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Abstract.

On the island of Socotra, the southern passive margin of the Gulf of Aden displays along its

strike two different types of asymmetric structures. Western Socotra is made up of a series of

southward-tilted blocks bounded by consistently northward-dipping normal faults. Eastern

Socotra consists of a broad asymmetric anticline with a steep northern limb and a gently

dipping southern limb. A zone of NE-SW-striking strike-slip and normal faults separates the

two areas. The overall structure is interpreted as representing two rift segments separated by a

transfer zone. The along-strike juxtaposition of crustal-scale asymmetric structures on the

southern margin of the Gulf of Aden is complemented by the asymmetry of the conjugate

margins on either side of the gulf. Whereas the western Socotra margin is narrow and

characterized by oceanward-dipping normal faults, the conjugate Oman margin is broader and

dominated by horsts and graben. Considering that asymmetric structures in the upper crust are

often associated with synthetic shear zones at deeper ductile levels, we propose that the

western and eastern Socotra margin segments were controlled at depth by two detachment

faults with opposite dips and senses of shear. The normal faults of western Socotra would sole

out into a top-to-the-north ductile shear zone, whereas the asymmetric anticline of eastern

Socotra would be associated with a top-to-the-south detachment fault.
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Introduction

The processes of continental rifting and break-up, which precede the emplacement of

an oceanic spreading ridge, lead to the formation of a pair of conjugate margins on either side

of the nascent oceanic basin. The so-called passive margins are remnants of the continental

lithosphere that was stretched during rifting. Like continental rifts, passive margins have been

investigated to determine which mechanical properties of the lithosphere influence the style of

extension. In particular, many studies have tackled the question of whether extension is

symmetric or asymmetric at the lithospheric scale (McKenzie, 1978; Wernicke and Burchfiel,

1982; Wernicke, 1985; Lister et al., 1986, 1991; Brun and Beslier, 1996; Huismans and

Beaumont, 2003; Nagel and Buck, 2004).

Several continental rifts, including the Gulf of Suez (Coletta et al., 1988; Patton et al.,

1994), Rhine Graben (Brun et al., 1991; Wenzel et al., 1991), Corinth Rift (Rigo et al., 1996;

Sorel; 2000), Baikal Rift (Hutchinson et al., 1992; Petit and Deverchère, 2006), and several

segments of the East African rift system (Morley, 1988; Ebinger, 1989a; Rosendahl et al.,

1992), display an asymmetric structure at the crustal scale. The asymmetry is expressed in

present-day topography and sediment thickness, i.e., uplift-subsidence pattern, structural

style, and distribution of volcanics. The asymmetry is generally related to the existence of a

bounding master fault on one side of the rift, which accommodates a large amount of

extension. The sense of asymmetry of continental rifts may even change along strike across

transfer (or accommodation) zones (Bosworth, 1985; Ebinger, 1989b; Scott et al., 1992; Brun

and Gutscher, 1992; McClay and White, 1995; Hayward and Ebinger, 1996).

On passive margins, symmetry sometimes prevails, as for example in the northern Red

Sea where the continental margins display symmetric sets of fault blocks stepping down to an

axial depression (e.g., Bosworth et al., 1998). In this area, a large geophysical data set,

including heat flow (Buck et al., 1988) and gravity (Cochran et al., 1991) data, is satisfactorily
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explained with a symmetric overall geometry of the rift (Cochran, 2005). In the case of the

conjugate margins of the North Atlantic Ocean, the Iberian and Canadian (Newfoundland)

margins (Boillot et al., 1980; Keen et al., 1989; Beslier et al., 1993; Manatschal et al., 2001;

Whitmarsh et al., 2001; Wilson et al., 2001; Manatschal, 2004; Reston, 2005) and the

Labrador Sea margins (Chian et al., 1995; Chalmers and Pulvertaft, 2001), available data

point to an overall asymmetry of the margins (Sibuet, 1992; Boillot et al., 1992; Louden and

Chian, 1999). Recent multichannel seismic reflection results on the Canadian margin have

demonstrated the first-order asymmetry of one pair of conjugate margin segments with the

absence of a detachment fault analogous to the S reflector on the Galician margin (Funck et

al., 2003; Hopper et al., 2004). However, analogue and numeric models have shown that the

observation of crustal-scale asymmetric features on passive margins may be consistent with a

symmetric extension process at a lithospheric scale (e.g., Brun and Beslier, 1996; Nagel and

Buck, 2004).

