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Optimal Grid Exploration by Asynchronous Oblivious Robots

Stéphane Devismes∗ Anissa Lamani† Franck Petit‡ Pascal Raymond∗

Sébastien Tixeuil‡

Abstract

We consider a team of autonomous weak robots that are endowed with visibility sensors
and motion actuators. Autonomous means that the team cannot rely on any kind of central
coordination mechanism or scheduler. By weak we mean that the robots are devoid of (1)
any (observable) IDs allowing to differentiate them (anonymous), (2) means of communication
allowing them to communicate directly, and (3) any way to remember any previous observation
nor computation performed in any previous step (oblivious). Robots asynchronously operate in
cycles of three phases: Look, Compute, and Move. Furthermore, the network is an anonymous
unoriented grid.

In such settings, the robots must collaborate to solve a collective task, here the terminating
grid exploration (exploration for short), despite being limited with respect to input from the
environment, asymmetry, memory, etc. Exploration requires that robots explore the grid and
stop when the task is complete.

We propose optimal (w.r.t. the number of robots) solutions for the deterministic terminating
exploration of a grid shaped network by a team of k asynchronous oblivious robots in the fully
asynchronous and non-atomic model, so called CORDA.

In more details, we first assume the ATOM model in which each Look-Compute-Move cycle
execution is executed atomically, i.e., every robot that is activated at instant t instantaneously
executes a full cycle between t and t + 1. ATOM being strictly stronger than CORDA, all
impossibility results in ATOM also hold in CORDA. We show that it is impossible to explore
a grid of at least three nodes with less than three robots in ATOM. (This first result holds for
both deterministic and probabilistic settings.) Next, we show that it is impossible to determin-
istically explore a (2, 2)-Grid with less than 4 robots, and a (3, 3)-Grid with less than 5 robots,
respectively.

Then, we propose deterministic algorithms in CORDA to exhibit the optimal number of
robots allowing to explore of a given grid. Our results show that except in two particular cases,
3 robots are necessary and sufficient to deterministically explore a grid of at least three nodes.
The optimal number of robots for the two remaining cases is: 4 for the (2, 2)-Grid and 5 for the
(3, 3)-Grid.
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1 Introduction

We consider autonomous robots that are endowed with visibility sensors (but that are otherwise
unable to communicate) and motion actuators. Those robots must collaborate to solve a collective
task, here the terminating grid exploration (exploration for short), despite being limited with respect
to input from the environment, asymmetry, memory, etc.

So far, two universes have been studied: the continuous two-dimensional Euclidian space and
the discrete universe. In the former, robot entities freely move on a plane using visual sensors
with perfect accuracy that permit to locate all other robots with infinite precision (see e.g., [5, 9,
17, 18, 2]). In the latter, the space is partitioned into a finite number of locations, conventionally
represented by a graph, where the nodes represent the possible locations that a robot can take and
the edges the possibility for a robot to move from one location to the other (see e.g., [7, 8, 1, 4, 3,
11, 12, 13, 14]).

In this paper, we pursue research in the discrete universe and focus on the exploration problem
when the network is an anonymous unoriented grid, using a team of autonomous mobile robots.
Exploration requires that robots explore the grid and stop when the task is complete. In other
words, every node of the grid must be visited by at least one robot and the protocol eventually
terminates — every robot eventually stays idle forever.

The robots we consider are unable to communicate, however they can sense their environment
and take decisions according to their local view. We assume anonymous and uniform robots (i.e.,
they execute the same protocol and there is no way to distinguish between them using their ap-
pearance). In addition they are oblivious, i.e, they do not remember their past actions. In this
context, robots asynchronously operate in cycles of three phases: Look, Compute, and Move. In
the first phase, robots observe their environment in order to get the position of all other robots
in the grid. In the second phase, they perform a local computation using the previously obtained
view and decide their target destination to which they will move during the last phase.

The fact that the robots have to stop after the exploration process implies that the robots
somehow have to remember which part of the graph has been explored. Nevertheless, under this
weak scenario, robots have no memory and thus are unable to remember the various steps taken
before. In addition, they are unable to communicate explicitly. Therefore the positions of the
other robots are the only way to distinguish different stages of the exploration process. The main
complexity measure then is the minimal number of required robots. Since numerous symmetric
configurations induce a large number of required robots, minimizing the number of robots turns
out to be a difficult problem. As a matter of fact, in [8], it is shown that, in general, Ω(n) robots
are necessary to explore a tree network of n nodes deterministically.

Related Work. In [7], authors proved that no deterministic exploration is possible on a ring
when the number of robots k divides the number of nodes n. In the same paper, the authors
proposed a deterministic algorithm that solves the problem using at least 17 robots provided that
n and k are co-prime. In [14], Lamani et al. proved that there exists no deterministic protocol
that can explore an even sized ring with k ≤ 4 robots, even in the atomic model called SYm or
ATOM [18]. In this model, robots execute their Look, Compute and Move phases in an atomic
manner. Thus, results in ATOM naturally extend in the fully asynchronous non-atomic model, so
called CORDA [15]. They also provide a deterministic protocol using five robots and performing
in CORDA, provided that five and n are co-prime. By contrast, four robots are necessary and
sufficient to solve the probabilistic exploration of any rings of size at least 4 in ATOM [4, 3].

To our knowledge, grid shaped networks were only considered in the context of anonymous and
oblivious robot exploration [1] for a variant of the exploration problem where robots perpetually
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explore all nodes in the grid (instead of stopping after exploring the whole network). Also, contrary
to this paper, the protocols presented in [1] make use of a common sense of direction for all robots
(common north, south, east, and west directions) and assume an essentially synchronous scheduling.

Contribution. In this paper, we propose optimal (w.r.t. the number of robots) solutions for
the deterministic terminating exploration of a grid shaped network by a team of k asynchronous
oblivious robots in the asynchronous and non-atomic CORDA model.

In more details, we first consider the ATOM model, that is a strictly stronger model than
CORDA. We show that it is impossible to explore a grid of at least three nodes with less than three
robots. This first result holds for both deterministic and probabilistic settings. Next, we show that
it is impossible to deterministically explore a (2, 2)-Grid with less than 4 robots, and a (3, 3)-Grid
with less than 5 robots, respectively. All results in ATOM naturally extend to CORDA. Then,
we propose several deterministic algorithms in CORDA to exhibit the optimal number of robots
allowing to explore of a given grid. Our results show that except in two particular cases, 3 robots
are necessary and sufficient to deterministically explore a grid of at least three nodes. The optimal
number of robots for the two remaining cases is: 4 for the (2, 2)-Grid and 5 for the (3, 3)-Grid.

The above results show that, perhaps surprisingly, exploring a grid is easier than exploring
a ring. In the ring, deterministic solutions essentially require five robots [14] while probabilities
enable solutions with only four robots [4, 3]. In the grid, three robots are necessary and sufficient
in the general case even for deterministic protocols, while particular instances of the grid do require
four or five robots. Also deterministically exploring a general grid requires no primality condition
while deterministically exploring a ring expects the number k of robots to be co-prime with n the
number of nodes.

Roadmap. Section 2 presents the system model and the problem to be solved. Lower bounds are
shown in Section 3. The deterministic general solution using three robots is given in Section 4, the
special case with five robots is proposed in Section 5. Section 6 gives some concluding remarks.

2 Preliminaries

Distributed Systems. We consider systems of autonomous mobile entities called agents or robots
evolving in a simple unoriented connected graph G = (V,E), where V is a finite set of nodes and
E a finite set of edges. In G, nodes represent locations that can be sensed by robots and edges
represent the possibility for a robot to move from one location to another. We assume that G is an
(i, j)-Grid (or a Grid, for short) where i, j are two positive integers, i.e., G satisfies the following
two conditions: (a) |V | = i× j, and (b) there exists an order on the nodes of V , v1, . . . , vi×j, such
that:

- ∀x ∈ [1..i × j], (x mod i) 6= 0 ⇒ {vx, vx+1} ∈ E, and

- ∀y ∈ [1..i× (j − 1)], {vy, vy+i} ∈ E.

