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Abstract. There exist many approaches to specify and to define secu-
rity policies. We present here a framework in which the basic components
of security policies can be expressed, and we identify their role in the de-
scription of a policy, of a system and of a secure system. In this setting,
we formally describe two approaches to define policies, and we relate
them: the rule-based approach consists of specifying the conditions un-
der which an action is granted and, the property-based approach consists
of specifying the security properties the policy aims to enforce. We also
show how a policy can be applied to constrain an existing system, and
how a secure system can be defined from a security policy.
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1 Introduction

Security has become a major issue in computer science and there exists now a
large collection of literature on this topic. In this context, many security poli-
cies have been introduced, describing, in a more or less formal way, within a
particular specification language, a notion of information system, suitable in a
particular context, and/or the specification of granted actions in this system,
and/or the specification of secure states of this system. A classification of these
approaches can be obtained by considering two main criteria. The first one is
the language used to describe the policy. Specification languages can be natural
languages, XACML, logic, reduction systems, automata, etc. Of course, a formal
language, based on a clear syntax and semantics, allows a clear meaning of the
described policy, and also allows to reason about its properties in a mathemat-
ical setting. Furthermore, depending on the language used to specify a policy,
an operational mechanism, allowing to enforce the policy on a system, can be
more or less difficult to develop. The second criterion is the definition of what
is a security policy. Is it a specification of secure states of the system? is it an
operational mechanism allowing to grant or to revoke actions on the system?
does this mechanism take into account how the system is transformed by the
actions, or is it just based on the name of actions? what is a security informa-
tion? is it an information that the policy aims to control or is it an information
that the policy uses to control a system? what is a security configuration? can
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a security configuration be modified during the lifetime of a system? is there
a (administrative) policy to control changes of security configurations? does a
policy take into account a notion of environment? are the systems on which poli-
cies apply and the policies independent, or do they share some entities? In this
paper, we provide a formal framework allowing to specify and to define security
policies by following several approaches and we show how to relate them. In this
setting, we focus on two approaches to define policies: the rule-based approach
consists of specifying the conditions under which an action is granted, and the
property-based approach consists of specifying the security properties the policy
aims to enforce. As we will see, while property-based policies can be expressed
as rule-based policies, there exist some rule-based policies which cannot be ex-
pressed as property-based policies. Indeed rule-based policies allow to specify
some behaviours which cannot be enforced by property-based policies. This is
the main difference between the two approaches. However, we give here a for-
mal characterization of the class of rule-based policies which can be expressed
as property-based policies. Moreover, we also present how to apply a policy to
constrain an existing system to get a secure system according to the policy, and
how to define a secure system from a policy. Last, we give some equivalence re-
sults about the executions of such systems. Our framework does not correspond
to the definition of a language to deal with security policies but aims to define
what are the components needed to specify security policies, what are their roles
and, depending on the considered approach, what can be done with a security
policy. Using such a framework provides several benefits. Firstly, policies devel-
oped within this framework can be easily reused when considering new policies
or even variant of these policies. Secondly, we think that this framework provides
some methodological guidelines allowing to specify security policies. Finally, it
is convenient to deal with a generic formal framework in which many policies
can be expressed in order to perform analysis of these policies and to define
operations over these policies (such as comparison or composition of policies).

2 Systems

This section introduces the basic notions related to labelled transition systems
(LTS) together with their notations. A LTS S is a tuple (Σ,Σ0, L, δ) where Σ

is a set of states, Σ0 ⊆ Σ is a set of initial states, L is a set of labels, and

δ ⊆ Σ ×L×Σ is a transition relation. Often, we will write σ1
l
−→δ σ2 instead of

(σ1, l, σ2) ∈ δ. Furthermore, we will write
−→
l a sequence (l1, · · · , ln) of labels in

L and, when it is defined, we will write σ1

−→
l
−→⋆

δσn+1 the sequence:

σ1
l1−→δ σ2

l2−→δ · · ·
ln−1

−−−→δ σn
ln−→δ σn+1

of transitions. From an operational point of view, we can require that the relation
δ of a LTS defines a deterministic and left-total relation:

∀σ, σ1, σ2 ∈ Σ ∀l ∈ L (σ
l
−→δ σ1 ∧ σ

l
−→δ σ2)⇒ σ1 = σ2

∀σ1 ∈ Σ ∀l ∈ L ∃σ2 ∈ Σ σ1
l
−→δ σ2
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We write Γ (S) the set of states that are reachable by “applying” a finite number
of times δ from a state in Σ0. We also define the set Exec(S) ⊆ Σ+ (where Σ+

is the set of non-empty finite sequences of states) of executions of S as follows:

Exec(S) = {(σ1, · · · , σn) | n ≥ 1 ∧ σ1 ∈ Σ0 ∧ ∀i ∃l ∈ L σi
l
−→δ σi+1}

Example 1. We define the system Sac = (Σac, Σ
0
ac, Lac, δac) allowing to add

or to release accesses done by active entities, the subjects in S, over passive
entities, the objects in O, according to access modes in A (for example, read,
write, etc). A state is represented by a function α : S → ℘(O × A) such that
(o, a) ∈ α(s) means that s has an access over o according to the access mode a.
Hence, Σac = {α : S → ℘(O × A)}. We define Σ0

ac = {α0 | ∀s ∈ S α0(s) = ∅}
expressing that no access is done in the initial state. By considering the set of
labels Lac = {〈+, s, o, a〉, 〈−, s, o, a〉 | s ∈ S, o ∈ O, a ∈ A}, where 〈+, s, o, a〉
(resp. 〈−, s, o, a〉) allows to add (resp. to release) the access done by s over o

according to a, we define the transition relation δac by:

{

α
〈+,s,o,a〉
−−−−−−→δac

α[s← α(s) ∪ {(s, o, a)}]

α
〈−,s,o,a〉
−−−−−−→δac

α[s← α(s)\{(s, o, a)}]

}

where f [x← v](y) =

{

f(y) if x 6= y

v if x = y

We introduce now the notion of interpretation of the states of a system: an
interpretation ID

Σ of Σ based on the domain D is a mapping from Σ to D. We
write JσKID

Σ

the interpretation of σ, and we extend this definition for subsets Σ′

of Σ as follows: JΣ′KID

Σ

= {JσKID

Σ

| σ ∈ Σ′}. The interpreted system is defined by

JSKID

Σ

= (JΣKID

Σ

,
q
Σ0

y
ID

Σ

, L, δID

Σ ) where δID

Σ = {(Jσ1KID

Σ

, l, Jσ2KID

Σ

) | σ1
l
−→δ σ2}.

Example 2. We can change the representation of states of Sac by considering the
interpretation IAac

Σac
of Σac where Aac = ℘(S ×O ×A) and:

∀α ∈ Σac JαK
I

Aac

Σac

=
⋃

s∈S

⋃

(o,a)∈α(s)

{(s, o, a)}

In this way, states of the interpreted system are sets of accesses.

Intuitively, interpretations will be useful when applying security policies over
systems: an interpretation can provide the information that a policy aims to
control. Indeed, thanks to interpretations, it will be possible to apply a policy
on a system even if the policy and the system do not share the same entities or
representations. For example, by considering an interpretation whose mapping
provides the information flows generated by a set of accesses, it is possible to
apply a flow policy over an access system such as Sac. Furthermore, considering
a composition operator over the domain of an interpretation allows to define a
semantics over executions of a system. This can be useful to check that even
if each transition of a sequence is secure according to a policy, the sequence is
also secure according to the policy. Such property does not always hold. For
example, when dealing with a flow policy over an access system, some sequences
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of legal sets of accesses (e.g. sets of accesses generating legal flows according to
the policy) may generate, by composition of flows generated by each element
of the sequence, some illegal flows. Later, when defining sytems from policies, a
transition will be labelled both by a request submitted to the system and by the
answer given by the policy to this request. We write R for the set of requests,
and D for the set of possible answers. The semantics of R and D is defined by a
relation JRKDΣ ⊆ Σ × (R×D)×Σ. (σ1, (R, d), σ2) ∈ JRKDΣ means that when the
system is in the state σ1, if the request R is applied according to the answer d,
then the system moves into the state σ2. The notion of answers allows to consider
policies specifying transformations that must be done over states when a request
has not been accepted (this can be useful for policies that aim to control the
number of times that an entity tries to perform an action that would lead to an
insecure state). However, for many policies, the set of answers contains only two
elements allowing to specify that the request is granted or not.