In conceptual models of asymmetric extension, the asymmetry is often related to the

presence of one or more detachment faults cutting through the crust or the lithosphere and

separating a collapsing hanging wall from an uplifted and denuded footwall (e.g., Wernicke,

1985; Davis and Lister, 1988; Lister and Davis, 1989). Detachment faulting has been

recognized to play an important role in continental extensional tectonics (Wernicke, 1981)

and in the formation of passive margins (Boillot et al., 1987; Lemoine et al., 1987). On

passive margins, evidence for detachment faults comes from seismic reflection profiles where

strong sub-horizontal reflectors are interpreted as shallow-dipping shear zones (Krawczyk et

al., 1996; Reston et al., 1996; Reston, 1996; Barker and Austin, 1998; Maillard et al., 2005).

Rift-related detachment faults have also been recognized onland on the Red Sea margin

(Talbot and Ghebreab, 1997) and in the Alps where detachment faults from the ancient

Tethyan margins are exposed (Froitzheim and Eberli, 1990; Froitzheim and Manatschal,

1996; Manatschal and Bernouilli, 1999). In addition, seismogenic moderate to shallow-
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dipping normal faults, interpreted as detachment faults, are currently active in the Woodlark

and Corinth rifts (Abers et al., 1997; Bernard et al., 1997; Abers, 2001).

In contrast with the mature submarine margins of the Atlantic Ocean, the young

margins of the Gulf of Aden offer the opportunity to study on land the deformation and to

take into account the along-margin 3D evolution of rifting. Results obtained onland on the

northern margin have demonstrated the along-strike variability of the structure of the margin

segments, in particular on either side of the Socotra fracture zone (Figure!1; Fournier et al.,

2004). Here, we combine the results of a field survey conducted on the southern margin in

Socotra, with the analysis of Landsat images, SRTM (Shuttle Radar Topography Mission)

elevation data (sample spacing of 3 arc-seconds, approximately 92!m at the latitude of

Socotra; Farr and Kobrick, 2000), and offshore seismic profiles acquired during the Encens-

Sheba cruise/MD 117 on board the R/V Marion Dufresne (Leroy et al., 2004), to describe the

structure of the southern margin and compare it to the conjugate Oman margin. From these

observations, we infer information about the deep structure of the margins.

1.  Tectonic framework: oblique opening and segmentation of the Gulf of Aden

Socotra is located on the southern continental margin of the Gulf of Aden, offshore

from the Horn of Africa (Figure!1). Separation of the Arabia and Somalia plates was achieved

by rifting of continental lithosphere in the Gulf of Aden during the Oligocene and early

Miocene (Roger et al., 1989; Hughes et al., 1991; Bott et al., 1992; Watchorn et al., 1998;

Bosworth et al., 2005), followed by seafloor spreading along the Sheba Ridge, which was

initiated 18!Ma ago (early Miocene) in the eastern part of the gulf (magnetic anomaly 5d;

Sahota, 1990; Leroy et al., 2004). The current full spreading rate at the longitude of Socotra is

22!mm/yr along N25°E (Jestin et al., 1994; Fournier et al., 2001). The direction of opening of

the Gulf of Aden is thus ~40° from orthogonal to its overall N75°E trend (Laughton et al.,

1970; Cochran, 1981; Fournier and Petit, 2006). The opening obliquity is accommodated by
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segmentation of the ridge axis by transform faults, including the major Alula-Fartak and

Socotra transform faults (Figure!1; Laughton, 1966; Tamsett and Searle, 1990; Manighetti et

al., 1997). The en échelon pattern of the ridge segments is mirrored in the stepped shape of

the continental margins of Arabia and Somalia. On the basis of field observations on the

northern margin of the eastern Gulf of Aden, Fournier et al. (2004) showed that the

segmentation of the Sheba Ridge by the Socotra transform fault coincided with, and was

likely inherited from, the prior segmentation of the continental margin.

The first-order segment of the Gulf of Aden located between the Alula-Fartak and

Socotra transform faults has been recently studied onshore (Fournier et al., 2004; Bellahsen et

al., 2006) and offshore (d’Acremont et al., 2005, 2006). The main faults of this segment are

reported in Figure!1. The northern margin is dominated onshore and offshore by a succession

of horsts and graben. The faults of the upper part of the margin (onshore) generally have a

sigmoidal shape in plan view with an overall trend parallel to the Gulf of Aden (N75°E),

whereas the faults of the lower part of the margin (offshore) appear more linear and

consistently strike N110°E-N120°E. The lower part of the margin seems to be segmented by

second-order transfer faults, which are not observed in the upper part of the margin. The

comparison of the conjugate margins points to an overall asymmetry, with the northern

margin displaying horsts and graben, and the southern margin being dominated by one major

normal fault, which limits the continental shelf, and a deep basin at the toe of the margin.