Nodes of the grid are anonymous (we may use indices, but for notation purposes only). We denote
by n = i× j the number of nodes in G. We denote the degree of node v in G by δ(v). Given two
neighboring nodes u and v, there is no explicit or implicit labeling allowing the robots to determine
whether u is either on the left, on the right, above, or below v. Remark that an (i, j)-Grid and a
(j, i)-Grid are isomorphic. Hence, as the nodes are anonymous, we cannot distinguish an (i, j)-Grid
from a (j, i)-Grid. So, without loss of generality, we always consider (i, j)-Grids, where i ≤ j. Note
also that any (1, j)-Grid is isomorphic to a chain. In any (i, j)-Grid, if i = 1, then either the grid
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consists of one node, or two nodes are of degree 1 and all other nodes are of degree 2; otherwise,
when i > 1, four nodes are of degree 2 and all other nodes are of degree either 3 or 4. In any grid,
the nodes of smallest degree are called corners. In any (1, j)-Grid with j > 1, the unique chain
linking the two corners is called the borderline. In any (i, j)-Grid such that i > 1, there exist four
chains v1, . . . , vm of length at least 2 such that δ(v1) = δ(vm) = 2, and ∀x, 1 < x < m, δ(vx) = 3,
these chains are also called the borderlines.

Robots. Operating in G are k ≤ n robots. The robots do not communicate in an explicit way;
however they see the position of the other robots and can acquire knowledge based on this infor-
mation. We assume that the robots cannot remember any previous observation nor computation
performed in any previous step. Such robots are said to be oblivious (or memoryless).

Each robot operates according to its (local) program. We call protocol a collection of k programs,
each one operating on a single robot. Here we assume that robots are uniform and anonymous, i.e.,
they all have the same program using no local parameter (such as an identity) that could permit
to differentiate them. The program of a robot consists in executing Look-Compute-Move cycles
infinitely many times. That is, the robot first observes its environment (Look phase). Based on its
observation, a robot then decides to move or stay idle (Compute phase). When a robot decides to
move, it moves from its current node to a neighboring node during the Move phase.

Computational Model. We consider two models: the semi-asynchronous and atomic model,
ATOM [6] and the asynchronous non-atomic model, CORDA [7]. In both models, time is rep-
resented by an infinite sequence of instants 0, 1, 2, . . . No robot has access to this global time.
Moreover, every robot executes cycles infinitely many times. Each robot performs its own cycles in
sequence. However, the time between two cycles of the same robot and the interleavings between
cycles of different robots are decided by an adversary. As a matter of facts, we are interested in
algorithms that correctly operate despite the choices of the adversary. In particular, our algorithms
should also work even if the adversary force the execution to be fully sequential or fully synchronous.

In ATOM, each Look-Compute-Move cycle execution is assumed to be atomic: every robot that
is activated (by the adversary) at instant t instantaneously executes a full cycle between t and t+1.

In CORDA, Look-Compute-Move cycles are performed asynchronously by each robot: the time
between Look, Compute, and Move operations is finite yet unbounded, and is decided by the
adversary. The only constraint is that both Move and Look are instantaneous.

Remark that in both models, any robot performing a Look operation sees all other robots at
nodes and not on edges. However, in the CORDA, a robot R may perform a Look operation at
some time t, perceiving robots at some nodes, then Compute a target neighbor at some time t′ > t,
and Move to this neighbor at some later time t′′ > t′ in which some robots are in different nodes
from those previously perceived by R because in the meantime they moved. Hence, robots may
move based on significantly outdated perception.

Of course, ATOM is stronger than CORDA. So, to be as general as possible, in this paper, our
impossibility results are written assuming ATOM, while our algorithms assume CORDA.

Multiplicity. We assume that during the Look phase, every robot can perceive whether several
robots are located on the same node or not. This ability is called Multiplicity Detection. We shall
indicate by di(t) the multiplicity of robots present in node ui at instant t.

In this paper, we consider two kinds of multiplicity detection: the strong and weak multiplicity
detections.
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Under the weak multiplicity detection, for every node ui, di is a function N 7→ {◦,⊥,⊤} defined
as follows: di(t) is equal to either ◦, ⊥, or ⊤ according to ui contains none, one or several robots
at time instant t. If di(t) = ◦, then we say that ui is free at instant t, otherwise ui is said occupied
at instant t. If di(t) = ⊤, then we say that ui contains a tower at instant t.

Under the strong multiplicity detection, for every node ui, di is a function N 7→ N where
di(t) = j indicates that there are j robots in node ui at instant t. If di(t) = 0, then we say that
ui is free at instant t, otherwise ui is said occupied at instant t. If di(t) > 1, then we say that ui
contains a tower (of di(t) robots) at instant t.

As previously, to be as general as possible, our impossibility results are written assuming strong
multiplicity detection, while our algorithms assume weak multiplicity detection.

Configurations and views. To define the notion of configuration, we need to use an arbitrary
order ≺ on nodes. The system being anonymous, robots do not know this order (actually, this
order is used in the reasoning only). Let v1, . . . , vn be the list of the nodes in G ordered by ≺. The
configuration at time t is d1(t), . . . , dn(t). We denote by initial configurations the configurations
from which the system can start at time 0. Every configuration where all robots stay idle forever is
said to be terminal. Two configurations d1, . . . , dn and d′1, . . . , d

′
n are indistinguishable if and only if

there exists an automorphism f on G satisfying the additional condition: ∀vi ∈ V , we have di = d′j
where vj = f(vi).

The view of robot R at time t is a labelled graph isomorphic to G, where every node ui is
labelled by di(t), except the node where R is currently located, this latter node uj is labelled by
dj(t), ∗ (any robot knows the multiplicity of the node where it is located). Hence, from its view,
a robot can compute the view of all other robots, and decide whether some other robots have the
same view as its own.

Every decision to move is based on the view obtained during the last Look action. However, it
may happen that some edges incident to a node v currently occupied by the deciding robot look
identical in its view, i.e., v lies on a symmetric axis of the configuration. In this case, if the robot
decides to take one of these edges, it may take any of them. We assume the worst-case decision in
such cases, i.e. the actual edge among the identically looking ones is chosen by the adversary.

Execution. We model the executions of our protocol in G by the list of configurations through
which the system goes. So, an execution is a maximal list of configurations γ0, . . . , γi such that
∀j > 0, we have: (i) γj−1 6= γj , (ii) γj is obtained from γj−1 after some robots move from their
locations in γj−1 to a neighboring node, and (iii) For every robot R that moves between γj−1 and
γj , there exists 0 ≤ j′ ≤ j, such that R takes its decision to move according to its program and its
view in γj′ . An execution γ0, . . . , γi is said to be sequential if and only if ∀j > 0, exactly one robot
moves between γj−1 and γj.

Problem to be solved. We consider the exploration problem, where k robots, initially placed at
different nodes, collectively explore an (i, j)-grid before stopping moving forever. By “collectively”
explore we mean that every node is eventually visited by at least one robot. More formally, a
protocol P deterministically (resp. probabilistically) solves the exploration problem if and only if
every execution e of P starting from a towerless configuration satisfies: (1) e terminates in finite
time (resp. in finite expected time); (2) every node is visited by at least one robot during e. Observe
that the exploration problem is not defined for k > n and is straightforward for k = n. (In this
latter case the exploration is already accomplished in the initial configuration.)
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3 Bounds

In this section, we first show that, except for some trivial cases (where k = n), when robots are
oblivious, the model is atomic, and the multiplicity is strong, at least three robots are necessary
to solve the (probabilistic or deterministic) exploration in any grid (Theorem 1). Moreover, in a
(2, 2)-Grid, 4 robots are necessary (Theorem 2). Finally, at least 5 robots are necessary to solve the
exploration in a (3, 3)-Grid (Theorem 4). In the two next sections, we show that all these bounds
are also sufficient to solve the exploration in the asynchronous and non-atomic CORDA model.

Given that robots are oblivious and there are more nodes than robots, any terminal configuration
should be distinguishable from any possible initial (towerless) configuration. So, we have:

Remark 1 Any terminal configuration of any exploration protocol for a grid of n > k nodes using
k oblivious robots contains at least one tower.

Theorem 1 There exists no (probabilistic or deterministic) exploration protocol in ATOM using
1 or 2 oblivious robots for any (i, j)-Grid with at least 3 nodes.

Proof. By Remark 1, it is straightforward to see that there is no exploration protocol for any
(i, j)-Grid with more than 2 nodes and 1 robot. Indeed any configuration is towerless.

Assume now, by contradiction, that there exists an exploration protocol in ATOM P for an
(i, j)-Grid with more than 2 nodes and 2 oblivious robots.

