configuration is stable. 2

Lemma 3 In a stable configuration PRwaiting(i) is false for each i ∈ V .
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Proof: Assume that the current configuration is stable and that there exists at least one
process i such that PRwaiting(i) is true. Then it follows that points to.i is pointing to a
process j ∈ N(i) such that points to.j 6= i and j is unmarried. Note first that if points to.j =
null then process j is eligible to execute a marriage move. Also, if j < i then process i can
execute an abandonment move. Assume therefore that points to.j 6= null and that j > i. It
then follows from Lemma 2 that ¬PRcondemned(j) is true and since j is not married we also
have ¬PRmarried(j). Thus PRwaiting(j) must be true. Repeating the same argument for
j as we just did for i it follows that if both i and j are ineligible for a move then there must
exist a process k such that points to.j = k, k > j, and PRwaiting(k) also evaluates to true.
This sequence of processes cannot be extended indefinitely since each process must have a
higher identifier than the preceding one. Thus there must exist some process in V that is
eligible for a move and the assumption that the current configuration is stable is incorrect. 2

Lemma 4 In a stable configuration PRfree(i) is false for each i ∈ V .

Proof: Assume that the current configuration is stable and that there exists at least one
process i such that PRfree(i) is true. Then it follows that points to.i = null and that there
exists at least one process j ∈ N(i) such that j is not married.

Next, we look at the value of the different predicates for the process j. Since j is not
married it follows that PRmarried(j) evaluates to false. Also, from lemmas 2 and 3 we have
that both PRwaiting(j) and PRcondemned(j) must evaluate to false. Finally, since i is not
married we cannot have PRdead(j). Thus we must have PRfree(j). But then the process
with the smaller identifier of i and j is eligible to propose to the other, contradicting the fact
that the current configuration is stable. 2

From lemmas 2 through 4 we immediately get the following corollary.

Corollary 1 In a stable configuration either PRmarried(i) or PRdead(i) holds for every
i ∈ V .

We can now show that a stable configuration also defines a maximal matching.

Theorem 1 In any stable configuration the matched and points to-values define a maximal
matching.

Proof: From Corollary 1 we know that in a stable configuration either PRmarried(i) or
PRdead(i) holds for every i ∈ V . Also, from Lemma 1 it follows that matched .i is true if
and only if i is married. It is then straightforward to see that the points to-values define a
matching.

To see that this matching is maximal assume to the contrary that it is possible to add
one more edge (i, j) to the matching so that it still remains a legal matching. To be able to
do so we must have points to.i = null and points to.j = null. Thus we have ¬PRmarried(i)
and ¬PRmarried(j) which again implies that both PRdead(i) and PRdead(j) evaluates to
true. But according to the PRdead predicate two adjacent processes cannot be dead at the
same time. It follows that the current matching is maximal. 2

In the following we will show that Algorithm 1 will reach a stable configuration after at
most 3 · n+ 2 ·m steps under the distributed adversarial daemon.

First we note that as soon as two processes are married they will remain so for the rest
of the execution of the algorithm.
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Lemma 5 If processes i and j are married in a configuration C, i.e. points to.i = j and
points to.j = i, then they will remain married in any ensuing configuration C ′.

Proof: Assume that points to.i = j and points to.j = i in some configuration C. Then
process i can neither execute the marriage nor the seduction rule since these require that
points to.i = null. Similarly, i cannot execute the abandonment rule since this requires that
points to.j 6= i. The exact same argument for process j shows that j also cannot execute any
of the three rules marriage, seduction, and abandonment. Thus the only rule that processes
i and j can execute is update but this will not change the values of points to.i or points to.j.
2

A process discovers that it is married through executing the update rule. Thus this is the
last rule a married process will execute in the algorithm. This is reflected in the following.

Corollary 2 If a process i executes an update move and sets matched .i = true then i will
not move again.

Proof: From the predicate of the update rule it follows that when process i sets matched .i =
true there must exist a process j ∈ N(i) such that points to.i = j and points to.j = i. Thus
from Lemma 5 the only subsequent move i can make is an update move. But since the value
of matched .i is correct and points to.i and points to.j will not change again this will not
happen. 2

Since a married process cannot become “unmarried” we also have the following restriction
on the number of times the update rule can be executed by any process.

Corollary 3 Any process executes at most two update moves.

We will now bound the number of moves from the set {marriage, seduction, abandonment}.
Each such move is performed by a process i in relation to one of its neighbors j. We denote
any such move made by either i or j with respect to the other as an i, j-move.

Lemma 6 For any edge (i, j) ∈ E, there can at most be three steps in which an i, j-move is
performed.

Proof: Let (i, j) ∈ E be an edge such that i < j. We then consider four different cases
depending on the initial values of points to.i and points to.j. Note from Algorithm 1 that
the only values that points to.i and points to.j can take on are points to.i ∈ {null} ∪ N(i)
and points to.j ∈ {null} ∪N(j). For each case we will show that there can at most be three
steps in which i, j-moves occur.

1. points to.i 6= j and points to.j 6= i. Since i < j the first i, j-move cannot be process j
executing a seduction move. Also, as long as points to.i 6= j, process j cannot execute
a marriage move. Thus process j cannot execute an i, j-move until after process i has
first made an i, j-move. It follows that the first possible i, j-move is that i executes
a seduction move simultaneously as j makes no i, j-move. Note that at the starting
configuration of this move we must have ¬matched .j. If the next i, j-move is performed
by j simultaneously as i performs no move then this must be a marriage move which
results in points to.i = j and points to.j = i. Then by Lemma 5 there will be no more
i, j-moves. If process i makes the next i, j-move (independently of what process j does)

14



then this must be an abandonment move. But this requires that the value of matched .j
has changed from false to true. Then by Corollary 2 process j will not make any more
i, j-moves and since points to.j 6= null and points to.j 6= i for the rest of the algorithm
it follows that process i cannot execute any future i, j-move. Thus there can at most
be two steps in which i, j-moves are performed.

2. points to.i = j and points to.j 6= i. If the first i, j-move only involves process j then
this must be a marriage move resulting in points to.i = j and points to.j = i and
from Lemma 5 neither i nor j will make any future i, j-moves. If the first i, j-move
involves process i then this must be an abandonment move. Thus in the configuration
prior to this move we must have matched .j = true. It follows that either matched .j 6=
PRmarried(j) or points to.j 6= null. In both cases process j cannot make an i, j-move
simultaneously as i makes its move. Thus following the abandonment move by process
i we are at Case (1) and there can at most be two more i, j-moves. Hence, there can at
most be a total of three steps with i, j-moves.

3. points to.i 6= j and points to.j = i. If the first i, j-move only involves process i then
this must be a marriage move resulting in points to.i = j and points to.j = i and
from Lemma 5 neither i nor j will make any future i, j-moves. If the first i, j-move
involves process j then this must be an abandonment move. If process i does not make
a simultaneous i, j-move then this will result in configuration (1) and there can at most
be two more steps with i, j-moves for a total of three steps containing i, j-moves. If
process i does make a simultaneous i, j-move with process j executing an abandonment
move, then this must be a marriage move. We are now at a similar configuration as
Case (2) but with ¬matched .j. If the second i, j-move involves process i then this must
be an abandonment move implying that matched .j has changed to true. It then follows
from Corollary 2 that process j (and therefore also process i) will not make any future
i, j-move leaving a total of two steps containing i, j-moves. If the second i, j-move does
not involve i then this must be a marriage move performed by process j and resulting
in points to.i = j and points to.j = i and from Lemma 5 neither i nor j will make any
future i, j-moves.

4. points to.i = j and points to.j = i. In this case it follows from Lemma 5 that neither
process i nor process j will make any future i, j-moves.

2

It should be noted in the proof of Lemma 6 that only an edge (i, j) where we initially
have either points to.i = j or points to.j = i (but not both) can result in three i, j-moves,
otherwise the limit is two i, j-moves per edge. When we have three (i, j)-moves across an
edge (i, j) we can charge these moves to the process that was initially pointing to the other.
In this way each process will at most be incident on one edge which it is charged three moves
for. From this observation we can now give the following bound on the total number of steps
needed to obtain a stable solution.

Theorem 2 Algorithm 1 will stabilize after at most 3 · n+ 2 ·m steps under the distributed
adversarial daemon.

Proof: From Corollary 2 we know that there can be at most 2n update moves, each which can
occur in a separate step. From Lemma 6 it follows that there can at most be three i, j-moves
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per edge. But as observed, there is at most one such edge incident on each process i for
which process i is charged for, otherwise the limit is two i, j-moves. Thus the total number
of i, j-moves is at most n+ 2 ·m and the result follows. 2

From Theorem 2 it follows that Algorithm 1 will use O(m) moves on any connected
system when assuming a distributed daemon. Since the distributed daemon encompasses
the sequential daemon this result also holds for the sequential daemon. To see that this is
a tight bound for the stabilization time, consider a complete graph in which each process
in, in−1, ..., i1 has a unique identifier such that in > in−1 > ... > i1. We will now show
that there exists an initial configuration and a sequence of moves such that Ω(m) moves
are executed before the system reaches a stable configuration. Consider that if initially every
process is unmarried and not pointing to anyone. Then the processes in−1, ..., i1 will be eligible
to execute seduction moves and point to in. Following this, in may now execute a marriage
move, and become married to in−1. Thus the processes in−2, ..., i1 are now eligible to execute
abandonment moves. Observe that following these moves, two moves have been executed for
every edge incident to in, and the processes in−2, ..., i1 are once again not pointing to any other
process. Furthermore, by Lemma 5 we know that neither in nor in−1 will execute any further
non-update moves (note that no moves were executed for any edge incident on in−1, with the
exception of the edge (in, in−1)). In the same manner, we can now reason that in addition
to the above, two moves are executed for every edge incident on in−2 (with the exception of
those incident on in or in−1). Repeating this argument gives that Ω(m) non-update moves
are executed before the system reaches a stable configuration.