Seismic data however lack the penetration necessary to address the deep structure of the

margins.

South and southwest of Socotra, oil industry seismic profiles across the Socotran shelf

do not reveal any significant extension in the post-Cretaceous series (Richardson et al., 1994,

1995; Birse et al., 1997). E-W normal faults of Neogene age are restricted to the northern

edge of the Socotran Platform along the margin of Gulf of Aden (Richardson et al., 1994).
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2.  Along-strike evolution of the structure of the southern margin on Socotra

A field survey conducted on Socotra reveals that the NE-SW-striking Hadibo fault

system divides the island into two parts exhibiting distinct stratigraphic and structural features

(Figure!2).

2.1.  Stratigraphy of Socotra

Socotra is covered by a carbonate-dominated Cretaceous and Tertiary succession

unconformably overlying a Proterozoic and Paleozoic basement (Figures!2a and 2b; Beydoun

and Bichan, 1969; Bott et al., 1994). Triassic and Jurassic deposits are locally preserved in a

fault bounded area at the eastern end of the island (Samuel et al., 1997).

The basement mainly includes Panafrican granites, which make up the 1500-m-high

Haggier massif. At a regional scale, Triassic and Jurassic deposits are only found in localised

grabens on the Socotran platform (Morrison et al., 1997). Like in southern Oman, where

upper Permian to Jurassic deposits are generally absent (Béchennec et al., 1993; Le Métour et

al., 1995), the region was largely emergent from the late Permian to the early Cretaceous and

shallow-marine sedimentation resumed during the Barremian-Aptian transgression with the

deposition of the Qishn Formation (Roger et al., 1989; Platel et al., 1992b; Morrison et al.,

1997; Samuel et al., 1997). The Cretaceous sequence is characterized by an alternation of

clastic and carbonate strata of variable thickness (<!300!m). A gentle angular unconformity of

the Tertiary deposits with the underlying Cretaceous deposits has been described (Samuel et

al., 1997), and locally, lower Tertiary deposits rest directly on the basement. The presence of

Cretaceous strata all around the Haggier massif however suggests that there was little erosion

prior to the deposition of the Paleocene sediments.

The Tertiary series is dominated by upper Paleocene to Eocene continental shelf

carbonates, up to 600!m thick, including the massive cliff-forming limestone succession of

the Umm Er Radhuma Formation, also recognized on the Yemeni, Omani, and Somali coasts

of the Gulf of Aden (Beydoun, 1964, 1970; Roger et al., 1989; Fantozzi and Sgavetti, 1998).

The platform deposits are overlain by calciturbidites of the Shihr Group of late Oligocene to
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early Miocene age, which are restricted to localised basins in western Socotra. The Shihr

Group succession consists of carbonate conglomerates at the base, overlain by slope deposits

that testify to rapid deepening in environments of deposition. These deposits display a variety

of chaotic facies, likely produced by seismic activity and steep slopes developed in the

localised deep-marine basins (Samuel et al., 1997). On the basis of facies and biostratigraphic

analyses, these deposits are correlated with those of Mughsayl Formation of southern Oman

(Samuel et al., 1997) and interpreted as syn-rift deposits coeval with the rifting of the Gulf of

Aden (Roger et al., 1989; Platel and Roger, 1989).

Significant uplift of the passive margin occurred after the rifting episode, leading to

the emergence of the syn-rift basins, and continues at present as evidenced by uplifted

Quaternary terraces (Beydoun and Bichan, 1969). Post-rift uplift reported on passive margins

is generally attributed to a combination of erosional processes and flexural response of the

lithosphere to the corresponding redistribution of mass across the landscape (e.g., Japsen et

al., 2006; Petit et al., 2006).

2.2.  Asymmetric marginal anticline of eastern Socotra

In eastern Socotra, the Haggier basement massif is flanked to the south and the east by

Cretaceous and Paleocene-Eocene strata gently dipping to the south (dip angle!<!10°;

Figure!2b). This sub-horizontal platform is devoid of major structures and affected only by a

few minor normal faults. On the northern side of the Haggier massif, the Cretaceous and

Paleocene-Eocene beds dip towards the north, at up to 45°. At the scale of the island, these

strata form a broad, asymmetric anticline flexure with a steep northern limb and a gently

dipping southern limb (Figures!2c). The axis of the anticline trends approximately E-W