Consider a sequential execution e of P that terminates (by definition, if P is deterministic,
all its executions terminates; while if P is probabilisitic, at least one of its sequential execution
must terminate). Then, e starts from a towerless configuration (by definition) and eventually
reaches a terminal configuration containing a tower (by Remark 1). The two last configurations
of e consist in a towerless configuration followed by a configuration containing a tower. These
two configurations form a possible sequential execution that terminates while only two nodes are
visited, thus a contradiction. 2

Any (2, 2)-Grid is isomorphic to a 4-size ring. It has been shown in [4] that no exploration using
less than 4 oblivious robots is possible for any ring of size at least 4 in ATOM. So, the following
theorem holds:

Theorem 2 ([4]) There exists no deterministic exploration protocol using 1, 2, or 3 oblivious
robots in ATOM for a (2, 2)-Grid.

Lemma 1 Considering any deterministic exploration protocol P in ATOM using k oblivious robots
for a (3, 3)-Grid, there exist sequential executions of P, e = γ0, . . . , γw, in which:

• For every x, y with 0 ≤ x < y, γx and γy are distinguishable.

• Only the first configuration γ0 is towerless.

Proof. Consider any exploration protocol P in ATOM using k oblivious robots for a (3, 3)-Grid.
Consider any sequential execution e of P. By definition of the exploration, e is finite and starts
from a towerless configuration. Moreover, the terminal configuration of e contains a tower, by
Remark 1.

Take the last towerless configuration of e and all remaining configurations that follow in e (all
of them contain a tower) and form e′. e′ is a possible sequential execution of P where only the first
configuration is towerless.
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Figure 1: Three possible configurations in a (3, 3)-Grid with a tower of k robots.

Let e′ = α0, . . . , αm. Let two configurations αx = dx1 , . . . , d
x
n and αy = d

y
1, . . . , d

y
n of e′, that

are indistinguishable with 0 ≤ x < y. Then, by definition, there exists an automorphism f on
G satisfying the additional condition: Let v0, . . . , vr be the nodes of V , for all s ∈ [0..r], we have
dxs = d

y
ℓ where vℓ = f(vs). Then, α0, . . . , αx, βy+1, βm is a possible sequential execution of P

such that ∀z ≥ y + 1, we have βz = dz
g(1), . . . , d

z
g(n) where g is a bijection such that ∀s ∈ [1..n],

f(vs) = vg(s) and αz = dz1, . . . , d
z
n. Moreover, in α0, . . . , αx, βy+1, βm, the number of configurations

indistinguishable from αx decreases by one. Repeating the same construction, we eventually obtain
a possible sequential execution e′′ = ρ0, . . . , ρw of P starting from a towerless configuration only
followed by configurations containing at least one tower such that for every x, y with 0 ≤ x < y, ρx
and ρy are distinguishable. 2

Lemma 2 Considering any deterministic exploration protocol P in ATOM model using k oblivious
robots for a (3, 3)-Grid, if there exists an execution of P e = γ0 . . . γx . . . where γx contains a tower
of k robots, then there exists an execution e′ starting with the prefix e = γ0 . . . γx such that at most
one new node can be visited after γx.

Proof. Assume the existence of an execution of P e = γ0 . . . γx . . . where γx contains a tower of
k robots. Then, γx is not γ0 and is indistinguishable from configuration (a), (b), or (c) of Figure 1.
In Figure 1, symbols inside the circles represent the multiplicity of the node and numbers next the
circle are node’s labels to help explanations only. Without loss of generality, assume that γx is
either configuration (a), (b), or (c).

To visit a new node, one of the robots should eventually decide to move. Moreover, in γx, all
robots have the same view. So, the adversary can choose any of them to move.

(1) Consider configuration (a). Then, all possible destinations for the robots are symmetric. So,
the adversary can activate the robots in a way we retrieve configuration γx−1. Then, it can
activate robots in a way that the system return to γx, and so on. Hence, in this case, there
exists a possible execution of P that is infinite, a contradiction. So, from (a), P cannot try
to visit a new node.

(2) Consider configuration (b).

If robots synchronously move to node 5, node 5 may be unvisited. So, it is possible to visit a
new node, but then we retrieve Case (1). So, we can conclude that in this case from (b) only
one new node can be visited.
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If robots synchronously move to node 1 (resp. 7), then this node may be unvisited. So, it
is possible to visit a new node. But, in node 1, all possible destinations for the robots are
symmetric. So, the adversary can activate the robots in a way that we retrieve the previous
configuration, if we want to visit another node. So, as for Case (1), we can conclude that no
new node can be visited, that is from (b) only one new node can be visited.

(3) Using a reasoning similar to case (1), we can conclude that from (c), P cannot try to visit a
new node.

2

Lemma 3 Assume that there exists a deterministic exploration protocol P in ATOM model using
3 oblivious robots for a (3, 3)-Grid. Consider any suffix γw, . . . , γz of any sequential execution of P
where:

• For every x, y with 0 ≤ x < y, γx and γy are distinguishable.

• γw contains a tower of 2 robots.

Then, at most 4 new nodes can be visited from γw before a robot of the tower moves.

Proof. Proving this lemma is particularly tedious and error-prone because many cases must be
taken into account (positions of robots, symmetry classes, etc.). The proof was thus completed as
automatically as possible, by using model-checking techniques. The method is briefly sketched here,
a detailed presentation, together with the source code and the necessary tools can be found on the
web 1. First, an operational model of the problem is built: this model is a reactive program that
manages an abstract view of the grid and robots, according to a flow of (random) move commands.
This model is restricted to the configurations relevant for the property: an immobile two-robots
tower and a mobile single robot. The reactive program (i.e., the model) computes the consequences
of the moves induced by the input commands; in particular, it takes trace of the visited nodes, and
the encountered undistinguishable configuration classes. As soon as such a class has been reached
twice, a flag stuck is raised. And, all along the execution, a validity flag is computed that way: stuck
⇒ number of new visited nodes is ≤ 4. A model-checker tool is then used to check the following
invariant: whatever be a sequence of input move commands, valid remains true. In other terms,
the invariance of valid is sufficient to establish that, starting from any configuration with a tower
and a single moving robot, at most 4 new nodes can be visited before the configuration becomes
indistinguishable from some already encountered configuration. Concretely, the model is written
in the Lustre language [10, 16], and is itself partially generated by a ”meta” program written in
oCaml (which computes, in particular, the classes). The source is made of approximately 150 lines
of oCaml, and 100 lines of Lustre. The invariance checking is performed by the model-checker from
the lustre distribution. 2

Theorem 3 There exists no deterministic exploration protocol in ATOM using 1, 2, or 3 oblivious
robots for a (3, 3)-Grid.

Proof. According to Theorem 1, we only need to consider the case of 3 robots.
Assume that there exists an exploration protocol P in ATOM for a (3, 3)-Grid using 3 robots.

By Lemma 1, there exists a sequential execution e = γ0, . . . , γw that starts from a towerless con-
figuration, only followed by configurations containing at least one towers, and such that for every
x, y with 0 ≤ x < y, γx and γy are distinguishable.

1 http://www-verimag.imag.fr/~raymond/misc/robots/
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Figure 2: Three possible configurations in a (3, 3)-Grid with 4 robots.

In γ0, 3 nodes are visited. The execution being sequential, no new node is visited in the first
step where a tower of two robots is created. So, in γ1, 3 nodes are visited and there exists a tower
of two robots R1 and R2.

• Assume that R1 and R2 never moved after γ1. Then, by Lemma 3, at most 4 new nodes are
visited until the termination of e. So, at the termination of e, at most 7 distinct nodes have
been visited, a contradiction.

• Assume that R1 or R2 eventually moved. Let γℓ the first configuration from which R1 or R2

moves. From the previous case, at most 7 distinct nodes have been visited before γℓ. The
execution being sequential, only one robot of the tower moves during the step from γℓ to γi+1

and as in e only the first configuration is towerless, that robot moves to an occupied node.
Now, the view of R1 and R2 are identical in γℓ. So, there exists an execution e′ starting from
the prefix γ0, . . . , γℓ where both R1 and R2 move from γℓ to the same occupied node. As no
new node is visited during the step, still at most 7 nodes are visited once the system is in the
new configuration and this configuration contains a tower of 3 robots. By Lemma 2, at most
one new node is visited from this latter configuration. So, at the termination of e′, at most 8
distinct nodes have been visited, a contradiction.

2

Theorem 4 There exists no deterministic exploration protocol in ATOM using 1, 2, 3, or 4 obliv-
ious robots for a (3, 3)-Grid.

Proof. According to Theorem 3, we only need to consider the case of 4 robots.
Assume, by the way of contradiction, that there exists an exploration protocol P for a (3, 3)-Grid

with 4 robots in ATOM.
Figure 2 depicts three possible configurations for a (3, 3)-Grid with 4 robots. In Figure 2,

symbols inside the circles represent the multiplicity of the node and numbers next the circle are
node’s labels to help explanations only. Note that both Configuration (a) and (b) can be initial
configuration.