3.2 Generalized diners

Algorithm. An instance of the generalized diners problem defines for each process p a set
of communication neighbors N.p and a set of conflict neighbors M.p. Both relations are
symmetric. That is, for any two processes p and q if p ∈ N.q then q ∈ N.p. The same
applies to M.p. Throughout the computation each process requests critical section (CS for
short) access an arbitrary number of times: from zero to infinity. A program that solves the
generalized diners satisfies the following two properties for each process p:

safety — if the action that executes the CS is enabled in p, it is disabled in all processes of
M.p;

liveness — if p wishes to execute the CS, it is eventually allowed to do so.

In this section it is assumed that in any computation, the action execution is weakly fair.
That is, if an action is enabled in all but finitely many states of an infinite computation then
this action is executed infinitely often.

K-hop diners is a restriction of generalized diners. In k-hop diners, for each process p,
M.p contains all processes whose distance to p in the graph formed by the communication
topology is no more than k.

The main idea of the algorithm is to coordinate CS request notifications between multiple
conflict neighbors of the same process. We assume that for each process p there is a tree that
spans M.p. This tree is rooted in p. A stabilizing breadth-first construction of a spanning
tree is a relatively simple task [22].

The processes in this tree propagate CS request of its root. The request reflects from the
leaves and informs the root that its conflict neighbors are notified. This mechanism resembles
information propagation with feedback [9].
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Algorithm 2 KDP: a self-stabilizing k-hops diners algorithm

process p
const

M : k-hop conflict neighbors of p
N : communication neighbors of p
(∀q : q ∈M : dad.p.q ∈ N,KIDS.p.q ⊂ N)

parent id and set of children ids for each k-hop neighbor
parameter

r : M
var

state.p.p : {idle, req},
(∀q : q ∈M : state.p.q : {idle, req, rep}),
Y IELD : {∀q : q ∈M : q > p} lower priority processes to wait for
needcs : boolean, application variable to request the CS

∗[
join: needcs ∧ state.p.p = idle ∧ Y IELD = ∅ ∧

(∀q : q ∈ KIDS.p.p : state.q.p = idle) −→
state.p.p := req

[]
enter : state.p.p = req ∧

(∀q : q ∈ KIDS.p.p : state.q.p = rep) ∧
(∀q : q ∈M ∧ q < p : state.p.q = idle) −→

/* Critical Section */
Y IELD := {∀q : q ∈M ∧ q > p : state.p.q = rep},
state.p.p := idle

[]
forward : state.p.r = idle ∧ state.(dad.p.r).r = req ∧

((KIDS.p.r = ∅) ∨ (∀q : q ∈ KIDS.p.r : state.q.r = idle)) −→
state.p.r := req

[]
back : state.p.r = req ∧ state.(dad.p.r).r = req ∧

((KIDS.p.r = ∅) ∨ (∀q : q ∈ KIDS.p.r : state.q.r = rep)) ∨
state.p.r 6= rep ∧ state.(dad.p.r).r = rep −→

state.p.r := rep
[]

stop: (state.p.r 6= idle ∨ r ∈ Y IELD) ∧
state.(dad.p.r).r = idle −→

Y IELD := Y IELD \ {r},
state.p.r := idle

]
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The access to the CS is granted on the basis of the priority of the requesting process. Each
process has an identifier that is unique throughout the system. A process with lower identifier
has higher priority. To ensure liveness, when executing the CS, each process p records the
identifiers of its lower priority conflict neighbors that also request the CS. Before requesting
it again, p then waits until all these processes access the CS.

Each process p has access to a number of constants. The set of identifiers of its communi-
cation neighbors is N , and its conflict neighbors is M . For each of its conflict neighbors r, p
knows the appropriate spanning tree information: the parent identifier — dad.p.r, and a set
of ids of its children — KIDS.p.r.

Process p stores its own request state in variable state.p.p and the state of each of its
conflict neighbors in state.p.r. Notice that p’s own state can be only idle or req, while for
its conflict neighbors p also has rep. To simplify the description, depending on the state, we
refer to the process as being idle, requesting or replying. In Y IELD, process p maintains
the ids of its lower priority conflict neighbors that should be allowed to enter the CS before p
requests it again. Variable needcs is an external Boolean variable that indicates if CS access
is desired. Notice that CS entry is guaranteed only if needcs remains true until p requests
the CS.

There are five actions in the algorithm. The first two: join and enter manage CS entry of
p itself. The remaining three: forward, back and stop — propagate CS request information
along the tree. Notice that the latter three actions are parametrized over the set of p’s conflict
neighbors.

Action join states that p requests the CS when the application variable needcs is true, p
itself, as well as its children in its own spanning tree, is idle and there are no lower priority
conflict neighbors to wait for. As action enter describes, p enters the CS when its children
reply and the higher priority processes do not request the CS themselves. To simplify the
presentation, we describe the CS execution as a single action.

Action forward describes the propagation of a request of a conflict neighbor r of p along
r’s tree. Process p propagates the request when p’s parent — dad.p.r is requesting and p’s
children are idle. Similarly, back describes the propagation of a reply back to r. Process
p propagates the reply either if its parent is requesting and p is the leaf in r’s tree or all
p’s children are replying. The second disjunct of back is to expedite the stabilization of
Algorithm 2. Action stop resets the state of p in r’s tree to idle when its parent is idle. This
action removes r from the set of lower-priority processes to await before initiating another
request.

The operation of Algorithm 2 in legitimate states is illustrated in Figure 5. We focus on
the conflict neighborhood M.a of a certain node a. We consider representative nodes in the
spanning tree of M.a. Specifically, we consider one of a’s children — e, a descendant — b, b’s
parent — c and one of b’s children — d.

Initially, the states of all processes in M.a are idle. Then, a executes join and sets state.a.a
to req (see Figure 5, (a)). This request propagates to process b, which executes forward and
sets state.b.a to req as well (Figure 5, (b)). The request reaches the leaves and bounces back
as the leaves change their state to rep. Process b then executes back and changes its state
to rep as well (Figure 5, (c)). After the reply reaches a and if none of the higher priority
processes are requesting the CS, a executes enter. This action resets state.a.a to idle. This
reset propagates to b which executes stop and also changes state.b.a to idle (Figure 5, (d)).
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Figure 5: Phases of Algorithm 2 operation
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Proof of Correctness. The proof of correctness that is presented in this section demon-
strates the use of attractors (see Figure 6). An attractor a is a predicate on configurations
that is closed for any subsequent execution, and that attracts any execution starting from any
arbitrary initial state. In other words, any execution of the system has a configuration that
satisfies a. Usually, attractors are nested as presented in Figure 6, meaning that each nested
attractor is a refinement of the previous one. Figure 6.(a) presents the notion of nested at-
tractors that do not require a fairness condition: starting from any state, only a finite number
of steps may be executed before a particular intermediate attractor is satisfied. In contrast,
Figure 6.(b) presents some paths that are cycling, i.e. there exists an execution such that
the attractor is never reached (e.g. the cycle of red nodes with f label). However, for every
configuration in a cyclic path, there exists another path that leads to a configuration that
satisfies the attractor. Assuming weak fairness (i.e. in all but finitely many configurations, if
it is possible that a particular action makes the configuration satisfy the attractor, then this
action is eventually executed), we are able to prove that the attractor is eventually satisfied.
Of course, there can be nested such attractors as well.

We present Algorithm 2 correctness proof as follows. We first state a predicate we call
InvK and demonstrate that Algorithm 2 stabilizes to it in Theorem 3. We then proceed to
show that if InvK holds, then Algorithm 2 satisfies the safety and liveness properties of the
k-hop diners in Theorems 4 and 5 respectively.

Throughout this section, unless otherwise specified, we consider the conflict neighbors of
a certain node a (see Figure 5). That is, we implicitly assume that a is universally quantified
over all processes in the system. We focus on the following nodes: e ∈ KIDS.a.a, b ∈ M.a,
c ≡ dad.b.a and d ∈ KIDS.b.a.

Since we discuss the states of e, b, c and d in the spanning tree of a, when it is clear from
the context, we omit the specifier of the conflict neighborhood. For example, we use state.b
for state.b.a. Also, for clarity, we attach the identifier of the process to the actions it contains.
For example, forward.b is the forward action of process b.

Our global predicate consists of the following predicates that constrain the states of each
individual process and the states of its communication neighbors. The predicate below relates
the states of the root of the tree a to the states of its children.

(state.a = idle)⇒ (∀e : e ∈ KIDS.a : state.e 6= req) (Inv.a)

The following sequence of predicates relates the state of b to the state of its neighbors.

state.b = idle ∧ state.c 6= rep ∧ (∀d : d ∈ KIDS.b : state.d 6= req) (I.b.a)

state.b = req ∧ state.c = req (R.b.a)

state.b = rep ∧ (∀d : d ∈ KIDS.b : state.d = rep) (P.b.a)

We denote the disjunction of the above three predicates as follows:

I.b.a ∨R.b.a ∨ P.b.a (Inv.b.a)

The following predicate relates the states of all processes in M.a.

(∀a :: Inv.a ∧ (∀b : b ∈M.a : Inv.b.a)) (InvK)
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Figure 7: State transitions for an individual process

To aid in exposition, we mapped the states and transitions for individual processes in
Figure 7. Note that to simplify the picture, for the intermediate process b we only show the
states and transitions if Inv.f.a holds for each ancestor f of b. For b, the I.b, R.b and P.b
denote the states conforming to the respective predicates, while the primed versions I ′.b and
P ′.b signify the states where b is respectively idle and replying but Inv.b.a does not hold.
Notice that if Inv.c.a holds for b’s parent c, the primed version of R does not exist. Indeed,
to violate R, b should be requesting while c is either idle or replying. However, if Inv.c.a
holds and c is in either of these two states, b cannot be requesting.

For a, IR.a and RR.a denote the states where a is respectively idle and requesting while
Inv.a holds. In states IR′.a, a is idle while Inv.a does not hold. Notice that since state =
req falsifies the antecedent of Inv.a, the predicate always holds if a is requesting. The
state transitions in Figure 7 are labeled by actions whose execution effects them. Loopback
transitions are not shown.