Example 3. We define the set Rac as the set Lac and the set D = {yes,no}. The
semantics of Rac can be defined by:

(A1, (〈+, s, o, a〉, yes), A2) ∈ JRacKD
Aac
⇔ A2 = A1 ∪ {(s, o, a)}

(A1, (〈−, s, o, a〉, yes), A2) ∈ JRacKD
Aac
⇔ A2 = A1\{(s, o, a)}

(A1, (R, no), A2) ∈ JRacKD
Aac
⇔ A1 = A2

3 Security policies

Several points of view exist on security policies, among which two main ap-
proaches can be distinguished.
Property-based security policies. A property-based policy is a characteriza-
tion of secure elements of a set according to some security information. Hence,
specifying a property-based policy P first consists of defining a set A of “things”
that the policy aims to control, called the security targets, in order to ensure
the desired security properties (these “things” can be the actions simultaneously
done in the system or some information about the entities of the system). Then,
a set C of security configurations is introduced: configurations correspond to the
information needed to characterize secure elements of A according to the pol-
icy. Last, a policy is defined by a relation  between configurations and targets
allowing to express that, given a configuration, a target satisfies the policy.

Definition 1. A property-based security policy P is a tuple P = (A, C,) where
A is a set of security targets, C is a set of security configurations and ⊆ C ×A

is a relation specifying secure targets according to configurations.

Example 4. We consider here the HRU policy Phru = (Aac, Chru,Phru
), introduced

in [14], which is a discretionary access control policy, aiming to control accesses
done in a system. The set of security targets is Aac (defined in example 2) and the
set of security configurations is Chru = Aac (a configuration mD ∈ Chru specifies
a set of granted accesses). Now we can define secure targets as sets of accesses
which are granted: mD Phru

A iff A ⊆ mD.
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In fact, within the property-based approach, a policy P = (AP, CP,P) can be
viewed as the definition of a semantics for C: each configuration c denotes the set
of targets JcK

P
= {A ∈ AP | c P A} that c authorizes. Such definition is similar

to the one introduced in [3], in the context of access control. For example, if we
consider the HRU policy, we have JmDK

Phru
= ℘(mD). Note that it may be useful

to consider systems allowing to modify configurations. For these systems, we can
also introduce a policy allowing to control the transformations of configurations.
Hence, the “things” that this policy aims to control is defined by the set CP.
Such a policy is often called an administrative policy for P and is defined as a
policy PP = (CP, C,PP

). In the following, given a set R of requests together with

its semantics JRKD
A

, a policy P = (A, C,), and a configuration c ∈ C, we write:

A0
((R1,d1),··· ,(Rk,dk))
−−−−−−−−−−−−−→ ⋆

JRKD
A

,P,c
Ak

to express that there exist A1, · · · , Ak−1 ∈ A such that:

A0
(R1,d1)
−−−−−→JRKD

A

A1
(R2,d2)
−−−−−→JRKD

A

· · ·
(Rk,dk)
−−−−−→JRKD

A

Ak and ∀i (0 ≤ i ≤ k) c  Ai

Rule-based security policies. A security policy can also be viewed as a de-
scription of the conditions under which an action is permitted or forbidden. We
extend here such an approach by considering an arbitrary set of answers. As
before, a policy is defined from a set A of security targets and a set C of security
configurations. Furthermore, to define a policy by specifying a set of authorized
actions, we introduce a set R of requests (corresponding to names of actions)
and a set D of answers (corresponding to different authorizations). Now, the
policy is defined by a relation �⊆ (C × A) × (R × D), where (c, A) � (R, d)
means that when the current configuration is c and the current target is A, the
action R can be performed according to the answer d.

Definition 2. A rule-based security policy P is a tuple P = (A, C,R,D,�)
where A is the set of security targets, C is the set of security configurations, R is
the set of requests, D is a set of answers and �⊆ (C ×A)× (R×D) is a relation
specifying which (and how) actions can be performed.