From now on, consider any synchronous execution of P (synchronous executions are possible in
the asynchronous model) starting from configuration (a). By “synchronous” we mean that robots
execute each operation of each cycle at the same time.
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Configuration (a) is not a terminal configuration by Remark 1. So at least one robot move in
the next Move operation. Moreover, the views of all robots are identical in (a). So, every robot
moves in the next Move operation. Two cases are possible:

• Every robot moves to Node 5 and the system reaches Configuration (c). In this case, none
of the corners has been visited, so Configuration (c) is not terminal and at least one robot
moves in during the next Move operation. Moreover, the views of all robots are identical,
so every robot moves in the next Move operation. Each robot cannot differentiate its four
possible possible destinations. So, the adversary can choose destinations so that the system
reaches configuration (a) again.

• Every robot moves to a corner node and as its view is symmetric, the destination corner
is chosen be the adversary. In this case, the adversary can choose destinations so that the
system reaches configuration (b). Configuration (b) being not terminal, at least one robot
moves in during the next Move operation. Moreover, the views of all robots are identical,
so every robot moves in the next Move operation. Each robot cannot differentiate its two
possible possible destinations. So, the adversary can choose to destinations so that the system
reaches configuration (a) again.

From the two previous case, we can deduce that there exist executions of P that never terminates,
so P is not an exploration protocol, a contradiction. 2

4 Deterministic solution using three robots

In this section, we focus on solutions for the exploration problem that use three robots only,
in CORDA and assuming weak multiplicity detection. Recall that there exists no deterministic
solution for the exploration using three robots in a (3, 3)- or (2, 2)-grid in that model (Section 3).
Moreover, exploring a (3, 1)-grid using three robots is straightforward. So, we consider all remaining
cases. We split our study into 2 cases. A general deterministic solution for any (i, j)-grid such that
j > 3 is given in Subsection 4.1. The particular case of the (2, 3)-grid is solved in Subsection 4.2.

4.1 General Solution

Overview. Our deterministic protocol works according to the following three main phases:

Set-Up phase: The aim of this phase is to create a single line of robots located at a corner and
along one of the longest borderlines of the grid — refer to Figure 3. Let us refer to this
configuration as the Set-Up configuration. The phase can be initiated from any arbitrary
towerless configuration that is not a Set-Up configuration. Note that no tower is created
during this phase.

Orientation phase: The starting configuration of this phase is the Set-Up configuration. The aim
of this phase is to give an orientation of the grid. In order to achieve that, one tower is created
on the longest line allowing the robots to establish a common coordinate system—refer to
Figure 4. The resulting configuration is refered to as an Oriented configuration.

Exploration phase: This phases starts from an Oriented configuration in which exactly one node
is occupied by a single robot, called Explorer. Based on the coordinate system defined during
the Orientation phase, the explorer visits all the nodes, except the two already visited
ones—refer to Figure 7, page 18.
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Figure 3: Set-Up Configuration

(0,3) (0,4) (0,5) (0,6)

(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(1,0)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,2)

(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(3,0)

(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(4,0)

(0,0) (0,1) (0,2)

Figure 4: Coordinate system built by the
Orientation phase

Set-Up phase. Starting from any towerless configuration, the Set-Up phase ends at a Set-Up

configuration, where there is a single line of robots along a longest borderline of the grid, and such
that one extremity is located at a corner. In order to do so, we distinguish three main configurations
as follows:

Leader: In a such configuration there is exactly one robot located at one corner of the grid.

Choice: In such a configuration, there are at least two robots that are located at a corner of the
grid. Thus, we have to choose one of these robots to remain at a corner. The other ones have
to leave the corner.

Undefined: In such a configuration, there is no robot in any corner of the grid. The idea is then
to elect one robot that will move to join one of the corners of the grid.

Choice Leader Set-Up 

Undefined 

Figure 5: Set-Up phase

Figure 5 shows the possible transitions between the main classes of configurations until reaching
a Set-Up configuration.

In the following, we present the behavior of robots, referred to as R1,R2, and R3, in each of
the main configurations. Note that such configurations are declined into several subconfigurations.

1. The configuration is of type Leader: In such a configuration, there is exactly one robot that
is in a corner of the grid. Let R1 be this robot. We consider the following subcases:

- The configuration is of type Strict-Leader: In such a configuration, there is no other robot
on any borderline having the corner where R1 is located as extremity. In this case, the robots
that are the closest to R1 are the ones allowed to move. Their destination is their adjacent
free node on a shortest path towards the closest free node that is on a longest borderline
having the corner where R1 is located as extremity. (If there is several shortest paths, the
adversary makes the choice.)

- The configuration is of type Half-Leader: In such a configuration, there is only one robot
R2 that is on a borderline having the corner where R1 is located as extremity. Two subcases
are possible:
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• The configuration is of type Half-Leader1: R2 is on a longest borderline. In this case
the third robot R3 is the one allowed to move. Its destination is its adjacent free node
towards the closest free node on the borderline that contains both R1 and R2. (If there
is several shortest paths, the adversary makes the choice.)

• The configuration is of type Half-Leader2: R2 is not on the longest borderline. In this
case R2 is the one allowed to move, its destination is its adjacent free node outside the
borderline. (Note that in the case there is no such an free node, R2 moves first to an
free node on its own borderline and then it moves outside the borderline.)

- The configuration is of type All-Leader: All the robots are on the same borderline as R1.
Let refer to the other robots as R2 and R3, respectively. Note that R2 and R3 are not
necessary on the same borderline. Thus, we have the two subcases as follow:

• The configuration is of type Fully-Leader: In such a configuration, all the robots are
on the same borderline, D1. The two following subcases are then possible:

- The configuration is of type Fully-Leader1: In the case where D1 is a longest border-
line and the robots do not form a line, then let R2 be the closest robot from R1. If R1
and R2 are not neighbors, then R2 is the only robot allowed to move and its destination
is its adjacent free node towards R1. In the case where R1 and R2 are neighbors, the
remaining robot, R3, will be the only robot allowed to move, its destination will be its
adjacent free node towards R2.

- The configuration is of type Fully-Leader2: In the case D1 is not the longest bor-
derline. Then, the robot that is the closest to R1 leaves the borderline by moving to its
neighboring free node outside the borderline it belongs to.

• The configuration is of type Semi-Leader: R2 and R3 are not on the same borderline.
Two subcases are possible:
- The configuration is of type Semi-Leader1: In this case i 6= j. Either R2 or R3 is
located on the smallest borderline. This latter moves to its adjacent free node outside
the borderline.
- The configuration is of type Semi-Leader2: In the case i = j. Let denote by
Distance(R,R′) the distance (that is, the lenght of a shortest path) in the grid between
the two nodes where R and R′ are located. If Distance(R1,R2) 6= Distance(R1,R3)
then the robot that is the closest to R1 is the only one allowed to move, its destina-
tion is its adjacent free node outside the borderline. Otherwise (Distance(R1,R2) =
Distance(R1,R3)), either (a) there is an free node between R1 and R2, or (b) R1 is
both neighbor to R2 and R3. In case (a), R1 is the only robot allowed to move and its
destination is its adjacent free node towards one of its two borderlines (the adversary will
make the choice). In case (b), R2 and R3 moves and their destination is their adjacent
free node on their borderline.

2. The configuration is of type Choice: In this configuration there are at least two robots located
at a corner of the grid. We split our study into the following cases:

- The configuration is of type Choice1: In this configuration there are exactly two robots that
are located at a corner of the grid. Let R1 and R2 be these robots. (i) In the case where R3
is on the same borderline as either R1 or R2 but not both (suppose that it is R1) then R2 is
the one allowed to move, its destination is its adjacent free node towards the borderline that
contains both R1 and R3. (ii) In the case where the three robots are on the same borderline,
then if Distance(R1,R3) < Distance(R2,R3) then R2 moves to its adjacent free node on
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the border lone towards R3. Otherwise (Distance(R1,R3) = Distance(R2,R3)), R3 will
move to its adjacent free node on the same borderline towards either R1 or R2 (the adversary
will choose the destination in that case). (iii) If R3 is not on a borderline it moves to the
closest longest borderline that contains either R1 or R2. (Note that in the case of symmetry,
the adversary will choose the direction to take.)