Theorem 3 Algorithm 2 stabilizes to InvK.

Proof: By the definition of stabilization, InvK should be closed with respect to the
execution of the actions of Algorithm 2, and Algorithm 2 should converge to InvK. We
prove the closure first.
Closure. To aid in the subsequent convergence proof, we show a property that is stronger
than just the closure of InvK. We demonstrate the closure of the following conjunction of
predicates: Inv.a and Inv.b.a for a set of descendants of a up to a certain depth of the tree.
To put another way, in showing the closure of Inv.b.a for b we assume that the appropriate
predicates hold for all its ancestors. Naturally, the closure of InvK follows. By definition of
predicate closure, we need to demonstrate that if the predicate holds in a certain state, the
execution of any action in this state does not violate the predicate.

Let us consider Inv.a and the root process a first. Notice that the only two actions
that can potentially violate Inv.a are enter.a and forward.e. Let us examine each action
individually. If enter.a is enabled, each child of a is replying. Hence, when it is executed and
it changes the state of a to idle, Inv.a holds. If forward.e is enabled, a is requesting. Thus,
executing the action and setting the state of e to req does not violate Inv.a.

Let us now consider Inv.b.a for an intermediate process b ∈ M.a. We examine the effect
of the actions of b, b’s parent — c, and one of b’s children — d in this sequence.
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We start with the actions of b. If I.b holds, forward.b is the only action that can be
enabled. If it is enabled, c is requesting. Thus, if it is executed, R.b holds and Inv.b.a is not
violated. If R.b holds then back.b is the only action that can be enabled. However, if back.b is
enabled and R.b holds, then all children of b are replying. If back.b is executed, the resultant
state conforms to P.b. If P.b holds, then stop.b can exclusively be enabled. If P.b holds and
stop.b is enabled, then c is idle and all children of b are replying. The execution of back.b sets
the state of b to idle. The resulting state conforms to I.b and Inv.b.a is not violated.

Let us examine the actions of c. Recall that we are assuming that Inv.c and the respective
invariants of all of b’s ancestors hold. If I.b holds, forward.c and join.c (in case b is a child of
a) are the actions that can possibly be enabled. If either is enabled, b is idle. The execution
of either action changes the state of c to req. I.b and Inv.b.a still hold. If R.b holds, none of
the actions of c are enabled. Indeed, actions forward.c, back.c, join.c and enter.c are disabled.
Moreover, if R.b holds, c is requesting: since Inv.c holds, c must be in R.c. Which means that
c’s parent is not idle. Hence, stop.c is also disabled. Since P.b does not mention the state of
c, the execution of c’s actions does not affect the validity of P.b.

Let us now examine the actions of d. If I.b holds, the only possibly enabled action is
stop.d. The execution of this action changes the state of d to idle, which does not violate I.b.
R.b does not mention the state of d. Hence, its action execution does not affect R.b. If P.b
holds, all actions of d are disabled. This concludes the closure proof of InvK.
Convergence. We prove convergence by induction on the depth of the tree rooted in a. Let
us show convergence of a. The only illegitimate set of states is IR′.a. When a conforms to
IR′.a, a is idle and at least one child e is requesting. In such state, all actions of a that
affect its state are disabled. Moreover, for every child of a that is idle, all relevant actions are
disabled as well. For the child of a that is not idle, the only enabled action is stop.e. After
this action is executed, e is idle. Thus, eventually IR.a holds.

Let a conform to Inv.a. Also, let every descendant process f of a up to depth i conform
to Inv.f.a. Let the distance from a to b be i+1. We shall show that Inv.b.a eventually holds.
Notice that according to the preceding closure proof, the conjunction of Inv.a and Inv.f.a
for each process f in the distance no more than i is closed.

Note that according to Figure 7, there is no loop in the state transitions containing primed
states. Hence, to prove that b eventually satisfies Inv.b.a we need to show that b does not
remain in a single primed set of states indefinitely. Process b can satisfy either I ′.b or P ′.b.
Let us examine these cases individually.

Let b ∈ I ′.b. Since Inv.c.a holds, if b is idle, c cannot satisfy P.c. Thus, for b to satisfy
I ′.b, at least one child d of b must be requesting. However, if b is idle then stop.d is enabled.
Notice that when b is idle, none of its non-requesting children can start to request. Thus,
when this stop is executed for every requesting child of b, b leaves I ′.b.

Suppose b ∈ P ′.b. This means that there exists at least one child d of b that is not replying.
However, for every such process d, back.d is enabled. Notice that when b is replying, none of
its replying children can change state. Thus, when back is executed for every non-replying
child of b, b leaves P ′.b.

Hence, Algorithm 2 converges to InvK. 2

Theorem 4 If InvK holds and enter.a is enabled, then for every process b ∈ M.a, enter.b
is disabled.

Proof: If enter.a is enabled, every child of a is replying. Due to InvK, this means that
every descendant of a is also replying. Thus, for every process x ∈ M.a whose priority is
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lower than a’s priority, enter.x is disabled. Note also, that since enter.a is enabled, for every
process y ∈M.a whose priority is higher than a’s, state.a.y is idle. According to InvK, none
of the ancestors of a in y’s tree, including y’s children, are replying. Thus, enter.y is disabled.
In short, when enter.a is enabled, neither higher nor lower priority processes of M.a have
enter enabled. The theorem follows. 2

Lemma 7 If InvK holds and some process a is requesting, then eventually either a stops
requesting or none of its descendants are idle.

Proof: Notice that the lemma trivially holds if a stops requesting. Thus, we focus on
proving the second claim of the lemma. We prove it by induction on the depth of a’s tree.
Process a is requesting and so it is not idle. By the assumption of the lemma, a will not be
idle. Now let us assume that this lemma holds for all its descendants up to distance i. Let b
be a descendant of a whose distance from a is i+ 1. And let b be idle.

By inductive assumption, b’s parent c is not idle. Due to InvK, if b is idle, c is not
replying. Hence, c is requesting. If there exists a child d of b that is not idle, then stop.d is
enabled at d. When stop.d is executed, d is idle. Notice that when b and d are idle, all actions
of d are disabled. Thus, d continues to be idle. When all children of b are idle and its parent
is requesting, forward.b is enabled. When it is executed, b is not idle. Notice, that the only
way for b to become idle again is to execute stop.b. However, by inductive assumption c is
not idle. This means that stop.b is disabled. The lemma follows. 2

Lemma 8 If InvK holds and some process a is requesting, then eventually all its children
in M.a are replying.

Proof: Notice that when a is requesting, the conditions of Lemma 7 are satisfied. Thus,
eventually, none of the descendants of a are idle. Notice that if a process is replying, it does
not start requesting without being idle first (see Figure 7). Thus, we have to prove that each
individual process is eventually replying. We prove it by induction on the height of a’s tree.

If a leaf node b is requesting and its parent is not idle, back.b is enabled. When it is
executed, b is replying. Assume that each node whose longest distance to a leaf of a’s tree is
i is replying. Let b’s longest distance to a leaf be i + 1. By assumption, all its children are
replying. Due to Lemma 7, its parent is not idle. In this case back.b is enabled. After it is
executed, b is replying. By induction, the lemma holds. 2

Lemma 9 If InvK holds and the computation contains infinitely many states where a is idle,
then for every descendant in a’s tree there are infinitely many states where it is idle as well.

Proof: We first consider the case where the computation contains a suffix where a is idle
in every state. In this case we prove the lemma by induction on the depth of a’s tree with
a itself as a base case. Assume that there is a suffix where all descendants of a up to depth
i are idle. Let us consider process b whose distance to a is i+ 1 and this suffix. Notice that
this means that c remains idle in every state of this suffix. If b is not idle, stop.b is enabled.
Once it is executed, no relevant actions are enabled at b and it remains idle afterwards. By
induction, the lemma holds.

Let us now consider the case where no computation suffix of continuously idle a exists.
Yet, there are infinitely many states where a is idle. Thus, a leaves the idle state and returns
to it infinitely often. We prove by induction on the depth of the tree that every descendant

24



of a behaves similarly. Assume that this claim holds for the descendants up to depth i. Let
b’s distance to a be i+ 1.

When InvK holds, the only way for b’s parent c to leave idle is to execute forward.c
(see Figure 7). Similarly, the only way for c to return to idle is to execute stop.c while c is
replying 1. However, forward.c is enabled only when b is idle. Also, according to InvK when
c is requesting, b is not idle. Thus, b leaves idle and returns to it infinitely many times as
well. By induction, the lemma follows. 2

Lemma 10 If InvK holds and process a is requesting such that and a’s priority is the highest
among the processes that ever request the CS in M.a, then a eventually executes the CS.

Proof: If a is requesting, then, by Lemma 8, all its children are eventually replying.
Therefore, the first and second conjuncts of the guard of enter.a are true. If a’s priority is
the highest among all the requesting processes in M.a, then each process z, whose priority is
higher than that of a is idle. According to Lemma 9, state.a.z is eventually idle. Thus, the
third and last conjunct of enter.a is enabled. This allows a to execute the CS. 2

Lemma 11 If InvK holds and process a is requesting, a eventually executes the CS.

Proof: Notice that by Lemma 8, for every requesting process, the children are eventually
replying. According to InvK, this implies that all the descendants of the requesting process
are also replying. For the remainder of the proof we assume that this condition holds.

We prove this lemma by induction on the priority of the requesting processes. According
to Lemma 10, the requesting process with the highest priority eventually executes the CS.
Thus, if process a is requesting and there is no higher priority process b ∈M.a which is also
requesting then, by Lemma 10, a eventually enters the CS.