Example 5. The HRU policy can be defined as the rule-based policy Phru =
(Aac, Chru,R

ac,D,�Phru
) where D = {yes,no} and (mD, A) �Phru

(R, d) iff:

(R = 〈−, s, o, a〉 ∧ d = yes) ∨ (R = 〈+, s, o, a〉 ∧ d = yes ∧ (s, o, a) ∈ mD)
∨(R = 〈+, s, o, a〉 ∧ d = no ∧ (s, o, a) 6∈ mD)

Hence, when D = {yes, no}, given a pair (c, A), the set of granted (resp. forbid-
den) actions is the set {R ∈ R | (c, A) � (R, yes)} (resp. {R ∈ R | (c, A) �

(R, no)}). Such definition is similar to the one introduced in [6], where a policy
is defined in terms of authorized actions, and can be extended by considering
the set Jc, AKP = {(R, d) ∈ R×D | (c, A) � (R, d)}. Here again, administrative
policies can be defined for rule-based policies. More generally, an administrative
policy for a (rule-based or property-based) security policy whose set of security
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configurations is C can be a (rule-based or property-based) policy whose set of
security targets is C. Given a policy P = (A, C,R,D,�), a security configuration

c ∈ C, and a relation JRKD
A

specifying the semantics of requests, we write:

A0
(R,d)
−−−→JRKD

A
,P,c A1

(

resp. A0
((R1,d1),··· ,(Rk,dk))
−−−−−−−−−−−−−→ ⋆

JRKD
A

,P,c
Ak

)

to express that:

A0
(R,d)
−−−→JRKD

A

A1 and (c, A0) � (R, d)





resp.

∃A1, · · · , Ak−1 ∈ A
(

A0
(R1,d1)
−−−−−→JRKD

A

A1
(R2,d2)
−−−−−→JRKD

A

· · ·
(Rk,dk)
−−−−−→JRKD

A

Ak

∧ ∀i (0 ≤ i ≤ k − 1) (c, Ai) � (Ri+1, di+1)

)







Within the rule-based approach, when D = {yes, no}, two main issues must be
handled. Given a current configuration and target, for each request, the policy
must provide one answer (is the action permitted or forbidden?) and only one
answer (no action can be both permitted and forbidden):

– P is complete iff: ∀R ∈ R ∃d ∈ D (c, A) � (R, d)
– P is consistent iff: ((c, A) � (R, d1) ∧ (c, A) � (R, d2))⇒ d1 = d2

For example, Phru is both complete and consistent. When considering an arbi-
trary set of answers, only the first issue must be handled: the policy must provide
an answer for each request, but several answers can be given to this request, all
of them corresponding to authorized ways of applying the request (in practice,
a mechanism allowing to specify which answer must be considered when several
answers are given by the policy can be introduced, for example, an order relation
over D). The relation � characterizes “secure” pairs (R, d) by considering a pair
(c, A) describing the current state of a system. For a class of policies, � can
be defined only from the configuration c. For example, this is the case for the
HRU policy for which deciding if a request is granted or not can be done by only
considering the set mD of authorized accesses. We call such policies free poli-
cies. Note that there exist non-free policies, such as MLS (MultiLevel Security)
access control policies for which deciding if adding an access is granted or not is
done by considering both the configuration (to ensure that the security level of
the subject authorizes the access over the object according to its security level)
and the current security target (to ensure that the new access won’t generate an
illegal information flow between objects, according to security levels of objects).
Formally, a rule-based policy P = (A, C,R,D,�) is said to be free iff:

∀c ∈ C ∀R ∈ R ∀d ∈ D ∀A1, A2 ∈ A (c, A1) � (R, d)⇔ (c, A2) � (R, d)

Note that some frameworks, like in [6], only allow to consider free policies. We
introduce now a property, based on the semantics of requests. Intuitively, this
property holds iff for all reachable targets A1 and A2, according to the policy, if
the semantics of R contains a transition allowing to transform A1 into A2, then
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this transformation is granted by the policy. More formally, given a relation
JRKD

A
specifying the semantics of R, and a set I ⊆ C×A containing pairs (c, A)

such that A is assumed to be secure according to c, P = (A, C,R,D,�) satisfies

the switching property according to JRKD
A

and I iff:

∀(c, A0), (c, A
′
0) ∈ I ∀A,A′ ∈ A ∀(R, d) ∈ R×D ∀

−−−−−→
(R1, d1),

−−−−−→
(R2, d2) ∈ (R×D)⋆

(

A0

−−−−−→
(R1,d1)
−−−−−→ ⋆

JRKD
A

,P,c
A ∧A′

0

−−−−−→
(R2,d2)
−−−−−→ ⋆

JRKD
A

,P,c
A′ ∧A

(R,d)
−−−→JRKD

A

A′

)

⇒ (c, A) � (R, d)

For example, the policy Phru satisfies the switching property. Of course, there
exist some policies for which the switching property does not hold. This is the
case for some policies aiming to control the order of actions.
Property-based policies versus Rule-based policies. We relate here the two
approaches introduced above by showing how to obtain a property-based policy
from a rule-based policy and vice-versa and we prove some equivalence results.