- The configuration is of type Choice2: In this configuration all the robots are located at a
corner of the grid. The robot allowed to move is the one that is located at a node that is
common to the two borderlines of the other robots. Let R1 be this robot. The destination of
R1 is its adjacent free node on the longest borderline. (Note that in the case of symmetry,
the adversary will choose the direction to take.)

3. The configuration is of type Undefined: In this configuration, there is no robot that is located
at any corner of the grid. The cases below are then possible:

- The configuration is of type Undefined1. In this case i = j and there is one borderline that
contains two robots R1 and R2 such that R1 is closer from a corner than R2 and R3. Let
D1 be this borderline. R3 is the only one allowed to move and its destination is its adjacent
free node on a shortest path towards D1. (If there are several shortest paths, the adversary
makes the choice.)

- The configuration is of type Undefined2. It is any configuration different from type
Undefined1, where there is exactly one robot that is the closest to one corner of the grid. In
this case, this robot is the only one allowed to move, its destination is its adjacent free node
on a shortest path towards the closest free node that is at the corner. (If there are several
shortest paths, the adversary makes the choice.)

- The configuration is of type Undefined3: There are exactly two robots that are the clos-
est to a corner of the grid. Let R1 and R2 be these two robots. If Distance(R1,R3) =
Distance(R2,R3) then R3 is the only one allowed to move, its destination is its adjacent
free node that is on a shortest path towards one of the two robots R1 or R2. (Note that the
adversary will choose the direction to take.) If Distance(R1,R3) 6= Distance(R2,R3) then
the robot that is the closest to R3 will be the only one allowed to move. Its destination is its
adjacent free node that is on a shortest path to the closest corner of the grid. (If there are
several shortest paths, the adversary makes the choice.)

- The configuration is of type Undefined4: There are three robots that are closest to a corner
of the grid. The cases below are then possible:

• The configuration is of type Undefined4-1: There is exactly one robot that is on a
borderline of the grid. In this case this robot is the only one allowed to move. Its
destination is its adjacent free node that is on a shortest path to a closest corner of
the grid. (In case of two shortest paths, the adversary breaks the symmetry in the first
step.)

• The configuration is of type Undefined4-2: In such a configuration, there are exactly
two robots on the borderline of the grid. Let R1 and R2 be these two robots. The robot
allowed to move is R3. Its destination is its adjacent free node towards a closest corner.
(The adversary may have to break the symmetry.)

• The configuration is of type Undefined4-3: The three robots in this configuration are on
borderlines of the grid. (i) If there are more than one robot on the same borderline. Note
that in this case there are exactly two robots on the same borderline, and let R1 and
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C1 C2

R1 R2

R3

Figure 6: Sample of a configuration of type Undefined4-4

R2 be these robots. Then R3 will be the only one allowed to move and its destination
is its adjacent free node towards the corner. (ii) If there is at most one robot on each
borderline: Exactly one borderline is perperdicular to the two others. The robot on
that borderline is the only one allowed to move and its destination is its adjacent node
towards the closest corner. (The adversary may have to break the symmetry.)

• The configuration is of type Undefined4-4: In this case there is no robot on any bor-
derline. (i) In the case where there are two robots, R1 and R2, that are closest to the
same corner, and R3 is the only robot that is closest to another corner, then R3 is the
only one allowed to move and its destination is its adjacent free node on a shortest path
towards the closest corner. (If there are several shortest paths, the adversary makes the
choice.) (ii) In the case where there are two robots, R1 and R2, that are closest to
corners C1 and C2, respectively, where C1 6= C2, and R3 is closest to both C1 and C2,
then R3 is the only one allowed to move (refer to Figure 6), and it moves toward C1
or C2 according to a choice of the adversary. (iii) In the case where all the robots are
closest to different corners, there is one robot R1 whom corner is between the two other
target corners of R2 and R3. The robot allowed to move is R1, its destination is its
adjacent free node on a shortest path towards the closest corner. (If there are several
shortest paths, the adversary makes the choice.)

The correctness of the Set-Up phase is established by Lemmas 8 and 4.

Lemma 4 Starting from any arbitrary towerless configuration, Set-Up phase does not create any
tower.

Proof. It is clear that in the case where one robot is allowed to move, no tower is created
because the robot always moves to an free adjacent node. Thus lets consider the cases in which
there are at least two robots that are allowed to move:

• The configuration is of type Strict-Leader: Suppose that the robot that is at the corner is
R1, and the two other ones (that are neither at a corner nor at the same borderline as R1)
are R2 and R3, respectively. R2 and R3 are allowed to move at the same time only in the
case they are at the same distance from R1. Since their destination is their adjacent free
node on the shortest path towards the longest borderline that contains R1, we are sure that
the both will move to different free nodes. Thus no tower is created in this case.

• The configuration is of type Semi-Leader2: we consider the case in whichDistance(R1,R2) =
Distance(R1,R3) such as there is no free node between R1 and bothR2 and R3 respectively.
It is clear that if the adversary activates them at the same time no tower is created since they
move to their adjacent free node on the borderline they belong to, in the opposite direction
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of R1 (recall that they are in two different borderlines). In the case the adversary activates
only one robot (R2), no tower is created as well since it moves to its adjacent free node on
the borderline it belongs to (note that is this case i = j). Note that the configuration reached
remains of type Semi-leader2, however, Distance(R1,R2) 6= Distance(R1,R3). Thus the
robot that is allowed to move now is R3, which is the one that was supposed to move at the
first place. Thus either we retrieve the configuration in which both robots moved (this will
happen in the case R3 has an outdated view). Or the configuration reached is of type Half
leader1 and all the robots have a correct view.

From the cases above we can deduce that starting from any configuration that is towerless,
Set-Up phase does not create any tower and the lemma holds. 2

Lemma 8 is established using the following three technical lemmas.

Lemma 5 Starting from a configuration of type Leader, a configuration of type Set-Up is reached
in a finite time.

Proof. In a configuration of type Leader, there is only one robot that is at the corner of the grid
(suppose that this robot is R1). It is easy to see that in the case i 6= j all the robots will be on the
longest borderline of the grid that contains R1 (refer to Strict Leader, HalfLeader1 configurations).
Once the robots on the same longest borderline, it is also easy to create a line of robots keeping one
robot at the corner. (The robot (R2) that is the closest to R1 moves first until it becomes neighbor
of R1. Once it is done, the remaining robot (R3) moves to become neighbor of R2.) Hence we
are sure that a configuration of type Set-Up is reached in a finite time. In the case i = j when
the robots move to the closest borderline that contains R1 either we have the same result as when
i 6= j (all the robots will be on the same borderline) and hence we are sure to reach a configuration
of type Set-Up. Or, each robot R2 and R3 is on the same borderline as R1, however both of them
are on different borderlines. The sub-cases are then possible as follow:

1. Distance(R1,R2) 6= Distance(R1,R3). In this case the robot that is the closest toR1 moves
to its adjacent node outside its own borderline (Let this robot be R2). Note that when it
moves, its new destination is the closest free node on the same borderline as both R1 and R3
(see Semi-Leader2 configuration). Thus we are sure that R2 will be on the same borderline
of R1 and R3 in a finite time, thus we are sure that the Set-Up configuration is reached in
a finite time.

2. Distance(R1,R2) = Distance(R1,R3). The two sub-case below are possible:

(a) There is an free node between R1 and the other robots. R1 is the one that will move,
its destination is its adjacent free node on one of its two adjacent borderlines. Note that
once it has moved, all the robots are in a borderline such as there is one borderline that
contains two robots, let D1 be this borderline (the configuration is of type Undefined1).
The robot allowed to move is the one that is not part of D1, its destination is its adjacent
free node outside the borderline it belongs to. Once it moves, its new destination will be
the borderline that contains two robots Thus we are sure that all the robots will be part
of the same borderline in a finite time. It is clear that from this configuration is easy
to build a configuration of type Set-Up. (Note that it is easy to break the symmetry,if
any, since we have three robots.)
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(b) There is no free node between R1 and the other robots R2 and R3. In this case R2 and
R3 will be the ones allowed to move. Their destination is their adjacent free node on
their borderline. In the case the adversary activates them at the same time, we retrieve
case 2a. If the adversary activates only one of the two robots, the configuration reached
will be of type Semi-Leader2 such as Distance(R1,R2) 6= Distance(R1,R3), thus, The
robot that is the closest to R1 is the one that is allowed to move. (Note that this robot
is the one that was supposed to move at the first place.) If it has an outdated view it
will move to its adjacent free node and we retrieve case 2a. If not, it will move to its
adjacent free node outside its borderline. When it does, its new destination is the closest
free node on the same borderline of the two other robots. Note that when such a robot
joins the new borderline, the configuration is of type Set-Up.