(Figure!2e). No reverse fault related to folding could be observed in the field. The age of

folding is not well constrained. It postdates the deposition of the Eocene formations, which

are deformed, and is sealed by Quaternary deposits. In the absence of deposits of Oligocene-

early Miocene age in eastern Socotra, the exact age of folding cannot be ascertained more

precisely. An attempt has been made to explain the formation of the Haggier Massif and the
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basement highs of western Socotra in Ra’s Shu’ab and Qalansiyah (Figure!2b) in terms of

post-early Miocene compression (Bott et al., 1994). However, as noticed by Beydoun and

Bichan (1969), “the abundance of normal tensional faults [in Socotra], often with

considerable throw, […] and the lack of any evidence of compressional forces” (p. 434) do

not favour this hypothesis. Moreover, with the exception of the rifting of the Gulf of Aden, no

major tectonic event occurred in this part of Africa since the early Tertiary. We therefore

consider that the large-scale folding in eastern Socotra is related to the syn- and post-rift

evolution of the margin.

2.3.  Array of tilted fault blocks of western Socotra

Western Socotra is dominated by a series of tilted blocks bounded by WNW-ESE-

striking normal faults consistently dipping toward the north (Figures!2b, 2d, and 3). The faults

display vertical throws between 200 and 1000!m down to the north (Figure!2d). They post-

date the deposition of Eocene formations and controlled the formation of southward-dipping

half graben, in which the Oligo-Miocene deposits of the Shihr Group were trapped.

Proterozoic basement crops out in the uplifted footwall of the normal faults in Ra’s Shu’ab,

Qalansiyah, and Ra’s Kadarma (Figure!2b). Bathymetric data indicate that the shelf is very

narrow to the north of Socotra and likely limited by a normal fault synthetic to the normal

faults onshore (Figure!1). The width of the tilted blocks thus decrease northwards from 13-

11!km to 7!km and to ~3-4!km for the northernmost block (Jabal Kadarma; Figures!2d and 3),

while their dip increases up to 50° to the north in Jabal Kadarma (Figures!2d and 2f). The

decreasing spacing of normal faults toward the Gulf of Aden and the increasing block rotation

is probably indicative of higher crustal thinning toward the rift axis.

Meso-scale striated fault planes were examined in several localities of western Socotra

in pre- and syn-rift formations (Figure!2). All fault planes are of normal or strike-slip type. At

sites where normal and strike-slip fractures were observed, two subsets were distinguished
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and identified with A and B suffixes (sites 6 and 7). Conjugate normal faults predominantly

strike between N80°E and N120°E (sites 3, 4A, 5, 6B, and 7B). These directions are

representative of the strike of the major normal faults bounding the tilted blocks. The

orientation of the principal stress axes determined by inversion of fault slip data sets (Table!1;

Angelier, 1984) indicates a direction of extension between N and N30°E (Figure!2; sites 1, 3,

4A, 5, 6B, and 7B). In one site, an oblique N145°E direction of extension has also been

documented (site 4B). The two approximately N20°E and N150°E directions of extension are

characteristic of the rifting of Gulf of Aden and were identified all along the northern margin

of the Gulf of Aden in Oman (Lepvrier et al., 2002; Fournier et al., 2004; Bellahsen et al.,

2006) and Yemen (Huchon et al., 1991; Huchon and Khanbari, 2003), and further north in the

Huqf area and the Oman mountains (Fournier et al., 2005, 2006).

2.4.  Hadibo transfer zone

The Hadibo fault system transects Socotra and separates the Haggier massif to the east

from the tilted blocks of western Socotra (Figures!2b and 3). It is marked in the topography

by a series of down-to-the-northwest escarpments. The fault zone is made up of several

rectilinear faults striking N50°E and steeply dipping toward the northwest (Figure!2b). Broad

flexures of the Eocene strata in the fault zone attest to normal motion along the main faults.

The Hadibo fault system terminates to the south with a horsetail geometry as it connects with

the E-W-striking normal fault that bounds the southernmost tilted block of western Socotra

(Figure!2d). The fault zone was probably inherited from linear NE-SW fracture zones in the

basement, which is at shallow depth throughout the area (Beydoun and Bichan, 1969).