Suppose, on the contrary, that there exists a requesting process b ∈M.a whose priority is
higher than a’s. If every such process b enters the CS finitely many times, then, by repeated
application of Lemma 10, there is a suffix of the computation where all processes with priority
higher than a’s are idle. Then, by Lemma 10, a enters the CS. Suppose there exists a higher
priority process b that enters the CS infinitely often. Since a is requesting, state.b.a = rep.
When b executes the CS, it enters a into YIELD.b. We assume that b enters the CS infinitely
often. However, b can request the CS again only if YIELD.b is empty. The only action that
takes a out of YIELD.b is stop.b. However, this action is enabled if state.b.a is idle. Notice
that, if InvK holds, the only way for the descendants of a to move from replying to idle is
if a itself moves from requesting to idle. That is a executes the CS. Thus, each process a
requesting the CS eventually executes it. 2

Lemma 12 If InvK holds and process a wishes to enter the CS, a eventually requests.

Proof: We show that a wishing to enter the CS eventually executes join.a. We assume
that a is idle and needcs.a is true. Then, join.a is enabled if Y IELD.a is empty. Note that
a adds a process to Y IELD only when it executes the CS. Thus, as a remains idle, processes
can only be removed from Y IELD.a.

Let us consider a process b ∈ Y IELD.a. If b executes the CS finitely many times, then
there is a suffix of the computation where b is idle. According to Lemma 9, for all descendants

1The argument is slightly different for c = a as it executes join.a and enter.a instead.
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of b, including a, state.a.b is idle. If this is the case stop.a is enabled. When it is executed b
is removed from Y IELD.a.

Let us consider the case, where b executes the CS infinitely often. In this case, b enters and
leaves idle infinitely often. According to Lemma 9, state.a.b is idle infinitely often. Moreover,
a moves to idle by executing stop.a, which removes b from Y IELD.a. The lemma follows. 2

The theorem below follows from Lemmas 11 and 12.

Theorem 5 If InvK holds, a process wishing to enter the CS is eventually allowed to do so.

We draw the following corollary from Theorems 3, 4 and 5.

Corollary 4 Algorithm 2 is a self-stabilizing solution to the k-hop diners problem.

3.3 Census

Algorithm. Each node i has a unique identifier and is aware of its input degree δ−.i (the
number of its incident arcs), which is also placed in non corruptible memory. A node i
arbitrarily numbers its incident arcs using the first δ−.i natural numbers. When receiving a
message, the node i knows the number of the corresponding incoming link (that varies from
1 to δ−.i).

Each node maintains a local memory. The local memory of i is represented by a list
denoted by (i1; i2; . . . ; ik). Each iα is a non-empty list of pairs 〈identifier ,colors〉, where
identifier is a node identifier, and where colors is an array of booleans of size δ−.i. Each
boolean in the colors array is either true (denoted by •) or false (denoted by ◦). We assume
that natural operations on boolean arrays, such as unary not(denoted by ¬), binary and
(denoted by ∧) and binary or (denoted by ∨) are available.

The goal of the Census algorithm is to guarantee that the local memory of each node
contains the list of lists of identifiers (whatever the colors value in each pair 〈identifier ,colors〉)
that are predecessors of i in the communication graph. Each predecessor of i is present only
once in the list. For the Census task to be satisfied, we must ensure that the local memory
of each node i can contain as many lists of pairs as necessary. We assume that a minimum of

(n− 1)×
(
log2(k) + δ−.i

)
bits space is available at each node i, where n is the number of nodes in the system and k is
the number of possible identifiers in the system.

For example,
((j, [• ◦ ◦]; q, [◦ • ◦]; t, [◦ ◦ •])(z, [• • •]))

is a possible local memory for node i, assuming that δ−.i equals 3. From the local memory of
node i, it is possible to deduce the knowledge that node i has about its ancestors. With the
previous example, node j is a direct ancestor of i (it is in the first list of the local memory of i)
and this information was carried through incoming channel number 1 (only the first position
of the colors array relative to node j is true). Similarly, nodes q and t are direct ancestors of
i and this information was obtained through incoming links 2 and 3, respectively. Then, node
z is at distance 2 from i, and this information was received through incoming links numbered
1, 2, and 3.

Each node sends and receives messages. The contents of a message is represented by a
list denoted by (i1; i2; . . . ; ik). Each iα is a non-empty list of identifiers.
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For example,
((i)(j; q; t)(z))

is a possible contents of a message. It means that i sent the message (since it appears first
in the message), that i believes that j, q, and t are the direct ancestors of i, and that z is an
ancestor at distance 2 of i.

The distance from i to j is denoted by d.i.j, which is the minimal number of arcs from i
to j. We assume that the graph is strongly connected, so the distance from i to j is always
defined. Yet, since the graph may not be bidirectional, d.i.j may be different from d.j.i. The
age of i, denoted by χ.i, is the greatest distance d.j.i for any j in the graph. The network
diameter is then equal to

max
i
χ.i = D
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Figure 8: Two possible configurations for Algorithm 3

Our algorithm can be seen as a knowledge collector on the network. The local memory of
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a node then represents the current knowledge of this node about the whole network. The only
certain knowledge a node may have about the network is local: its identifier, its incoming
degree, the respective numbers of its incoming channels. This is the only information that is
stored in non-corruptible memory. In a nutshell, Figure 8 provides a possible corrupted initial
configuration (in subfigure (a), where some information is missing and some information is
incorrect, e.g. nodes x, y, and z are non existent) and a legitimate configuration (in subfigure
(b), where the link contents are not displayed).

The algorithm for each node consists in updating in a coherent way its knowledge upon
receipt of other process’ messages, and communicating this knowledge to other processes after
adding its constant information about the network. More precisely, each information placed
in a local memory is related to the local name of the incoming channel that transmitted this
information. For example, node i would only emit messages starting with singleton list (i)
and then not containing i since it is trivially an ancestor of i at distance 0. Coherent update
consists in three kinds of actions: the first two being trivial coherence checks on messages
and local memory, respectively.

Check Message Coherence Since all nodes have the same behavior, when a node receives
a message that does not start with a singleton list, the message is trivially considered
as erroneous and is ignored. For example, messages of the form ((j; q; t)(k)(m; y)(p; z))
are ignored.

Check Local Coherence Regularly and at each message receiving, a node checks for local
coherence. We only check here for trivial inconsistencies (see the problem() helper
function below): a node is incoherent if there exist at least one pair 〈identifier, colors〉
such that colors= [◦ · · · ◦] (which means that some information in the local memory was
not obtained from any of the input channels). If a problem is detected upon time-out,
then the local memory is reinitialized, else if a problem is detected upon a message
receipt, the local memory is completely replaced by the information contained in the
message.

Trust Most Recent Information When a node receives a message through an incoming
channel, this message is expected to contain more recent and thus more reliable infor-
mation. The node removes all previous information obtained through this channel from
its local memory. Then it integrates new information and only keeps old information
(from its other incoming channels) that does not clash with new information.

For example, assume that a message mess = ((j)(k; l)(m)(p; q ; r; i)) is received by node
i through its incoming link 1 and that δ−i = 2. The following informations can be deduced:

1. j is a direct ancestor of i (it appears first in the message),

2. k and l are ancestors at distance 2 of i and may transmit messages through node j,

3. m is an ancestor at distance 3 of i,

4. p, q and r are ancestors at distance 4 of i, j obtained this information through m.

These informations are compatible with a local memory of i such as:

((j, [•◦]; q, [◦•])( k, [•◦]; e, [◦•]; w, [◦•])(m, [◦•]; y, [••])(p, [•◦]; z, [◦•];h, [•◦]))
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Upon receipt of message mess at i, the following operations take place: (i) the local memory
of i is cleared from previous information coming from link 1, (ii) the incoming message is
”colored” by the number of the link (here each identifier α in the message becomes a pair
α, [•◦] since it is received by link number 1 and not by link number 2), and (iii) the local
memory is enriched as in the following (where ”←” denotes information that was acquired
upon receipt of a message, and where ”→” denotes information that is to be forwarded to
the node output links):

( (q, [◦•]) (e, [◦•];w, [◦•]) (m, [◦•]; y, [◦•]) (z, [◦•]) )

← ( (j, [•◦]) (k, [•◦]; l, [•◦]) (m, [•◦])
(
p, [•◦]; q, [•◦];
r, [•◦]; i, [•◦]

)
)

→ ( (j, [•◦]; q, [◦•])
(
k, [•◦]; e, [◦•];
w, [◦•]; l, [•◦]

)
(m, [••]; y, [◦•])

(
p, [•◦]; z, [◦•];
q, [•◦]; r, [•◦]

)
)

This message enabled the modification of the local memory of node i in the following way:
l is a new ancestor at distance 2. This was acquired through incoming link number 1 (thus
through node j). Nodes m and y are confirmed to be ancestors at distance 3, but mess sends
information via nodes j and q, while y only transmits its informations via node q. Moreover,
q and r are part of the new knowledge of ancestors at distance 4. Finally, although i had
information about h (h, [•◦]) before receiving mess, it knows now that the information about
h is obsolete.

The property of resilience to intermittent link failures of our algorithm is mainly due to
the fact that each message is self-contained and independently moves towards a complete
correct knowledge about the network. More specifically:

1. The fair loss of messages is compensated by the infinite spontaneous retransmission by
each process of their current knowledge.

2. The finite duplication tolerance is due to the fact that our algorithm is idempotent in
the following sense: if a process receives the same message twice from the same incoming
link, the second message does not modify the knowledge of the node.

3. The desequencing can be considered as a change in the relative speeds of two messages
towards a complete knowledge about the network. Each message independently gets
more accurate and complete, so that their relative order is insignificant. A formal
treatment of this last and most important part can be found in the later part of this
section..

We now describe helper functions that will enhance readability of our algorithm. Those
functions operate on lists, integers and pairs 〈identifier ,colors〉. The specifications of those
functions use the following notations: l denotes a list of identifiers, p denotes an integer, lc
denotes a list of pair 〈identifier ,colors〉, Ll denotes a list of lists of identifiers, and Llc denotes
a list of lists of pairs 〈identifier ,colors〉.