From the cases above, we can deduce that starting from a configuration of type Leader, a configu-
ration of type Set-Up is reached in a finite time and the lemma holds.

2

Lemma 6 Starting from a configuration of type Choice, a configuration of type Leader in reached
in a finite time.

Proof. It is clear that in the case where all the robots are on one corner of the grid, the next
configuration reached is of type Choice1 since there will be a single robot that will move (refer to
Configuration of type Choice2). Note that when the configuration is of type Choice1 the cases
below are possible (Let the robots that are at the corner of the grid be R1 and R2 respectively
and the third robot be R3):

1. R3 is on the same borderline D1 as R1 (Note that in this case R2 is not on D1). In this
case R2 is the one allowed to move. Note that once it moves, it leaves the corner and the
configuration will be of type Leader (refer to Choice1, case (i)).

2. All the robots are on the same borderline D1. In this case the robots R3 will be used to
elect one of the two robots at the corner of the grid (refer to Choice1 configuration case
(ii)). If Distance(R1,R3) 6= Distance(R2,R3) then the robot that is the farthest from R3
leaves the corner, thus, the configuration will contain a single robot that is at one corner
of the grid. Hence the configuration will be of type Leader in a finite time. In the case
Distance(R1,R3) = Distance(R2,R3), R3 will move first on the borderline towards either
R1 or R2 breaking the symmetry, and we retrieve the case in which Distance(R1,R3) 6=
Distance(R2,R3). Thus we are sure that a configuration of type Leader is reached in a finite
time.

3. R3 is not on a borderline. In this case R3 is the one allowed to move. Its destination is
its adjacent free node on a shortest path towards the closest longest borderline that contains
either R1 or R2. Thus we are sure that one of the two cases described above will be reached
(refer to Choice1 configuration, case (iii)).

From the cases above we can deduce that a configuration of type Leader is reached in a finite
time and the lemma holds. 2

Lemma 7 Starting from a configuration of type Undefined, a configuration of either type SetUp

or type Leader is reached in a finite time.
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Proof. It is clear that in the case where the configuration is of type Undefined2, we are sure
to reach a configuration of type Leader in a finite time, since there is only one robot that is the
closest to one corner of the grid (this robot will move until it reaches the closest corner). It is
also clear that in the case where the configuration is of type Undefined1, either a configuration of
type Undefined2 is reached and hence a configuration of type Leader is eventually reached or a
configuration where there are two robots that are both the closest to a corner of the grid is reached,
this case is part of the cases below:

1. There are exactly two robots that are the closest to one corner of the grid (let these two
robots be R1 and R2 respectively). In this case R3 will be used to break the symmetry:
In the case Distance(R1,R3) = Distance(R2,R3), R3 will be the one that will move first,
it destination is its adjacent node towards either R1 or R2. Note that once it has moved,
Distance(R1,R3) 6= Distance(R2,R3). In the case Distance(R1,R3) 6= Distance(R2,R3),
the robot that is the closest to R3 will be the one allowed to move, its destination is its
adjacent free node on a shortest path towards the corner. Note that once it has moved, either
it reaches the corner or it becomes the closest one. Thus we are sure that a configuration of
type Leader is reached in a finite time.

2. All the robots are the closest to a corner of the grid. If the configuration is of type Undefined4-1,
then there will be one robot that will be allowed to move (the one that is on a borderline),
once it has moved, it becomes the closest to one corner of the grid, thus we are sure to reach a
configuration of type Leader in a finite time. In the case there are two robots at a borderline,
The third robot (which is not on a borderline) is the one that will move becoming the closest
robot to one corner of the grid. Thus in this case too, we are sure to reach a configuration
of type Leader. In the case all the robots are on a borderline then, i) if there is more than
one robot on the same borderline (note that in this case the borderline contains two robots),
the robot that is not part of the borderline moves towards the closest corner becoming the
closest one, thus we are sure that a configuration of type Leader is reached in a finite time.
In the case there is one robot at each borderline, then one robot is easily elected to move
becoming the closest to one corner of the grid. Thus, in this case too we are sure to reach a
configuration of type Leader in a finite time. In the case there is no robot on the borderline.
If there are two robots that are the closest to the same corner such as the third robot is the
only closest robot to another corner then this robot is the one allowed to move, when it does
it becomes the only one that is the closest to one corner of the grid. Thus we are sure to reach
a configuration of type Leader. In the case there is one robot (R3) that is the closest to both
corners C1 and C2 such as R1 and R2 are also the closest to C1 C2 respectively, then R3 is
the one allowed to move towards one of the closest corner. Note that once it has moved, it
becomes the closest one and hence we are sure that a configuration of type Leader is reached
in a finite time. In the case all the robots are the closest to different corner, we are sure
that one of them is the closest one to one corner that is between the two other target corners
(the closest to the other robots). This robot is the one allowed to move, its destination is its
adjacent free node towards the closest corner. Note that one it moves it becomes either even
closer (and hence it will be the only one that can move) or it will reach the corner. In both
cases we are sure that a configuration of type Leader is reached.

From the cases above we can deduce that starting from a configuration of type Undefined, a
configuration of type Leader is reached in a finite time and the lemma holds.

2
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Lemma 8 Starting from any towerless configuration, a configuration of type Set-Up is reached in
a finite time.

Proof. From Lemma 5, 6 and 7 we can deduce that starting from any arbitrary towerless
configuration that does not contain a line of robots on the longest line of the grid, a configuration
of type Set-Up is reached in a finite time and the lemma holds. 2

Orientation phase. In this phase, an orientation of the grid is determined in the following
manner: The starting configuration of this phase contains a line of robots on the corner of a longest
borderline of the grid, and its length is greater than 3. The robot that is at the corner is the
one allowed to move, its destination is its adjacent occupied node. Once it has moved, a tower is
created. Then, we can determine a coordination system where each node has unique coordinates,
see Figure 4 (page 11). The node with coordinates (0, 0) is the unique corner that is the closest to
the tower. The X-axis is given by the vector linking the node (0, 0) to the node where the tower is
located. The Y-axis is given by the vector linking the node (0, 0) to the node that does not contain
the tower.

Lemma 9 Starting from a configuration of type Set-Up, a configuration of type Oriented is
reached in one step.

Exploration phase. From Lemmas 4-9, we know that, starting from any initial configuration,
the system reaches an Oriented configuration in finite time and without creating any tower except
in the last step.

Figure 7: Exploration phase

In the first oriented configuration, we know that nodes of coor-
dinates (0, 0) and (0, 1) are already visited. Then, to ensure that
the exploration phase remains distinct from the previous phases and
to keep the coordinate system, we should only authorize the robot
that is single in a node to move. Let call this robot the explorer.

To explore all nodes except nodes of coordinates (0, 0) and (0, 1),
the explorer should order all coordinates in such a way that (i) (0, 0)
and (0, 1) are before its initial position (that is (0, 2)) and all other
coordinates are after; and (ii) for all non-maximum coordinates
(x, y), if (x′, y′) is the successor of (x, y) in the order, then the nodes of coordinates (x, y) and
(x′, y′) are neighbors. Such an order can be defined as follows:

(a, b) � (c, d) ≡ b < d ∨ [b = d ∧ ((a = c) ∨ (b mod 2 = 0 ∧ a < c) ∨ (b mod 2 = 1 ∧ a > c)]

Using the order �, the explorer moves as follows: While the explorer is not located at the
node having the maximum coordinates according to �, the explorer move to the neighbor whose
coordinates are the successor of the coordinates of its current position.

Lemma 10 The Exploration phase terminates in finite time and once terminated all nodes have
been visited.

By Lemmas 4-10, follows:

Theorem 5 The deterministic exploration of any (i, j)-Grid with j > 3 can be solved in CORDA
using 3 oblivious robots and the three phases Set-Up, Orientation, and Exploration.
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4.2 Exploring (2,3)-Grids

The idea of the solution for the (2, 3)-Grid is rather simple. Consider the two longest borderlines of
the grid. Since there are 3 robots on the grid, then there exists one of the two longest borderlines,
D, that contains either all the robots or exactly two robots. In the second case, the robot that is
not part of D moves to its adjacent free node on the shortest path towards the free node on D.
Thus, the three robots are eventually located on D. Next, the robot not located on the corners
of the grid moves to one of its two neighboring occupied nodes (the destination is chosen by the
adversary). Thus, a tower is created. Once the tower is created, the grid is oriented. Then, the
single robot moves to its adjacent free node in the longest borderline that does not contain a tower.
Next, it explores the nodes of this line by moving in the direction of the tower. When it becomes
neighbor of the tower, all the nodes of the (2, 3)-Grid have been explored.