Building a property-based policy from a rule-based policy leads to charac-
terize secure elements of A from granted actions according to a security con-
figuration. To achieve this goal, both the semantics of requests and a set I of
“initial” pairs of the form (c, A) considered as secure must be provided. In this
way, a secure target A according to a configuration c is a reachable target by
applying →JRKD

A
,P,c from an element A0 such that (c, A0) ∈ I . More formally,

let P = (A, C,R,D,�) be a rule-based policy, JRKD
A

be a relation specifying
the semantics of R, and I ⊆ C × A be a set of pairs (c, A). We define the

(P, JRKD
A

,I )-policy as the property-based policy P = (A, C,) where:

c  A⇔

(

∃(c, A0) ∈ I ∃
−−−→
(R, d) ∈ (R×D)⋆ A0

−−−→
(R,d)
−−−→ ⋆

JRKD
A

,P,c
A

)

For example, the policy Phru is the (Phru, JRacKD
Aac

,I )-policy where I = {(c, ∅) |
c ∈ Chru}. We prove now that, given a configuration, applying a granted action ac-
cording to an answer over a secure target leads to a secure target, and conversely,
given a configuration c, if the semantics of the language of requests contains a
transition allowing to transform a secure target A1 into a secure target A2, then
such a transformation is granted by the policy (in order to prove this property,
we need to suppose that the rule-based policy satisfies the switching property).

Proposition 1. Let P = (A, C,) be the (P, JRKD
A

,I )-policy, c ∈ C, A0, A ∈ A

and
−−−→
(R, d) ∈ (R×D)⋆.

1. If (c, A0) ∈ I and A0

−−−→
(R, d)
−−−−→ ⋆

JRKD
A

,P,c
A, then A0

−−−→
(R, d)
−−−−→ ⋆

JRKD
A

,P,c
A.

2. If P satisfies the switching property according to JRKD
A

and I , then:

A0

−−−→
(R, d)
−−−−→ ⋆

JRKD
A

,P,c
A⇒ A0

−−−→
(R, d)
−−−−→ ⋆

JRKD
A

,P,c
A
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Hence, a policy P, which does not satisfy the switching property, can be more
restrictive than P and cannot be expressed as an “equivalent” property-based
policy. However, by adding some information about “the past” into targets (for
example the sequence of transformations that have been done from an initial
target to obtain the current target), it becomes possible to solve this problem.

Building a rule-based policy from a property-based policy P = (A, C,) leads

to introduce a set R of requests together with its semantics JRKD
A

. We define the

(P, JRKD
A

)-policy as the rule-based policy P = (A, C,R,D,�) where:

(c, A) � (R, d)⇔ (∃A′ ∈ A A
(R,d)
−−−→JRKD

A

A′ ∧ c  A′)

For example, the (Phru, JRacKD
Aac

)-policy is based on a relation � defined by:

(mD, A) � (R, d)

⇔









(R = 〈+, s, o, a〉 ∧ d = yes ∧A ⊆ mD ∧ (s, o, a) ∈ mD)
∨ (R = 〈+, s, o, a〉 ∧ d = no ∧ (A 6⊆ mD ∨ (s, o, a) 6∈ mD))
∨ (R = 〈−, s, o, a〉 ∧ d = yes ∧A\{(s, o, a)} ⊆ mD)
∨ (R = 〈−, s, o, a〉 ∧ d = no ∧A\{(s, o, a)} 6⊆ mD)









This relation is slightly different from the relation �Phru
of the policy Phru (ex-

ample 5). However, the only difference is concerned with answers for requests
when the current target is not secure according to the configuration. Hence, as
we will see, when applied over a system whose initial states are secure, these two
policies lead to the same secure states. Last, we state the following proposition.

Proposition 2. Let P = (A, C,R,D,�) be the (P, JRKD
A

)-policy, A0, A ∈ A,

c ∈ C and
−−−→
(R, d) ∈ (R×D)⋆.