We assume that classical operations on generic lists are available: \ denotes the binary
operator ”minus” (and returns the first list from which the elements of the second have been
removed), ∪ denotes the binary operator ”union” (and returns the list without duplicates of
elements of both lists), + denotes the binary operator ”concatenate” (and returns the list
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resulting from concatenation of both lists), ] denotes the unary operator that returns the
number of elements contained in the list, and [] takes an integer parameter p so that l[p]
returns a reference to the pth element of the list l if p ≤ ]l (in order that it can be used on
the left part of an assignment operator ”:=”), or expand l with p− ]l empty lists and returns
a reference to the pth element of the updated list if p > ]l.

colors(p) → array of booleans returns the array of booleans that correspond to the pth

incoming link, i.e. the array that is such that [ ◦ · · · ◦︸ ︷︷ ︸
p−1times

• ◦ · · · ◦︸ ︷︷ ︸
δ−.i−ptimes

].

clean(lc, p)→ list of couples returns the empty list if lc is empty and a list of pairs lc2
such that for each 〈identifier lc, colors lc〉 ∈ lc, if colors lc ∧ ¬colors(p) 6= [◦ · · · ◦], then
〈identifier lc, colors lc ∧ ¬colors(p)〉 is in lc2, else 〈identifier lc, ∗〉 is not in lc2.

emit(i, Llc) sends the message resulting from (i)+identifiers(Llc) on every outgoing link of
i.

identifiers(Llc)→list of list of identifiers returns the empty list if Llc is empty and re-
turns a list Ll of list of identifiers (such that each pair 〈identifier,colors〉 in Llc becomes
identifier in Ll) otherwise.

merge(lc, l, p)→ list of couples returns the empty list if lc and l are both empty and⋃
〈i,c〉∈lc
i∈l

(〈i, c ∨ colors(p)〉) ∪
⋃
〈i,∗〉/∈lc
i∈l

(〈i, colors(p)〉)

otherwise.

new(lc, l)→ list of couples returns the empty list if lc is empty and the list of pairs 〈identifier ,
colors〉 whose identifier is in lc but not in l otherwise.

problem(Llc)→boolean returns true if there exist two integers p and q such that p ≤ ](Llc)
and q ≤ ](Llc[p]) and Llc[p][q] is of the form 〈identifier, colors〉 and all booleans in colors
are false (◦). Otherwise, this function returns false.

In addition to its local memory, each node makes use of the following local variables when
processing messages: α is the current index in the local memory and message main list,
i pertinent is a boolean that is true if the αth element of the local memory main list contains
pertinent information, m pertinent is a boolean that is true if the αth element of the message
main list contains pertinent information, known is the list of all identifiers found in the local
memory and message found up to index α, temp is a temporary list that stores the updated
αth element of the local memory main list.

We are now ready to present our Census Algorithm (noted Algorithm 3 in the remaining of
the paper). This algorithm is message driven: processes execute their code when they receive
an incoming message. In order to perform correctly in configurations where no messages are
present, Algorithm Algorithm 3 also uses a spontaneous action that will emit a message.
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Algorithm 3 CA: a self-stabilizing census algorithm

process i
const

δ−.i: input degree of i
parameter

message: list of lists of identifiers
var

local memory .i: list of lists of pairs
lvars

α: integer
i pertinent , m pertinent : boolean
known, temp: list of identifiers
∗[

problem: problem(local memory .i) −→
local memory .i := ()
emit(i, local memory .i)

[]
update: receive(message) from link p −→

i pertinent := ¬ problem(local memory.i)
m pertinent := (](message[1]) = 1)
α := 0;known:= (i);
do m pertinent ∨ i pertinent −→

α := α+ 1;temp:= ()
local memory.i [α] := clean(local memory.i [α], p)
if i pertinent −→

temp:= new(local memory.i [α],known)
temp= () −→ i pertinent :=false

fi
if m pertinent −→

if message[α]\known= () −→
m pertinent :=false

[] temp:= merge(temp,message[α]\known, p)
fi

fi
if temp 6= () −→

local memory.i [α] := temp
known:=known∪ identifiers(temp)

fi
od
local memory.i := (local memory.i [1], . . . , local memory.i[α])

[]
resend : true −→

emit(i, local memory .i)
]
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Figure 9: Proving self-stabilization with potential functions

Proof of Correctness. The intuitive reason for self-stabilization of the protocol is as fol-
lows: anytime a node sends a message, it adds up its identifier and pushes further in the
list of lists included in every message potential fake identifiers. As the network is strongly
connected, the message eventually goes through every possible cycle in the network, and every
node on every such cycle removes its identifier from a list at a certain index (corresponding
to the length of the cycle). So, after a message has visited all nodes, there exists at least one
empty list in the list of lists of the message, and all fake identifiers are all included beyond
this empty list. Since every outgoing message is truncated from the empty list onwards, no
fake identifier remains in the system forever.

The proof of correctness that is presented in this section demonstrates the use of potential
functions (see Figure 9, where each configuration c1, c2, |dots is associated with a number
f1, f2, |dots obtained through the potential function for this configuration). Intuitively, a po-
tential function maps configurations into a finite set endowed with a total order (typically the
set of natural integers), and exhibit the following property: when an action of the distributed
system is executed to move from one configuration to the other, the potential function de-
creases. Since the set is finite and the order well founded, the lowest element is eventually
reached. Now if the lowest element of the potential function matches the set of legitimate
configuration of the problem specification, this implies stabilization. Of course, the difficult
part of the proof lies in finding a suitable such potential function.

In this section, we show that Algorithm 3 is a self-stabilizing Census algorithm. In more
details, independently of the initial configuration of network channels (non infinitely full)
and of the initial configuration of local memories of nodes, every node ends up with a local
memory that reflect the contents of the network, even if unreliable communication media is
used for the underlying communication between nodes.

First, we define a formal measure on messages that circulate in the network and on local
memories of the nodes. This measure is either the distance between the current form of
the message and its canonical form (that denotes optimal knowledge about the network),
or between the current value of the local memories and their canonical form (when a node
has a perfect knowledge about the network). We use this measure to compute the potential
function result of a configuration (in the sequel, the result of this potential function is called
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the configuration weight).
Then, we show that after a set of emissions and receptions of messages, the weight of a

configuration decreases. An induction shows that this phenomenon continue to appear and
that the weight of a configuration reaches 0, i.e. a configuration where each message is correct
and where each node has an optimal knowledge about the network. We also show that such a
configuration (whose weight is 0) is stable when a message is emitted or received. According
to the previous definitions, a configuration of weight 0 is a legitimate configuration after finite
time.

These two parts prove respectively the convergence and closure of our algorithm, and
establish its self-stabilizing property.

The Census problem being static and deterministic, when we only consider node local
memories, there is a single legitimate configuration. This legitimate configuration is when
each node has a global correct knowledge about the network. It is also the stable configuration
the system would reach had it been started from a zero knowledge configuration (where the
local memory of each node is null, and where no messages are in transit in the system).

In this legitimate configuration, all circulating messages are of the same kind. Moreover,
on every particular link, all messages have the same contents. The canonical form of a message
circulating on a link between nodes j and i is the list of lists starting with the singleton list (j)
followed by the χ.j lists of ancestors of j at distance between 1 and χ.j. The canonical form of
node i’s local memory is the list of lists of pairs Llc of the χ.j lists of pairs 〈 identifier ,colors〉
such that: (i) identifiers(Llc) is the list of the χ.i lists of ancestors of i at distance 1 to χ.i,
and (ii) if a shortest path from node j to node i passes through the pth input channel of i,
then the boolean array colors associated to node j in Llc has colors[p] = •. For the sake of
simplicity, we will also call the αth list of a canonical message or a canonical local memory a
canonical list.

Proposition 1 The canonical form of node i’s local memory and that of its incoming and
outgoing channels are coherent.

Proof: If node i’s local memory is in canonical form, then the emit action trivially
produces a canonical message.

Conversely, upon receipt by node i of a canonical message through incoming link j, the
local memory of i is replaced by a new identical canonical memory. Indeed, clean first removes
from the αth list of i’s local memory all pairs 〈identifier, colors〉 such that colors= colors(p),
yet by definition of canonical memory, each such identifier is that of a node such that the
shortest path from identifier to i is of length α and passes through j. Moreover, the list l
used by merge is the list of nodes at distance α− 1 of node i, so for any identifier appearing
in l, two cases may occur:

1. There exists a path from identifier to i that is of length < α, then identifiers∈ known
and it does not appear in the new list of length α,

2. There exists a shorter path from identifier to i through j of length α, then 〈identifier, colors(p)〉
is one of the elements that were removed by clean and this information is put back into
node i’s local memory.

2
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Corollary 5 The set of legitimate configurations is closed.

Proof: Starting from a configuration where every message and every local memory is
canonical, none of the local memories is modified, and none of the emitted message is non-
canonical. 2

We define a weight on configurations as a function on system configurations that returns a
positive integer. As configurations of weight zero are legitimate, the weight of a configuration
c denotes the ”distance” from c towards a legitimate configuration.

In order to evaluate the weight of configurations, we define a measure on messages and
local memory of nodes as an integer written using D + 2 digits in base 3 (where D denotes
the graph diameter). The weight of a configuration is then the pair of the maximum weight
of local memories, and the maximum weight of circulating messages. For sake of clarity, a
single integer will denote the weight of the configuration when both values are equal. Let m
be a circulating message on a communication link whose canonical message is denoted by m̃.
Note that since a canonical message is of size ≤ D + 1, we have m̃[D + 2] = (). The weight
of m is the integer written using D + 2 base 3 digits and whose αth digit is: (i) 0, if m[α] =
m̃[α], (ii) 1, if m[α]  m̃[α], and (iii) 2, if m[α] * m̃[α]. Then, 3D+2−1 is the biggest weight
for a message, and corresponds to a message that is totally erroneous. At the opposite, 0 is
the smallest weight for a message, and corresponds to a canonical message, or to a message
that begins with a canonical message.