Theorem 6 The deterministic exploration of a (2, 3)-Grid can be solved in CORDA using 3 obliv-
ious robots.

5 Deterministic solution for (3,3)-grid using five robots

1 2 3

5 6 7

4

Figure 8: Exploration task on grids (3, 3)

In this section, we propose an algorithm that solves the exploration with 5 robots on the (3, 3)-
Grid, in CORDA and assuming weak multiplicity detection. The algorithm works in two phases,
the Exploration phase and the Preparation phase. Figures 8 and 9 depict the Exploration

phase.
Exploration starts from three special configurations shown in either Figure 8-Case (1), Fig-

ure 9-Case(1a), or Figure 9-Case(1b). In the former case, the unique robot that is (1) in a borderline,
(2) not at a corner, and (3) not in the borderline linking the two occupied corners, moves toward
the center. In Case (1a) in Figure 9, the unique robot located at a corner moves toward one of its
neighbors (chosen by the adversary). Similarly, in Case (1b) in Figure 9, the robot located at the
center moves toward one of its neighbors. In the three cases, one tower is created and the system
reaches Case 2 of either Figure 8 or Figure 9, depending on the initial configuration. Next, the
exploration is made following the movements depicted in either Figure 8 or Figure 9, respectively.

19



2 3

4 5 6

1a 1b

Figure 9: Special Exploration of grids (3, 3)

The Preparation phase starts from any towerless configuration that is not one of the three
initial configurations of the exploration phase. The Preparation phase aims at reaching one of
these three initial configurations. The detailed algorithm of this phase is left as an exercise for the
reader—a solution is given in the appendix.

Theorem 7 The deterministic exploration of a (3, 3)-Grid can be solved in CORDA using 5 obliv-
ious robots.

6 Conclusion

We presented necessary and sufficient conditions to explore a grid shaped network with a team of k
asynchronous oblivious robots. Our results show that, perhaps surprisingly, exploring a grid is easier
than exploring a ring. In the ring, deterministic (respectively, probabilistic) solutions essentially
require five (resp., four) robots. In the grid, three robots are necessary (even in the probabilistic
case) and sufficient (even in the deterministic case) in the general case, while particular instances
of the grid do require four or five robots. Note that the general algorithm given in that paper
requires exactly three robots. It is worth investigating whether exploration of a grid of n nodes can
be achieved to any number k (3 > k ≥ n− 1) of robots, particularly when k is even.
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Figure 10: Configuration (3, 1, 1) Figure 11: Instance of a configuration (2, 1, 2)

Figure 12: Instance of a configuration (2, 1, 2) Figure 13: Instance of a configuration (2, 1, 2)

A Preparation phase of the algorithm working with 5 robots in
the (3, 3)-Grid

The aim of the Preparation phase is to reach one of the special configurations, where the Exploration
phase can start. It starts from an arbitrary towerles configuration that is not one of the three initial
configurations shown in either Figure 8 or Figure 9.

Let us define some terms that will be used later: let the interdistance d be the minimal distance
among distances between each pair of robots. We call a d.block a sequence of consecutive robots
that are at distance d. The size of an 1.block is the number of robots it contains. We refer to a
configuration by a set of three values (X1,X2,X3) such as Xi represents the number of robots on
the line i. Note that X1 and X3 are borderlines. Since the grid is of size (3, 3), we do not know
which borderlines correspond to X1 and X3. Some ambiguities can appear and thus for the same
configuration there will be many possible sequences (X1,X2,X3). The robots could be confused
not knowing which action to take. To avoid this situation, we will use the following method: First
we will choose one or two guide lines in the following manner: the line that contains the d.biggest
d.block of robots is elected as a guide line. Note that the guide line can only contain two or three
robots. In the case there are two possible guide lines that are perpendicular to each other, then i)
in the case only one of this two guide lines is at the borderline of the grid, then this line is the guide
line. ii) In the other case, the guide line is elected as follow: Let D1 be one possible guide line and
D2, D3 be the lines that are horizontal to D1. In the same manner let D′1 be the other possible
guide line and D′2, D′3 be the lines that are horizontal to D′1. Let B be the number of the biggest
d.blocks on the lines Di and B′ be the number of the biggest d.blocks on the lines D′i. The guide
line is the one corresponding to the biggest value among B and B′. For Instance in Figure 14, the
configuration can be (2, 1, 2) or (2, 2, 1). We can see that d = 1, and the size of the biggest 1.block
is equal to 2. Note that there is an 1.block of size 2 on two borderlines that are perpendicular to
each other (on D3 and D′1 —refer to Figure 14). Let B be the number of 1.blocks on the lines
that are horizontal to D3, clearly B = 2. In the same manner, let B′ be the number of 1.blocks of
size 2 on the lines that are horizontal to D′1 (clearly B′ = 1). We can see that B > B′, thus the
guide lines are both D3 and D1 (The lines that are considered are the ones that are horizontal to
D3 and D1). Thus the configuration is of type (2, 1, 2).

The triple set (X1,X2,X3) refer then to the number of robots that are horizontal to the guide
lines. The following cases are then possible:

• The configuration is of type (1, 1, 3). Two sub-cases are possible: i) The configuration is
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Figure 14: Guide-lines, configuration of type (2, 1, 2)

Figure 15: Instance of a configuration (3, 2, 0)

similar to the one shown in Figure 10. It is clear that in this case no guide line can be
determined. The robots allowed to move are the ones that are at the corner having one free
node as a neighbor, their destination is their adjacent free node on the borderline they belong
to. ii) The remaining cases: One line can be elected as the guide line, this line is the one that
contains an 1.block of size 3 (X3). The robot that is alone on the borderline (X1) is the one
allowed to move, its destination is its adjacent free node on the shortest path towards the
middle line (the one that contains X2). Note that in a case of symmetry, the adversary will
break the symmetry by choosing one of the two possible neighboring nodes.

• The configuration is of type (1, 2, 2). The robot that is alone on the borderline (X1) is the
one allowed to move, its destination is its adjacent free node on the shortest path towards
the free node on the line that contains X2.

• The configuration is of type (1, 3, 1). Two sub-cases are possible: i) The configuration is
similar to the one shown in Figure 9, Step 1. Note that for this configuration, there is a
dedicated algorithm that solves the exploration problem. The algorithm is detailed in Figure
9. Note that since the system is asynchronous, the adversary in some steps of the algorithm
can activates one of the two robots that are allowed to move. In this case, the robot that
was supposed to move in the first place is the only one that can move, thus by moving the
configuration reached when both robots were activated is reached again ii) The remaining
cases: we are sure that there is one robot that is part of an 1.block of size 3 (in the middle
line) that has two neighboring free nodes (Note that there is only five robots and a single
1.block of size 3), let this robot be R1. R1 is the only one allowed to move, its destination is
its adjacent free node towards the closest robot that is in one of the two borderlines that are
horizontal to the 1.block of size 3.

• The configuration is of type (2, 1, 2). Note that the configuration does not contain an 1.block
of size 3. Let D1 and D3 be the two borderlines corresponding to X1, X2 respectively. The
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sub-cases below are possible:

– Both D1 and D2 contains robots at distance 2 (d = 2). In this case, we are sure that
there is one robot on the center of the grid (on the middle of the middle line, otherwise
the configuration will contains an 1.block of size 3). This robot is the one allowed to
move, its destination is one of adjacent free node towards the borderline (refer to Figure
11).

– The robots on D1 are at distance 1 and the robots on D2 are at distance 2. If the
robot that is in the middle line (according to the guide line) is also on a borderline (see
Figure 12), we are sure that there is one robot at the corner of the grid not having any
neighboring robot. This robot is the one allowed to move, its destination is one of its
adjacent free node. If the robot is in the center of the grid (see Figure 13), then this
robot is the one allowed to move its destination is its adjacent free node towards D2.

– Both D1 and D2 contains robots at distance 1 (d = 1). Let D3 be the middle line that
is horizontal to both D1 and D2. The robot allowed to move is the one that is on D3, its
destination is its adjacent node towards D1 or D2 (The scheduer will make the choice
in the case of symmetry).

• The configuration is of type (2, 3, 0). In this case the robot that in the middle line that
contains three robots having an free node as a neighbor on the line that contains two robots
is the one allowed to move, its destination is this adjacent free node.