A study of minor faults in the vicinity of the Hadibo fault system helps to clarify its

motion. The only site located within the fault zone (site!2) displays conjugate strike-slip

faults. The N50°E- to N70°E-striking faults parallel to the Hadibo fault system accommodate

right-lateral motions. Two other sites display conjugate sets of strike-slip faults (sites 6A and



10

7A). The right-lateral faults strike N70°E to N90°E and the left-lateral faults strike N120°E to

N140°E. Stress inversion of the strike-slip fault data sets gives !Hmax!=!!1 trending N90°E to

N120°E and !Hmin!=!!3 trending N to N30°E. Since the strike-slip and normal paleostress

tensors have similar directions of extension, they likely pertain to the same regional stress

field and reflect a unique transtensional deformation regime. The stereodiagrams of Figure 2

even suggest that the direction of extension tends to rotate counterclockwise toward the

Hadibo fault zone, from N30°E away from fault zone (sites 7A, 7B, and 3) to N close to it

(sites!1 and 2). These observations are consistent with a right-lateral component of

displacement along the Hadibo fault system. With respect to the stable southern Socotran

platform, the dextral motion accounts for the relative motion between the western part of

Socotra stretched by normal faulting and the eastern part shortened by large-scale folding.

The Hadibo fault system thus appears as a transfer zone, or accommodation zone,

between two rift segments, as illustrated in Figures!2e and 3. The direction of the maximum

horizontal principal stress !Hmax rotates counterclockwise toward the dextral transfer zone, and

!Hmax switches from !2 to !1 within the transfer zone, in a way similar to the transform faults

in the oceanic domain (Figure!4). As can be observed in Figure!1, the Hadibo transfer zone

does not appear to pass laterally offshore into an oceanic transform fault.

In summary, the southern continental margin of the Gulf of Aden on Socotra is made

up of two segments separated by the Hadibo transfer zone. In N-S cross-section, each margin

segment displays an overall structure which is asymmetric. The western segment consists of a

series of consistently southward-tilted blocks bounded by northward-dipping normal faults,

whereas the eastern segment consists in an E-W-trending anticline with a steep northern limb

and a gently dipping southern limb. Thus, the margin structure changes dramatically across

the Hadibo transfer zone. The origin of these along-strike changes in structure will be

discussed in section 4.
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3.  Offshore seismic data and comparison with the conjugate Oman margin

Two single-channel seismic profiles (ES18 and ES20) have been shot during the

Encens-Sheba cruise (Leroy et al., 2004) across the conjugate margins, immediately to the

east of the Socotra transform fault (Figure!5; location in Figure!1). The southern profile

(ES20; Figure!5a) cuts across the western Socotra margin segment. The seismic line shows

that the margin offshore Socotra is steep, narrow, and dominated by a major, northward-

dipping normal fault with a moderate dip and a minimum displacement of 2!km (d’Acremont,

2002). A large graben occurs at the toe of the normal fault, containing about 2!km of flat-

lying sediments including 500-900!m of the syn-rift series (d’Acremont, 2002). In map view,

the main normal fault of profile ES20 is located more or less in line with the northernmost

normal fault of western Socotra (Figure!1). It could correspond to the eastward continuation

of this fault, which however displays a much smaller vertical throw (Figure!2d). More likely,

the normal fault runs eastward along the northern coast of Socotra and bounds to the north the

tilted block of Jabal Kadarma (Figure!2d).

The northern profile (ES18; Figure!5b), shot across the conjugate margin segment,

shows that the Oman margin is relatively broad and gentle. It is bounded to the north, on the

edge of the continental shelf, by a major southward-dipping normal fault (SP!001), and it

displays widely spaced, conjugate, normal faults bounding horsts and graben. Syn- and post-

rift sediments were deposited in these N100°-110°E-trending grabens (d’Acremont, 2002). A

synthetic cross-section from margin to margin, including the seismic profiles ES18 and ES20

and the cross-section of western Socotra (Figure!2d), highlights the contrasted structures of

the opposite margins (Figure!5c; location in Figure!1).

Differences between the conjugate margins are also observed in map view (Figure!1).

The conjugate margin of western Socotra in Oman, to the east of the Socotra transform fault,

is entirely submerged with the exception of the Al Hallaniyah islands, which form a low-

elevated rift shoulder (~400!m) made up of Proterozoic basement unconformably overlain by
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Eocene deposits. No major normal fault has been observed onland on this margin segment

and no flat-lying fault with mylonite between the basement and the sedimentary cover has

been described on the Al Hallaniyah islands. Moreover, the Hadibo transfer zone does not

seem to extend in the northern continental margin. To the east of the Al Hallaniyah islands,

the Oman margin that is conjugate to eastern Socotra is entirely submerged. No offshore data

are currently available for this margin. Onshore, the margin consists of a monotonous plateau

ca. 200 m above sea level, capped by Oligo-Miocene platform carbonates (Béchennec et al.,

1993; Le Métour et al., 1995), and devoid of extensional tectonic structures. In the absence of

seismic profile across this margin, the structure of the conjugate margins cannot be accurately

compared on the eastern Socotra transect.