1. A0

−−−→
(R, d)
−−−−→ ⋆

JRKD
A

,P,c
A⇒ A0

−−−→
(R, d)
−−−−→ ⋆

JRKD
A

,P,c
A

2. If c  A0 and if JRKD
A

is deterministic, then

A0

−−−→
(R, d)
−−−−→ ⋆

JRKD
A

,P,c
A⇒ A0

−−−→
(R, d)
−−−−→ ⋆

JRKD
A

,P,c
A

Note that, when JRKD
A

is deterministic, rule-based policies obtained from property-
based policies satisfy the switching property.

4 Security policies and systems

We describe here how a policy can be applied on an existing system in order to
obtain a secure system, and how to obtain a secure system from a policy.
Property-based policies and systems. To apply a property-based policy on
a system, we first have to define an interpretation of the states of the system,
providing information on which the policy can apply (states of the system are
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interpreted as security targets of the policy). Then, applying a policy on a system
leads to a system whose states are enriched with security configurations, whose
initial states are secure initial states, and whose transition relation is obtained by
removing all “illegal” transitions (e.g. transitions transforming a secure state into
a non-secure state). During executions of this new system, security configurations
are constant (labels are not concerned with configurations). Systems for which
the configurations can evolve can be obtained by composition with a system on
which an administrative policy can apply. In practice, applying a policy over
a system may be done by considering a particular security configuration, or a
particular set of configurations, to constrain the executions of the system.

Definition 3. Let S = (Σ,Σ0, L, δ) be a system, P = (A, C,) be a property-
based security policy, C be a subset of C, and IA

Σ be an interpretation of Σ. We

define the system ⌊S⌋
IA

Σ

P,C = (C ×Σ, ⌊Σ0⌋
IA

Σ

P,C , L, ⌊δ⌋
IA

Σ

P,C) where:

⌊Σ0⌋
IA

Σ

P,C = {(c, σ) | σ ∈ Σ0 ∧ c ∈ C ∧ c  JσKIA

Σ

}

⌊δ⌋
IA

Σ

P,C = {((c, σ1), l, (c, σ2)) | σ1
l
−→δ σ2 ∧ c ∈ C ∧ (c  Jσ1KIA

Σ

⇒ c  Jσ2KIA

Σ

)}

The use of an interpretation, which can be viewed as a kind of interface between
the policy and the system, allows to apply a policy on several different systems.

Example 6. By considering C = Chru and the interpretation IAac

Σac
(introduced in

example 2), applying the policy Phru on the system Sac leads to a system whose
states belongs to Chru ×Σac, whose labels are labels in Lac, and defined by:

⌊Σ0
ac⌋

I
Aac

Σac

Phru,Chru
=

⋃

m∈Chru

{

(m,α) | α ∈ Σ0
ac

}

⌊δac⌋
I

Aac

Σac

Phru,Chru

=

{

((m,α), 〈+, s, o, a〉, (m,α[s← α(s) ∪ {(o, a)}])) |
(∃s′ ∈ S ∃o′ ∈ O ∃a′ ∈ A (o′, a′) ∈ α(s′) ∧ (s′, o′, a′) 6∈ m) ∨ (s, o, a) ∈ m

}

∪ {((m,α), 〈−, s, o, a〉, (m,α[s← α(s)\{(s, o, a)}]))}

Such a construction allows to ensure that all reachable states of ⌊S⌋
IA

Σ

P,C are secure
with respect to the policy P.

Proposition 3. ∀(c, σ) ∈ Γ (⌊S⌋
IA

Σ

P,C) c  JσKIA

Σ

Defining a system from a property-based policy P can be done by considering
a language of requests R together with its semantics JRKD

A
, and a subset A

0

of A, and by applying P (according to the interpretation IA

A
of A such that

JAKIA

A

= A) on the system (A, A0,R × D, JRKD
A

). For example, from the policy

Phru, the set A
0
ac = {∅} ⊆ Aac, and the set Rac of requests together with its

semantics JRacKD
Aac

, we can define the system obtained in example 6 by applying
Phru on Sac. However, note that such a construction leads to consider all the
correct transitions according to P and to JRKD

A
, and, in some situations, it can
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be useful to constrain the transition relation δ. For example, it can happen
that a correct transition according to P does not belong to δ in order to avoid
that some subjects perform some authorized actions. This is the case for some
administrative policies where access rights over an object must be provided only
by its owner. In this case, it suffices to consider a transition relation δ such that:

δ ⊆
⌊

JRKD
A

⌋IA

A

P,C

Rule-based policies and systems. To apply a rule-based policy P on a system
S, we have to define an interpretation IA

Σ of the states of the system whose domain
is the set of security targets of P. In addition, to characterize initial states of the
system, the definition of a subset of C × A must be considered. Last, since P is
defined in terms of granted actions, the semantics of the language of requests of
P must be given. We introduce here two ways to apply a rule-based policy on a
system. The first one consists in removing all transitions (σ1, l, σ2) ∈ δ such that
Jσ1KIA

Σ

6= Jσ2KIA

Σ

and such that each transition labelled by a request allowing to

transform Jσ1KIA

Σ

into Jσ2KIA

Σ

is not granted by P. The second one is similar but

consists in considering “weak-simulations” of transitions of δ (e.g. a sequence of
requests may be used to transform Jσ1KIA

Σ

into Jσ2KIA

Σ

).

Definition 4. Let S = (Σ,Σ0, L, δ) be a system, P = (A, C,R,D,�) be a rule-

based policy, C ⊆ C, JRKD
A

be a relation specifying the semantics of R, IA

Σ be an
interpretation of Σ, and I be a subset of C × A. We define the systems:

⌊S⌋
IA

Σ

P,C,JRKD
A

,I
=
(

C ×Σ, ⌊Σ0⌋
IA

Σ

P,C,JRKD
A

,I
, L, ⌊δ⌋

IA

Σ

P,C,JRKD
A

,I

)

⌊S, ⋆⌋
IA

Σ

P,C,JRKD
A

,I
=
(

(C ×Σ, ⌊Σ0⌋
IA

Σ

P,C,JRKD
A

,I
, L, ⌊δ, ⋆⌋

IA

Σ

P,C,JRKD
A

,I

)

where:

⌊Σ0⌋
IA

Σ

P,C,JRKD
A

,I
= { (c, σ) | σ ∈ Σ0 ∧ (c, JσKIA

Σ

) ∈ I }

⌊δ⌋
IA

Σ

P,C,JRKD
A

,I

=

{

((c, σ1), l, (c, σ2)) | (σ1, l, σ2) ∈ δ ∧ c ∈ C

∧ Jσ1KIA

Σ

6= Jσ2KIA

Σ

⇒ ∃(R, d) ∈ R×D Jσ1KIA

Σ

(R,d)
−−−→JRKD

A
,P,c Jσ2KIA

Σ

}

⌊δ, ⋆⌋
IA

Σ

P,C,JRKD
A

,I
=







((c, σ1), l, (c, σ2)) | (σ1, l, σ2) ∈ δ ∧ c ∈ C

∧∃
−−−→
(R, d) ∈ (R×D)⋆ Jσ1KIA

Σ

−−−→
(R, d)
−−−−→ ⋆

JRKD
A

,P,c
Jσ2KIA

Σ







Example 7. By considering JRacKD
Aac

, I = Chru × {∅} and IAac

Σac
, applying Phru

on Sac leads to a system whose states belongs to Chru ×Σac and defined by:

⌊Σ0
ac⌋

I
Aac

Σac

Phru,Chru,JRacKD
Aac

,I
=

⋃

m∈Chru

{

(m,α) | α ∈ Σ0
ac

}

⌊δac⌋
I

Aac

Σac

Phru,Chru,JRacKD
Aac

,I
= ⌊δac, ⋆⌋

I
Aac

Σac

Phru,Chru,JRacKD
Aac

,I
=

{((m,α), 〈+, s, o, a〉, (m,α[s← α(s) ∪ {(s, o, a)}])) | (s, o, a) ∈ m}
∪ {((m,α), 〈−, s, o, a〉, (m,α[s← α(s)\{(s, o, a)}]))}
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Note that the system obtained in example 7 is slightly different from the system
obtained in example 6. Indeed transition relations of systems obtained by ap-
plying a property-based policy are not constrained when a request is applied on
a non-secure state, while transition relations of systems obtained by applying a
rule-based policy allow to apply a request only if the conditions specified by the
policy are satisfied. The following proposition states a result about executions
of systems constrained by a rule-based policy.