• The configuration is of type (3, 0, 2). In this case the robots that are in X3 (the line that
contains two robots) are the one allowed to move, their destination is their adjacent free node
on the shortest path towards X2.

• The configuration is of type (3, 2, 0) but is different from the special configuration (refer to
Figure 15). The robots allowed to move are the two robots that are on the line corresponding
to X2. Their destination is their adjacent free node on the line that contains X2. Its is
clear that in the case the adversary activates only one of these two robots the configuration
reached will be the Special configuration (see Figure 8, step 1), Thus the exploration task
can be performed as shown in 8. In the case the adversary activates both robots at the same
time, then a tower is created and the configuration reached is like the one shown in Figure 8,
step 2. In this case too the exploration can be performed.

Note that once one of the two special configurations is built, one tower is created and the
exploration task can be performed. refer to Figures 8 and 9.

Correctness Proof.

Lemma I Starting from a configuration of type (1, 2, 2), a configuration of type (2, 3, 0) is reached
in a finite time.

Proof. In a configuration of type (1, 2, 2) the robot that is allowed to move is the one that is
alone on the borderline containing X1, let R1 be this robot, its destination is its adjacent free node
towards X2, Since line X2 contains two robots, when R1 joins X2, X2 will contain an 1.block of
size 3 and X1 will contain no robot. Thus the configuration reached is of type (2, 3, 0) and the
lemma holds. 2
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Lemma II Starting from a configuration of type (1, 3, 1), either a configuration of type (2, 2, 1) or
of type (2, 1, 2) is reached in a finite time.

Proof. When the configuration is of type (1, 3, 1), we are sure that there is one robot that
is part of the 1.block of size 3 on X2 that has two neighboring free nodes. This robot is the one
allowed to move its destination is its adjacent free node towards the closest robot on either X1 or
X2. Suppose that such a robot is the one that is in the middle of the 1.block of size 3. Once the
robot has moved, the configuration becomes of type (2, 1, 2) and the lemma holds. If such a robot
is at the extremity of the 1.block of size 3, then by moving, the configuration reached is of type
(2, 2, 1) and the lemma holds. 2

Lemma III Starting from a configuration of type (2, 1, 2), a configuration of type (3, 0, 2) is reached
in a finite time.

Proof. The cases below are possible:

1. Both D1 and D2 contains robots at distance 2 (d = 2). It is clear that in this case there is one
robot that is in the center of the grid. This robot is the one allowed to move, its destination
is one of its adjacent free node. By moving, the robot join a borderline. Note that this
borderline contains an 1.block of size 3. Thus the configuration reached will be (3, 0, 2).

2. The robots on D1 are at distance 1 and the robots on D2 are at distance 2. In this case the
robot that is on the borderline on D2, being at the corner of the grid and not having any
neighboring robot is the one that moves towards one of its adjacent free node. Note that once
the robot has moved, the configuration reached remains of type (2, 1, 2), however, both D1
and D2 contains robots at distance 1.

3. Both D1 and D2 contains robots at distance 1 (d = 1). Let D3 be the middle line that is
horizontal to both D1 and D2. In this case the robot that is on D3 is the one allowed to
move, its destination is its adjacent free node towards one of the two neighboring borderlines
that contain an 1.block of size 2. Note that we are sure that this robot has at least one free
node as a neighbor otherwise the configuration contains a single 1.block of size 3 and the
configuration will not be of type (2, 1, 2). Once the robot has moved, a new 1.block of size 3
is created at one borderline and the configuration will be of type (3, 0, 2).

From the cases above, we can deduce that starting from a configuration of type (2, 1, 2), a
configuration of type (3, 0, 2) is reached in a finite time and the lemma holds. 2

Lemma IV Starting from a configuration of type (2, 3, 0), a configuration of type (3, 2, 0) is reached
in a finite time.

Proof. When the configuration is of type (2, 3, 0), the robot allowed to move is the one that
is on the line that contains X2 having an free node as a neighbor on the line that contains two
robots. Note that once the robot has moved, a new 1.block of size 3 is created one borderline of
the grid. Thus the configuration reached will be of type (3, 2, 0) and the lemma holds. 2

Lemma V Starting from a configuration of type (3, 0, 2), either a configuration of type (3, 2, 0) or
of type (3, 1, 1) is reached in a finite time.
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Proof. When the configuration is of type (3, 0, 2), the robots that are on the line that X3
are the one allowed to move. When they do, they move to their adjacent free node towards the line
that is horizontal to the the one containing an 1.block of size 3. Note that in the case the adversary
activates both robots allowed to move at the same time, then the configuration reached is of type
(3, 2, 0) and the lemma holds. If it is not the case, the configuration reached is of type (3, 1, 1) and
the lemma holds. 2

Lemma VI Starting from a configuration of type (3, 1, 1), either a configuration of type (3, 2, 0)
or of type (2, 2, 1) is reached in a finite time.

Proof. In the case the configuration is similar to the one shown in Figure 10. The robots that
are at the corner having an free node as a neighbor are the one allowed to move. Their destination
is their adjacent free node. Note that in the case the adversary activates both robots at the same
time, the configuration reached is of type (2, 2, 1) and the lemma holds. In the case the adversary
activates only one robot, then the configuration reached remains of type (3, 1, 1) but it is different
from the Figure 10. For the other configurations of type (3, 1, 1) (all the configurations that are
different from the one shown in Figure 10). The robot that is allowed to move is the one that is
single on the borderline that contains X3. Its destination is its adjacent free node on the shortest
path towards the line that contains X2. Note that once it has moved, the configuration reached is
of type (3, 2, 0) and the lemma holds. 2

Lemma VII Starting from a configuration of type (1, 2, 2), a configuration of type (3, 2, 0) is
reached in a finite time.

Proof. From Lemma I, we are sure that starting from a configuration of type (1, 2, 2), a
configuration of type (2, 3, 0) is reached in a finite time. From Lemma IV we are sure that starting
from a configuration of type (2, 3, 0), a configuration of type (3, 2, 0) is reached in a finite time.
Thus we can deduce that starting from a configuration of type (1, 2, 2), a configuration of type
(3, 2, 0) is reached in a finite time and the lemma holds. 2

Lemma VIII Starting from a configuration of type (1, 3, 1), a configuration of type (3, 2, 0) is
reached in a finite time.

Proof. From Lemma II, we are sure that starting from a configuration of type (1, 3, 1), a
configuration of type (2, 2, 1) is reached in a finite time. From Lemma VII we are sure that starting
from a configuration of type (1, 2, 2), a configuration of type (3, 2, 0) is reached in a finite time.
Thus we can deduce that starting from a configuration of type (1, 3, 1), a configuration of type
(3, 2, 0) is reached in a finite time and the lemma holds. 2

Lemma IX Starting from a configuration of type (2, 1, 2), a configuration of type (3, 2, 0) is reached
in a finite time.

Proof. From Lemma III, we are sure that starting from a configuration of type (2, 1, 2), a
configuration of type (3, 0, 2) is reached in a finite time. From Lemma V, we are sure that starting
from a configuration of type (3, 0, 2), a configuration of type (3, 2, 0) is reached in a finite time.
Thus we can deduce that starting from a configuration of type (2, 1, 2), a configuration of type
(3, 2, 0) is reached in a finite time and the lemma holds. 2
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Lemma X Starting from any configuration that is towerless, a configuration of type (3, 2, 0) is
reached in a finite time.

Proof. From Lemmas IV-IX, we can deduce that starting from any configuration that is
towerless, a configuration of type (3, 2, 0) is reached in a finite time and the lemma holds. 2

Lemma XI Starting from one of the three special configurations, all the nodes of the grid are
explored and the algorithm stops.

Proof. It is easy to see from Figure 8, that all the nodes of the grid are explored. Thus the
lemma holds. 2

Lemma XII Starting from any configuration of type (3, 2, 0), the exploration can be performed.

Proof. If the configuration is the special configuration (refer to Figure 8 (step 1)), then
according to Lemma XI, the exploration task is performed and all the nodes of the ring are explored.
If the configuration is as the one show in Figure 15, then the two robots that are not part of the
1.block of size 3 are the one allowed to move, their destination is their adjacent node in the center
of the grid. In the case where the adversary activates only one of the two robots allowed to move,
the special configuration is reached and the lemma holds. If both robots are activated then a tower
is created in the center of the grid and the configuration reached will be as the one shown in Figure
8 (Step2) and in this case too the exploration is performed and the lemma holds. 2

From the lemmas above we can deduce that:

Theorem 7 The deterministic exploration of a (3, 3)-Grid can be solved in CORDA using 5 obliv-
ious robots.
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