Thus, the overall structure of the conjugate margins differs significantly. The different

styles of normal faulting suggest different mechanisms of deformation from one margin to the

other. As will be discussed in the next section, one margin could be the footwall and the other

the hanging wall of an asymmetric rift basin.

4.  Discussion : Is asymmetry controlled by detachment faults?

The continental margin on Socotra consists of two juxtaposed rift segments displaying an

asymmetric structure. They testify to the deformation regime prevailing during the rifting.

Lister et al. (1986, 1991) presented detachment models for the formation of passive

continental margins, in which they predicted that the structure of passive margins should

change along strike across transfer zones and that juxtaposed asymmetric rift segments should

be observed, as in Socotra (insert in Figure!6). They introduced the concept of upper-plate and

lower-plate conjugate margins on either side of a detachment fault. Lower-plate margins are

characterized by numerous rotated tilt blocks and half-graben, and the presence of a

detachment fault in the crust, dipping towards the ocean. Upper-plate margins are

characterized by widely spaced faulting and generally by a so-called “marginal anticline”.
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Marginal anticlines correspond to flexures of the edge of the upper plate as the result of

thermal buoyancy related to rise of the asthenosphere, and/or igneous underplating due to

partial melting of the mantle, and/or the presence of listric detachment faults progressively

flattening towards the continent (rollover structure).

The models of Lister et al. (1986, 1991) account satisfactorily for the surface

structures observed on Socotra, in the hypothesis where western Socotra would correspond to

a lower-plate margin and eastern Socotra margin to an upper-plate margin (Figure 6).

Considering that (1) asymmetric structures are indicative of a simple shear deformation

regime, and (2) asymmetric structures in the brittle upper crust are often associated with

synthetic shear zones at deeper ductile levels, we further explore the hypothesis that the

shallow asymmetric structures of Socotra may be associated at depth with detachment faults.

Western Socotra displays an array of tilted blocks bounded by consistently oceanward-

dipping normal faults. Repetitive and asymmetrical normal faulting in the upper crust may be

associated with a synthetic ductile shear zone at depth, which controls the sense of tilt of

crustal blocks (e.g., Wernicke, 1981; Faugère and Brun, 1984; McClay and Ellis, 1987; Brun

et al., 1994). This suggests that the normal faults of western Socotra could be connected at

depth to a ductile shear zone with a top-to-the-north sense of shear. They could form a series

of northward-flattening, listric normal faults merging into the detachment surface underneath

the tilted blocks of western Socotra, as illustrated in Figure!6. Alternatively, the shallow high-

angle normal faults could sole into master normal faults with moderate dips (>!25-30°), which

in turn could sole into a subhorizontal ductile shear zone. The northward-increasing tilt of the

fault blocks would be indicative of a northward-increasing shear along the ductile shear zone.

In response to tectonic unloading, an upward flexure of the detachment surface would be

expected to the north (Figure!7a and b). Further north offshore, the normal fault with

moderate dip observed on seismic data could truncate the detachment fault of western Socotra

and correspond to a new detachment fault propagated from the broad culmination of the older
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one, as proposed in Figure!7b and c. This interpretation would be in agreement with a

migration of the deformation towards the rift axis during rifting, as often observed (e.g.,

Cowie et al., 2005). In this hypothesis, synrift sediments would lie directly above the first-

stage detachment surface (Figure!7c), as observed in the distal parts of the Iberian margin and

the Tethys margin in the Alps (Manatschal and Bernouilli, 1999). There is consequently the

possibility of the presence of exhumed mantle in the transition zone (between shot points

2400 and 2700 in Figure 5a), although this remains to be better imaged.

Eastern Socotra consists of a broad E-W-trending asymmetric anticline related to the

rifting of the Gulf of Aden. The uplift and erosion of the Haggier massif could be attributed to

post-rift erosion and flexural rebound (Gilchrist and Summerfield, 1990), as proposed by Petit

et al. (2006) for the Marbat escarpment on the Oman margin (Figure!1). However, eastern