Let m be the local memory of a node i whose canonical local memory is m̃. The weight ofm
is the integer written using D+1 digits (in base 3) and whose αth digit is: (i) 0, if m[α] = m̃[α],
(ii) 1, ifm[α] 6= m̃[α] and identifiers(m[α])⊆ identifiers( m̃[α]) and for any 〈 identifier, colors1
〉 of m[α], the associated 〈 identifier,colors2〉 in m̃[α] satisfies: (colors1∧colors2) = colors1,
and (iii) 2, otherwise. Then 3D+1 − 1 is the biggest weight of a local memory and denotes
a totally erroneous local memory. At the opposite, 0 is the smallest weight and denotes a
canonical local memory.

Let us notice that in both cases (weight of circulating messages and of nodes local mem-
ories), the αth digit 0 associated to the αth list denotes that this particular list is in its final
form (the canonical form). The αth digit 1 means that the αth list is coherent with the αth

canonical list, but still lacks some information. On the contrary, the αth digit 2 signals that
the related αth position contains informations that shall not persist and that are thus unreli-
able. The weight of a message indicates how much of the information it contains is pertinent.
After defining message weight and, by extension, configuration weights, we first prove that
starting from an arbitrary initial configuration, only messages of weight lower or equal to
3D+1 − 1 are emitted, which stands for the base case for our induction proof.

Lemma 13 In any configuration, only messages of weight lower than 3D+1 may be emitted.

Proof: Any message that is emitted from a node i on a link from i to j is by function
emit. This function ensures that this message starts with the singleton list (i). This singleton
list is also the first element of the canonical message for this channel. Consequently, the
biggest number that may be associated to a message emitted by node i starts with a 0 and is
followed by D + 1 digits equal to 2. Its overall weight is at most 3D+1 − 1. 2

Lemma 14 Assume α ≥ 1. The set of configurations whose weight is strictly lower than
3α−1 is an attractor for the set of configuration whose weight is strictly lower than 3α.
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Proof: A local memory of weight strictly lower that 3α contains at most α erroneous
lists, and it is granted that it starts with D + 2− α canonical lists.

By definition of the emit function, each node i that owns a local memory of weight strictly
below 3α shall emit the singleton list (i) followed by D+2−α canonical lists. Since canonical
messages sent by a node and its canonical local memory are coherent, it must emit messages
that contain at least D+ 2−α+ 1 canonical lists, which means at worst α−1 erroneous lists.
The weight of any message emitted in such a configuration is then strictly lower than 3α−1.

It follows that messages of weight exactly 3α which remain are those from the initially
considered configuration. Hence they are in finite number. Such messages are either lost or
received by some node in a finite time. The first configuration that immediately follows the
receiving or loss of those initial messages is of weight (3α (local memory), 3α−1 (messages)).

The receiving by each node of at least one message from any incoming channel occurs in
finite time. By the time each node receives a message, and according to the local memory
maintenance algorithm, each node would have been updated. Indeed, the receiving of a
message from an input channel implies the cleaning of all previous information obtained from
this channel. Consequently, in the considered configuration, all lists in the local memory result
from corresponding lists in the latest messages sent through each channel. Yet, all these latest
messages have a weight strictly lower than 3α−1 and by the coherence property on canonical
forms, they present information that are compatible with the node canonical local memory,
up to index D+ 3− α. By the same property, and since all input channels contribute to this
information, it is complete. In the new configuration, each node i maintains a local memory
whose first D + 3 − α lists are canonical, and thus the weight of its local memory is 3α−1.
Such a configuration is reached within finite time and its weight is (3α−1 (local memory),
3α−1 (messages)). 2

Proposition 2 The set of configurations whose weight is 0 is an attractor for the set of all
possible configurations.

Proof: By induction on the maximum degree of the weight on configurations. The base
case is proved by Lemma 13, and the induction step is proved by Lemma 14. Starting from any
initial configuration whose weight is greater that 1, a configuration whose weight is strictly
inferior is eventually reached. Since the weight of a configuration is positive or zero, and that
the order defined on configurations weights is total, eventually a configuration whose weight
is zero is eventually reached. By definition, this configuration is legitimate. 2

Theorem 6 Algorithm 3 is self-stabilizing.

Proof: Consider a message m of weight 0. Two cases may occur: (i) m is canonical, or
(ii) m starts with a canonical message, followed by at least one empty list, (possibly) followed
by several erroneous lists. Assume that m is not canonical, then it is impossible that m was
emitted, since the truncate part of Algorithm 3 ensures that no message having an empty list
can be emitted; then m is an erroneous message that was present in the initial configuration.

Similarly, the only local memories that may contain an empty list are those initially present
(e.g. due to a transient failure).

As a consequence, after receipt of a message by each node and after receipt of all initial
messages, all configurations of weight 0 are legitimate (they only contain canonical messages
and canonical local memories).
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By Proposition 2, the set of legitimate configurations is an attractor for the set of all
possible configurations, and Corollary 5 proves closure of the set of legitimate configurations.
Therefore, Algorithm 3 is self-stabilizing. 2

In the convergence part of the proof, we only assumed that computations were maximal,
and that message loss, duplication and desequencing could occur. In order to provide an
upper bound on the stabilization time for our algorithm, we assume strong synchrony between
nodes and a reliable communication medium between nodes. Note that these assumptions are
used for complexity results only, since our algorithm was proven correct even in the case of
asynchronous unfair computations with link intermittent failures. In the following D denotes
the network diameter.

Lemma 15 Assuming a synchronous reliable system S, the stabilization time of Algorithm 3
is O(D).

Proof: Since the network is synchronous, we consider system steps as: (i) each node
receives all messages that are located at each of its incoming links and updates its local
memory according to the received information, and (ii) each node sends as many messages
as received on each of its outgoing links. Intuitively, within one system step, each message
is received by one process and sent back. Within one system step, all messages are received,
and messages of weight strictly inferior to that of the previous step are emitted (see the proof
of Lemma 14). In the same time, when a process has received messages from each of its
incoming links, its weights is bounded by 3D+1−α, where D is the network diameter, and α is
the number of the system step (see the proof of Lemma 14). Since the maximal initial weight
of a message and of a local memory is 3D+2, after O(D) system steps, the weight of each
message and of each local memory is 0, and the system has stabilized. 2

3.4 Token Passing

Algorithm. The “benchmark” self-stabilizing algorithm for dynamic problems (and the first
published algorithm [21]) is the mutual exclusion algorithm on a unidirectional ring. Mutual
exclusion is ensured by circulating a “token” (a local predicate at a given node) fairly in the
system. In a self-stabilizing context, it is necessary to recover both from configuration where
there is no initial token and where there exists several superfluous ones (see e.g. Figure 3.4.(a)
for a possible inital configuration with several tokens, and Figure 3.4.(b) for a legitimate
configuration with a single token). In practice, several criteria need to be taken into account:
the stabilization time, the service time (maximum time between two token passings on a
given node), the memory used (in bits) and the transparency with respect to underlying
communication algorithms.

Due to impossibility results in uniform networks (unidirectional rings where nodes can
not be distinguished from one another), probabilistic self-stabilization was introduced [41]. A
probabilistic self-stabilizing algorithm has the property of reaching a legitimate configuration
in finite time with probability 1. The algorithm of [41] can intuitively be viewed as follows:
each process i maintains a local predicate that states whether it has a token, and executes
the following code: at each pulse, if i is currently holding a token (i.e. the token predicate is
true), it transmits it to its successor with probability p, and keeps it with probability 1− p.
The original paper [41] performs in synchronous odd-sized networks and uses a combinatorial
trick to guarantee the presence of at least one token (this trick was further refined to handle
the case of arbitrary sized networks [6] and arbitrary minimal number of tokens [39]).
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no token

token

(a) A possible arbitrary initial configuration

no token

token

(b) A possible legitimate configuration

Figure 10: possible configurations of a self-stabilizing token passing algorithm

While the original version of the algorithm is written for the shared memory model, we
present a version of the algorithm that is written for the message passing model. So, we
have to rely on timeouts to recover from configurations with no tokens. We consider that the
protocol has a parameter k that is used as a timeout value; k should be big enough that the
timeout is not triggered if a token is already present, but given the probabilistic nature of the
token propagation, this is guaranteed only with high probability. Our protocol is presented
as Algorithm 3.4.

Proof of correctness. To show stabilization, it is sufficient to prove that starting from a
configuration with several tokens, every execution ends up in a configuration with exactly one
token. The proof is by showing that in any configuration with two tokens (or more) there
is a positive probability that the two tokens merge (the “last” one always get a “transmit”
to the successor, while the “first” one always get a “keep” at the current node). When two
tokens merge, they stay so. Overall, a configuration with m tokens is always reacheable from
a configuration with m + 1 tokens with a strictly positive probability, while a configuration
with m + 1 tokens is never reachable from a configuration with m tokens. As a result, a
configuration with exactly one token is eventually reached.