Socotra, with the rounded shape in map view of the erosional window of basement rocks,

does not resemble typically rectilinear retreating rift escarpments. Alternatively, the high

topography of the Haggier Mountains and the tilted strata on their flanks could be explained

by upwarping from rift-related plutonism or underplating. However, the complete absence of

volcanism on the continental margins of the eastern Gulf of Aden (in contrast with the

western Gulf of Aden) does not favor this hypothesis. An alternative way to exhume the

basement rocks exposed in eastern Socotra may be found in the detachment models of Lister

et al. (1986, 1991) with the formation of marginal anticlines. In these models, detachment

faulting causes horizontal translation (beneath the detachment fault) of relatively cool and

dense lithosphere toward the developing oceanic basin, thus exposing the base of the

continental margin to warmer, and hence relatively less dense, rising asthenosphere. The

result is a broad flexure of the margin and the formation of a marginal anticline. Marginal

anticlines may display a steeper limb towards the ocean due to sediment loading at the toe of

the margin or due to a listric detachment fault progressively flattening at depth (rollover
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structure). This model requires the existence of a southward-dipping detachment fault with a

top-to-the-south sense of shear beneath eastern Socotra, as shown in Figure 6.

In this hypothesis, Socotra would be made up of two crustal-scale asymmetric structures

juxtaposed on either side of the Hadibo transfer zone and controlled by two detachment faults

with opposite dips and senses of shear. Of course, the extrapolation from observed shallow

crustal features to the crustal scale remains speculative and has to be tested: seismic

information would be needed to elucidate the deep structure of the two margin segments.

The comparison with the models of Lister et al. (1986, 1991) can be extended to the

conjugate Oman margin. A reconstitution of the eastern Gulf of Aden rift before the onset of

seafloor spreading, encompassing the western Socotra margin and its conjugate Oman

margin, is presented in Figure!8. The conjugate margins are asymmetric: the southern margin

is dominated by tilted fault blocks above a detachment fault dipping towards the oceanic

basin, whereas the northern margin is characterized by widely spaced conjugate normal faults.

On this reconstruction, the locus of the breakup of the continental lithosphere does not

coincide with the middle of the paleo-rift, but is offset towards the Socotra margin. The

overall structure corresponds fairly well to the detachment models of Lister et al. (1986, 1991)

where the Oman margin would represent the upper-plate margin and the western Socotra

margin to the lower-plate margin, even though the Oman margin does not display a marginal

anticline.

Seismic data are presently non sufficient to provide a cross-section of the eastern Socotra

transect comparable to Figure!8 and discuss the possibility for the margin conjugate to eastern

Socotra of being the footwall of a basin-forming detachment.

Conclusion

The eastern Gulf of Aden provides a unique example of an asymmetric passive margin

with the sense of asymmetry reversing along strike. In Socotra, the passive margin alternates
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from east to west from marginal anticline to rotated tilt blocks and would pass laterally across

the Hadibo transfer zone from an upper-plate margin to a lower-plate margin, according to the

detachment models of passive margins of Lister et al. (1986; 1991). The detachment faults,

which are supposed to be associated with the asymmetric surface structures, would change

sense of shear across the transfer zone (top-to-the-north to the west, top-to-the-south to the

east). This example shows that the asymmetry of the rifting process, which is commonly

tested by comparing conjugate margins, may also be revealed by the along-strike 3D

evolution of the structure of margins segmented by transfer zones. In the eastern Gulf of

Aden, crustal asymmetry appears as a major feature of passive margin development.
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Figure captions

Figure 1.  Geodynamical setting of the eastern Gulf of Aden and Socotra Island.

Topogragraphy and bathymetry compiled from SRTM data onland (Farr and Kobrick, 2000)

and multibeam soundings bathymetry from Encens-Sheba cruise (Leroy et al., 2004)

superimposed on the world bathymetric map of Sandwell and Smith (1997) in the oceanic

domain. Black arrows show plate relative motions (Fournier et al., 2001). The dashed line

shows location of the margin to margin cross section of Figure 5, and solid portions

correspond to seismic reflection profiles ES18 and ES20 acquired during the Encens-Sheba

cruise. Soc is Socotra. TF is transform fault.

Figure 2.  (a) Landsat image and (b) structural map of Socotra (after Landsat imagery and

SRTM data interpretation, and Geological Map of Suqatra, 1990) with stress field recorded in

Tertiary formations. Stars in stereonets (equal-area lower hemisphere projection) correspond

to the principal stress axes: !1 (five branches), !2 (four branches), and !3 (three branches).

Arrows show the trend of the horizontal principal stresses computed from fracture analysis.

Dashed line is for the bedding plane. (c) Cross section of eastern Socotra (location in Figure

2b). (d) Cross section of western Socotra. (e) Simplified structural map of Socotra. (f)

Southward tilted fault block in Ra’s Kadarma. Basement is exposed to the north along the

coast and capped by tilted Cretaceous and Eocene strata. The tilt block has undergone rotation

of ~50° about a horizontal ~E-W axis.