The intuitive proof argument being settled, we focus here on the complexity of the stabi-
lization time. Since the scheduler is synchronous, there is no non-deterministic choice other
than probabilistic in every execution, and Markov chains are an attractive tool to compute
expected bounds for the stabilization time. We follow the terminology of [65] about Markov
Chains. The classical hypothesis can be used since the network has a synchronous behaviour;
for an asynchronous setting, see [30]. Let Pn×n be a stochastic matrix, that is the sum of
every line is equal to 1. A discrete Markov Chain, denoted by (Xt)t≤0 on a set of states X is
a sequence of random variables X0, X1, . . . with Xi ∈ X and so that Xi+1 only depends on Xi

and Pr(Xi+1 = y|Xi = x) = px,y. The matrix P is called the transition probability matrix. A
node x leads to a node y if ∃j ≥ i,Pr(Xj = y|Xi = x) > 0. A state y is an absorbing state if
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Algorithm 4 T P: a probabilistically self-stabilizing token passing algorithm

process i
const

p.i : predecessor of i on the ring
s.i : successor of i on the ring

parameter
k: integer
p: probability to pass the token

var
token.i: {null, token}
timeout .i: integer

function
random(x): draws a random number z in [0..1], returns true if z ≤ x, false otherwise.

macro
send token ≡

if token.i = token ∧ random(p) −→
send(token) to s.i
token.i := null

fi
∗[

token: timeout .i > 0 ∧ receive(token) from p.i −→
token.i := token
timeout .i := k
send token

[]
elapse: timeout .i > 0 −→

timeout .i := timeout .i− 1
send token

[]
timeout : timeout .i = 0 −→

token.i := token
]
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y does not lead to any other state. The expected hitting time or hitting time Eyx is the average
number of steps starting from node x to reach node y for the first time. We will make use of
the following theorem for Markov chains :

Theorem 7 The vector of hitting times Et = (Etx : x ∈ V ) is the minimal non-negative
solution of the following system of linear equations :{

Ett = 0
Etx = 1 +

∑
y 6=t px,yEty for x ∈ V

Applying Theorem 7 to a specific Markov chain, we obtain a useful Lemma for the analysis
of Algorithm 3.4 :

Lemma 16 Let Cd be a chain of d+1 states 0, 1, . . . , d and q ∈]0, 1/2]. If state 0 is absorbing
and the transition matrix is of the form :

pi,i−1 = pi,i+1 = q for 1 ≤ i ≤ d− 1
pi,i = 1− 2q for 1 ≤ i ≤ d− 1
pd,d = 1− q

then the hitting time to state 0 starting from state i is E0
i = i

2q (2d− i+ 1).

Proof: We make a use of Theorem 7 for the computation of E0
i . We have

E0
1 = 1 + (1− 2q)E0

1 + qE0
2

E0
i = 1 + qE0

i−1 + (1− 2q)E0
i + qE0

i+1 for 2 ≤ i ≤ d− 1
E0
d = 1 + (1− q)E0

d + qE0
d−1

Noting that E0
i =

∑i
j=1 E

j−1
j , we are interested by Ej−1j for 1 ≤ j ≤ d. Therefore,

Ed−1d = 1 + (1− q)Ed−1d = 1/q and

Ej−1j = 1 + (1− 2q)Ej−1j + qEj−1j+1

= 1 + (1− 2q)Ej−1j + q(Ejj+1 + Ej−1j )

= 1/q + Ejj+1

=
d− j
q

This implies that E0
i =

∑i
j=1(d− j)/q = 1

q (di− i(i−1)
2 ). 2

Theorem 8 In a unidirectional n-sized ring containing an arbitrary number k of tokens
(k ≥ 2), the stabilization time of Algorithm 3.4 is n2

8p(1−p) ≤ E(T ) ≤ n2

2p(1−p)(
π2

6 − 1) + n logn
p(1−p) .

For constant p, E(T ) = Θ(n2).

Proof: For any k ≥ 2, the evolution of the ring with exactly k tokens under Algorithm 3.4
can be described by a Markov chain Sk whose state space is the set of k-tuples of positive
integers whose sum is equal to n (these integers represent the distances between successive
tokens on the ring), with an additional state δ = (0, . . . , 0) to represent transitions to a
configuration with fewer than k tokens. To prove the upper bound of the theorem, we will
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prove an upper bound on the hitting time of this state δ, independently of the initial state.
Consider two successive tokens on the ring. On any given round, each will move forward,
independently of the other, with probability p, and stay in place with probability 1 − p.
Thus, with probability p(1− p), the distance between them will decrease by 1; with the same
probability, it will increase by 1; and, with probability 1− 2p(1− p), the distance will remain
the same. Thus, locally, the distance between consecutive tokens follows the same evolution
rule as that of the chain Cn of Lemma 16.

What follows is a formal proof, using the technique of couplings of Markov chains, that
the expected time it takes for two tokens among k to collide is no longer than the expected
time for Cn/k to reach state 0.

For any state x = (x1, . . . , xk) of Sk, let m(x) = mini x
i denote the minimum distance

between two successive tokens, and let i(x) = min{j : xj = m(x)} denote the smallest index
where this minimum is realized. Let (Xt)t≥0 denote a realization of the Markov chain Sk.
We define a coupling (Xt, Yt)t≥0 of the Markov chains Sk and Cd, where d = bn/kc and
q = p(1− p), as follows :

• Y0 = m(X0);

• Yt+1 = min{d, Yt + (X
i(Xt)
t+1 −X

i(Xt)
t )}

In other words, the evolution of Yt is determined by selecting two tokens that are separated
by the minimum distance in Xt, and making the change in Yt reflect the change in distance
between these two tokens (while capping Yt at d).

A trivial induction on t shows that Yt ≥ m(Xt) holds for all t, so that (Xt) will reach
state δ no later than (Yt) reaches 0. Thus, the time for Sk to reach δ (that is, the time during
which the ring has exactly k tokens) is stochastically dominated by the time for Cd to reach 0.
By Lemma 16, the expectation of this time is no longer than

d(d+ 1)

2q
≤ 1

2q

(
n2

k2
+
n

k

)
Summing over all values of k from 2 to n, we get, for the expected stabilization time T ,

E(T ) ≤ 1

2p(1− p)

n∑
k=2

[
n2

k2
+
n

k

]
≤ 1

2p(1− p)

((
π2

6
− 1

)
n2 + n ln(n)

)
The lower bound comes from the fact that, when k = 2, the expected time for Cn/2 to

reach state 0 from state n/2 is at least n2

8p(1−p) . 2

Remark 1 Our upper bound on the expected convergence time is minimal for p = 1/2. The
precise study of Algorithm 3.4 show that the convergence time hardly depends on the initial
number of tokens: for n high enough and p = 1/2, E(T ) > n2/2 for two initial tokens at
distance n/2, and E(T ) < 1.3n2 for n tokens.
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4 Research Issues and Summary

In its core formulation, self-stabilization is a useful paradigm for forward recovery in dis-
tributed systems and networks. Because self-stabilization only considers the effect of faults,
there is no assumption about the nature or the extent of faults. In practise, when a faulty
component is diagnosed in a self-stabilizing network (e.g. because it exhibits erratic behav-
ior), it is sufficient to remove this component from the system to recover proper behavior
automatically [66], as a self-stabilizing system does not require any kind of initialization.

On the negative side, “eventually” does not give any complexity guarantee on the sta-
bilization time, and in some cases, it is possible that a single hazard triggers a correction
wave in the whole network. Also, the fact that a system participant is not able to detect sta-
bilization (arbitrary memory corruption could lead the participants believe that the system
is stabilized when it is not) prevents safety-related specifications from having self-stabilizing
solutions. Those limitations led to defining new forms of self-stabilization, that are pre-
sented in Figure 11 and detailed in the remaining of the section. In Figure 11, each arrow
denotes the (transitive) relation “provides weaker guarantees than” between two variants of
self-stabilization.

Weaker Guarantees

Complexity 
Guarantees

Stronger Guarantees

Self-
stabilization

Pseudo 
stabilization

Weak 
stabilization

Fault-
tolerant 

stabilization

Strong 
stabilization

k- 
stabilization

time- 
adaptive

k-time- 
adaptive

Predicate-
preserving 

stabilization

Probabilistic 
stabilization

Snap-
stabilization

Probable
stabilization

Strict 
stabilization

Fault-
containment

Figure 11: Taxonomy of Self-stabilization main variants
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Weaker than self-stabilization. The guarantees that are given are weaker than that of
self-stabilization, and this permits in general to solve strictly more difficult specifications
than those than can be solved by a self-stabilizing system. Thus problems that are provably
intractable in a strict self-stabilizing setting may be come solvable. This permits to widen
the scope of self-stabilization to new applications, while maintaining attractive fault tolerance
properties to the developped applications.

1. Restricting the nature of the faults. This approach, that we denote by proba-
ble stabilization consists of considering that truly arbitrary memory corruptions are
highly unlikely. Probabilistic arguments are used to establish that, in general, memory
corruptions that result from faults can be detected using traditional techniques from
information theory, such as data redundancy or error detection and correction codes. In
particular, in [44], error detection codes are used to determine that memory corruption
has occurred, with a high probability. If the article only considers the case where a
single corruption arises (in other words, only one node in the system is affected by this
corruption), it makes it possible to return to a normal behavior in a single correction
step. For a system, even a large-scale one, where memory corruptions are localized in
each neighborhood and are not malicious (that is, they can be detected using techniques
such a cyclic redundancy checks), this approach is well indicated.

2. Restricting the extent of the faults. If we assume that the faults that can occur
only ever concern a very small part of the network, it is possible to design algorithms
that converge more quickly than traditional self-stabilizing algorithms. In order to
have a formal framework, we consider that the distance to a legitimate configuration is
equal to the number of nodes whose memories have to be changed in order to achieve
a legitimate configuration (as with a Hamming distance). Of course, it is possible that
even if we are at a distance k from a legitimate configuration, more than k nodes have,
in fact, corrupted memories. From the perspective of returning to a normal state, only
the closest legitimate configuration is considered. Studies that attempt to minimize the
stabilization time in context where few faults occur usually divide stabilization into two
levels [57]:

(a) “visible” stabilization: here, only the output variables of the algorithm are involved.
The output variables are typically used by the system’s user. For example, if we
consider a tree construction algorithm, only the pointer oriented toward the parent
node is included in the output variables;

(b) “internal” stabilization: here, all of the algorithm’s variables are involved. This
type of stabilization corresponds to the traditional concept of self-stabilization;

In many studies, only the “visible” stabilization is performed quickly (that is, in time
relative to the number of faults that strike the system, rather than in time relative to
the size of said system), while the “internal” stabilization most of the time remains
proportional to the network’s size. Algorithms that present this constraint are not ca-
pable of tolerating a high frequency of faults. Consider an algorithm whose time for
visible stabilization depends on k (the number of faults) and whose internal stabiliza-
tion depends on n (the size of the system). Now, if a new fault occurs while the visible
stabilization is being performed, but not during the internal stabilization, this can lead
to a global state containing a number of faults greater than k, and there is no longer
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any guarantee on the new time for visible stabilization. The notion of k-stabilization [7]
is defined as self-stabilization, when restricting the starting configurations to those con-
figurations that are at a distance of k or less from a legitimate configuration. Because
of the less hostile environment, it is possible to solve problems that are impossible in
the case of general self-stabilization [46, 71], and to offer reduced visible stabilization
times. A particular instance of k-stabilization is node-stabilization [70]: in the initial
configuration, links do not contain any message, yet the memory of the nodes may be
arbitrarily corrupted, as this would happen if the networking equipments of a system
were shut down but not the computing devices.