Figure 3.  Segmentation of the continental margin by the Hadibo transfer zone illustrated by

the SRTM digital elevation model of Socotra view from the east (N110°E). The broad

asymmetric anticline of eastern Socotra in the foreground is separated from the four tilted

blocks of western Socotra in the background by the right-lateral Hadibo transfer zone.
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Figure 4.  Comparison of maximum horizontal stress trajectories (!Hmax) for a right-lateral

continental transfer zone and an oceanic transform fault. In the vicinity of the transfer zone or

transform fault, !Hmax switches from !2 to !1 and its direction rotates counterclockwise.

Figure 5.  ES18 and ES20 seismic profiles off Oman and Socotra, respectively, from the

Encens-Sheba cruise (d'Acremont, 2002), located in Figure!1. The ocean-continent transition

(OCT) has been defined from joint analysis of seismic reflection, and free-air gravity and

magnetic anomalies (d’Acremont et al., 2005). (a) Offshore Socotra, the continental margin is

steep, narrow, and dominated by a northward shallow-dipping normal fault with a deep

sedimentary basin at its toe. (b) The Oman margin displays horsts and grabens bounded by

widely spaced conjugate faults with little block rotation. (c) Crustal cross-section of the

eastern Gulf of Aden combining the interpretations of seismic profiles ES18 and ES20, and

the cross section of western Socotra in Figure!2d (location in Figure 1). The Moho geometry

is speculative. SP are shot points.

Figure 6.  Along-strike change of sense of asymmetry of the southern margin of the Gulf of

Aden on either side of the Hadibo transfer zone. It is proposed that the asymmetric structures

of western and eastern Socotra are controlled at depth by detachment faults with opposite dips

and senses of shear. The normal faults of western Socotra would sole out into a detachment

surface with a top-to-the-north sense of shear, whereas the asymmetric anticline of eastern

Socotra would be associated with a southward flattening detachment fault with a top-to-the-

south sense of shear. Inset shows the detachment model of passive margins of Lister et al.

(1986) with the possible location of Socotra.

Figure 7.  Conceptual model for the development of detachment faults onshore and offshore

western Socotra (not to scale). (a) Stage 1: formation of the first detachment (D1). (b) Stage 2:
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isostatic uplift of the distal part of D1, which became inactive. (c) Stage 3: formation of the

second detachment (D2) or low-angle normal fault. NF3: antithetic normal fault cutting D1.

Figure 8.  Prebreakup reconstruction of the eastern Gulf of Aden rift showing the

complementary asymmetry of the opposing margins. The location of the breakup is offset

towards the Socotra margin.
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Table 1.  Trend and Dip of Principal Stress Axes Computed From Fault Slip Dataa

Site Latitude Longitude Altitude Number Formation Age !1 !2 !3 "

m of Faults Strike, Dip, Strike, Dip, Strike, Dip,

deg deg deg

1 12°32.485' 053°51.499' 457 10 Umm Er Radhuma - Jeza Late Paleocene - Eocene 153, 72 266, 07 358, 16 0.64

2 12°31.696' 053°52.602' 476 18 Umm Er Radhuma - Jeza Late Paleocene - Eocene 266, 04 142, 83 357, 06 0.48

3 12°33.456' 053°49.975' 277 27 Umm Er Radhuma - Jeza Late Paleocene - Eocene 134, 80 290, 09 021, 04 0.43

4A 12°37.239' 053°37.464' 222 12 Shihr Group Oligocene - Early Miocene 295, 79 119, 11 029, 01 0.48

4B 12°37.239' 053°37.464' 222 4 Shihr Group Oligocene - Early Miocene 206, 72 056, 16 324, 09 0.22

5 12°36.009' 053°41.138' 96 1, 12 joints Shihr Group Oligocene - Early Miocene

6A 12°32.726' 053°51.214' 425 7 Umm Er Radhuma - Jeza Late Paleocene - Eocene 284, 10 060, 77 193, 09 0.43

6B 12°32.726' 053°51.214' 425 5 Umm Er Radhuma - Jeza Late Paleocene - Eocene 135, 63 308, 27 039, 03 0.80

7A 12°33.650' 053°49.622' 195 7 Umm Er Radhuma - Jeza Late Paleocene - Eocene 299, 18 131, 71 030, 04 0.38

7B 12°33.650' 053°49.622' 195 10 Umm Er Radhuma - Jeza Late Paleocene - Eocene 279, 86 126, 04 036, 02 0.39

a Here !1, !2, and !3 are maximum, intermediate, and minimum principal stress axes. " is the ratio (!2 - !3)/(!1 - !3).
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