3. Restricting the stabilization guarantees.

(a) Section 3.4 already presented the concept of probabilistic stabilization. Probabilis-
tic stabilization weakens the convergence requirement by only requiring expected
finite time convergence with probability 1. In [13, 14], weak and strong variants
of probabilistic stabilization are presented: a weak probabilistic algorithm only
guarantees correctness with probability 1, while a strong probabilistic algorithm
guarantees certain correctness (that is, when a legitimate configuration is reached,
all subsequet executions from this configuration conform to the specification). For
example, the algorithm presented in Section 3.4 falls in the category of weak prob-
abilistic algorithms [29].

(b) The notion of pseudo-stabilization [11] removes the guarantee of reaching a con-
figuration from which the behavior satisfies the specification. Instead, pseudo-
stabilization guarantees that every execution has a suffix that satisfies the speci-
fication. The main weakening here is that there is no guarantee that the system
ever stabilizes (as it may never reach a legitimate configuration). However, for an
external observer, the behavior of the system is eventually correct.

(c) Weak stabilization [36] breaks the requirement that every execution reaches a le-
gitimate configuration. Instead, weak stabilization guarantees that from every
possible initial configuration c, there exists at least one execution starting from
c that reaches a legitimate configuration. Recently, a strong connection between
weak stabilization and probabilistic stabilization was demonstrated [20]: essentially
a weak stabilizing protocol can be turned into a probabilistic stabilizing algorithm
that operates under a probabilistic daemon (i.e. a distributed scheduler whose
choices are probabilistic).

Stronger than self-stabilization. The guarantees that are given are stronger than that of
self-stabilization, and this permits in general to solve strictly less difficult specifications than
those than can be solved by a self-stabilizing system. That is, the set of problems than can be
solved is strictly smaller than the set of problems that can be solved by striclty self-stabilizing
algorithms, yet the guarantees are stronger and may even match those of robust algorithms.

1. Stronger safety guarantees.

(a) Predicate-preserving stabilization refers to the fact that in addition to being self-
stabilizing, the algorithm also preserves some distributed predicate on configura-
tions, either in the stabilizing phase or in the stabilized phase, in spite of the occur-
rence of new faults (of limited nature). One such instance is the algorithm described
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in Section 3.3, where message losses, duplications, and desequencings are tolerated
both in the stabilizing and stabilized phases. Another instance is that of route-
preserving stabilization [49]: the algorithm maintains a shortest path spanning
tree in a self-stabilizing way, and has an additional property of path preservation,
meaning that if a tree is initially constructed toward a destination, any message
transmitted towards that destination reaches it in a finite time, even if the cost of
every edge in the system continuously changes. Super-stabilization [24, 42, 51] is a
special instance of predicate-preserving stabilization. This property states that a
super-stabilizing algorithm is self-stabilizing on one hand and, on the other, pre-
serves a predicate (typically a safety predicate) when changes in topology occur in
a legitimate configuration. Thus, changes in topology are limited: if these changes
occur during the stabilization phase, the system can never stabilize. On the other
hand, if they occur only after a correct global state is achieved, the system remains
stable.

(b) Fault-tolerant self-stabilization is characteristic of algorithms that aim at providing
tolerance to both arbitrary transient faults (self-stabilization) and permanent ones
(robustness), the two main trends in distributed fault-tolerance (see Section 1).
While mostly impossibility results were obtained in this context [3, 8] except for
some particular problems such as time synchronization [28], recent results [19] hint
that the ultimate properties found in fault-tolerant algorithms are more related to
pseudo-stabilization than to self-stabilization.

(c) Strict stabilization [64] refers to a different scheme to tolerate both transient and
permanent Byzantine faults. The Byzantine contamination radius is defined as
the maximum distance from which the effect of Byzantine nodes can be felt. This
contamination radius must obviously be as small as possible. A problem is r-
restrictive if its specification prohibits combinations of states in a configuration for
nodes at a distance of r at the most. For example, the problem of coloring nodes
in a network is 1-restrictive, since two neighboring nodes cannot have the same
color. On the other hand, the tree construction problem is r-restrictive (for any r
between 1 and n−1) because the correction implies that all of the parents that are
chosen must form a tree. The main theorem in [64] states that if a problem is r-
restrictive, the best contamination radius that can be obtained is r. The follow-up
paper [63] provides a Byzantine-insensitive link coloring algorithm: the subset of
correct nodes, once stabilized, can not be influenced again by Byzantine processes.

(d) For problems such as tree construction that have r-restrictive specifications for
some arbitrary r, the weaker notion of Strong stabilization has been introduced [61].
While strict stabilization contains the action of Byzantine processes in space, strong
stabilization contains the action of Byzantine processes in time: even if a Byzantine
process may execute an infinite number of malicious actions in a infinite execution,
the correct processes may only be impacted a finite number of times. However,
and similarly to pseudo-stabilization, there is no bound on the time after which
Byzantine actions are harmless (a Byzantine process may execute only correct
actions over a long - unbounded - period of time, and then arbitrarily behave
for some time, making correct processes execute a finite (bounded) number of
corrective actions).

2. Stronger complexity guarantees.
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(a) For certain problems, a memory corruption can cause a cascade of corrections in
the entire system [5], yet it would be natural for the stabilization to be quicker when
the number of failures that strike the system is smaller. This is the principle behind
time-adaptive self-stabilization [10, 25, 58], also known as scalable stabilization [34]
and fault local stabilization [59]. Note that time adaptive protocols have the prop-
erty of fault containment [33] in the sense that a visible fault can not spread on
the while network: it is contained near to its initial location before it disappears.
It is possible to arrange self-stabilizing, k-stabilizing and time-adaptive algorithms
into classes, depending on the difficulty in solving problems that can be solved in
each case. For example, if it is possible to solve a problem in a self-stabilizing
way, it is also possible to solve it in a k-stabilizing way (if you can do more, you
can do less). Likewise, if it is possible to solve a problem in a time-adaptive way,
it is also possible to solve it without trying to constrain the visible stabilization
time. Thus, the class of problems that can be solved in a time-adaptive way is a
subset of the class of problems that can be solved in a self-stabilizing way, which
is itself a subset of the class of problems that have k-stabilizing solutions. These
inclusions are strict: some problems can be solved in a k-stabilizing way, but not
in a self-stabilizing [71], others can be solved in a self-stabilizing way, but not in a
time-adaptive way [31].

(b) Given a problem specification, a snap-stabilizing system [9] is guaranteed to per-
form according to this specification regardless of the initial state. That is, a snap-
stabilizing system has a stabilization time of 0. It is important to note that a
snap-stabilizing protocol does not guarantee that the system never works in a
fuzzy manner. Actually, the main idea behind the snap-stabilization is the fol-
lowing: the protocol is seen as a function and the function ensures two properties
despite the arbitrary initial configuration of the system:

i. Upon an external (w.r.t. the protocol) request at a process p, the process p
(called the initiator) starts a computation of the function in finite time using
special actions called starting actions;

ii. If the process p starts an computation, then the computation performs an
expected task.

With such properties, the protocol always satisfies its specifications. Indeed, when
the protocol receives a request, this means that an external application (or a
user) requests the computation of a specific task provided by the protocol. In
this case, a snap-stabilizing protocol guarantees that the requested task is exe-
cuted as expected. On the contrary, when there is no request, there is nothing
to guarantee. Due to the “start” and “correctness” properties it has to ensure,
snap-stabilization requires specifications based on a sequence of actions (“request”,
“start”,. . . ) rather than a particular subset of configurations (e.g., the legitimate
configurations). Most of the literature on snap-stabilization deals with the shared
memory model only, with the notable recent exception of [17]. Due to the 0 stabi-
lization time complexity, snap-stabilization actually also guarantees stronger safety
properties (e.g. mutual exclusion in [17]) than those of self-stabilization.

There remains the special case of k-time adaptive stabilization. In our classification,
it is both a weakening of self-stabilization in the sense that fewer faults are allowed, and a
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strenghening of self-stabilization in the sense that the stabilization time complexity guarantee
is proportional to the number of faults that hit the network.
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[38] Maria Gradinariu and Sébastien Tixeuil. Self-stabilizing vertex coloring of arbitrary graphs.
In International Conference on Principles of Distributed Systems (OPODIS’2000), pages 55–70,
Paris, France, December 2000.
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5 Defining Terms

Configuration : global state of the system at a particular time

Execution : maximal sequence of configurations

Specification : predicate on executions

Daemon : predicate on executions, used to abstract system hypotheses

Self-stabilization : property of a distributed system to eventually converge to a configura-
tion from which every execution assuming a particular daemon conforms to a particular
specification

6 Further Information

Advances on all aspects of self-stabilization are reported in the annual Symposium on Sta-
bilization, Safety, and Security of distributed systems (SSS). Theoretical aspects of self-
stabilization are also covered by theoretical distributed computing conferences such as PODC
(Principles of Distributed Computing), DISC (Distributed Computing), OPODIS (On Prin-
ciples of Distributed Systems), and Sirocco (International Colloquium on Structural Infor-
mation and Communication Complexity). Practical aspects of self-stabilization are covered
by ICDCS (International Conference on Distributed Computing Systems), DSN (Dependable
Systems and Networks), SRDS (Symposium on Reliable Distributed Systems), and the many
conferences dedicated to sensor networks and autonomic computing.

A book [22] published in 2000 is dedicated to self-stabilization, and [68, 32, 53] all include
a chapter on self-stabilization. [48] surveys self-stabilization in network protocols, while [71]
describes self-stabilization with respect to scalability properties.
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