Proposition 4. 1. Exec
(

⌊S⌋
IA

Σ

P,C,JRKD
A

,I

)

⊆ Exec
(

⌊S, ⋆⌋
IA

Σ

P,C,JRKD
A

,I

)

2. If P satisfies the switching property according to JRKD
A

and I and if:

∀l ∈ L ∀σ1, σ2 ∈ Σ σ1
l
−→δ σ2

⇒

((

∃(R, d) ∈ R×D Jσ1KIA

Σ

(R,d)
−−−→JRKD

A

Jσ2KIA

Σ

)

∨ Jσ1KIA

Σ

= Jσ2KIA

Σ

)

then Exec
(

⌊S, ⋆⌋
IA

Σ

P,C,JRKD
A

,I

)

⊆ Exec
(

⌊S⌋
IA

Σ

P,C,JRKD
A

,I

)

.

Furthermore, we prove that each reachable state of a system constrained by P

can been obtained in a secure way according to the policy.

Proposition 5. If (c, σ) ∈ Γ
(

⌊S⌋
IA

Σ

P,C,JRKD
A

,I

)

or (c, σ) ∈ Γ
(

⌊S, ⋆⌋
IA

Σ

P,C,JRKD
A

,I

)

,

then ∃(c, A0) ∈ I ∃
−−−→
(R, d) ∈ (R×D)⋆ A0

−−−→
(R, d)
−−−−→ ⋆

JRKD
A

,P,c
JσKIA

Σ

.

Here again, defining a system from a rule-based policy P can be done by con-
sidering R together with its semantics JRKD

A
, and a subset I of C × A, and by

applying P (according to the interpretation IA

A
such that JAKIA

A

= A) on the

system (A, A0,R×D, JRKD
A

), where A
0 = {A ∈ A | ∃(c, A) ∈ I }. For example,

from the policy Phru, the set I = Chru × {∅}, and the set Rac together with its

semantics JRacKD
Aac

, we can define the system obtained in example 7 by apply-
ing Phru on Sac. Of course, the transition relation δ can also be constrained by
defining a relation such that:

δ ⊆
⌊

JRKD
A

⌋IA

A

P,C,JRKD
A

,I

Equivalence results. We state here equivalence results about systems con-
strained by, or defined from, policies obtained with the constructions defined
above. More precisely, we characterize the assumptions under which these sys-
tems have the same executions.

Proposition 6. Let P = (A, C,) be the (P, JRKD
A

,I )-policy.

1. Exec
(

⌊S⌋
IA

Σ

P,C,JRKD
A

,I

)

⊆ Exec
(

⌊S, ⋆⌋
IA

Σ

P,C,JRKD
A

,I

)

⊆ Exec
(

⌊S⌋
IA

Σ

P,C

)

2. If the three following properties hold:
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(a) ∀(c, A0) ∈ I ∀A ∈ A ∀
−−−→
(R, d) ∈ (R×D)⋆

(

A0

−−−→
(R, d)
−−−−→ ⋆

JRKD
A

,P,c
A ∧ (∃σ0 ∈ Σ0 A = Jσ0KIA

Σ

)

)

⇒ (c, A) ∈ I

(b) ∀l ∈ L ∀σ1, σ2 ∈ Σ σ1
l
−→δ σ2

⇒

((

∃(R, d) ∈ R×D Jσ1KIA

Σ

(R,d)
−−−→JRKD

A

Jσ2KIA

Σ

)

∨ Jσ1KIA

Σ

= Jσ2KIA

Σ

)

(c) P satisfies the switching property according to JRKD
A

and I

then Exec
(

⌊S⌋
IA

Σ

P,C

)

⊆ Exec
(

⌊S⌋
IA

Σ

P,C,JRKD
A

,I

)

= Exec
(

⌊S, ⋆⌋
IA

Σ

P,C,JRKD
A

,I

)

.

Proposition 7. Let S = (Σ,Σ0, L, δ), P = (A, C,R,D,�) be the (P, JRKD
A

)-
policy, C ⊆ C, and I be the set {(c, A) | c  A∧ c ∈ C ∧ ∃σ ∈ Σ0 | JσKIA

Σ

= A}.

1. If JRKD
A

is deterministic, then:

Exec
(

⌊S⌋
IA

Σ

P,C,JRKD
A

,I

)

⊆ Exec
(

⌊S, ⋆⌋
IA

Σ

P,C,JRKD
A

,I

)

⊆ Exec
(

⌊S⌋
IA

Σ

P,C

)

2. If the following property holds:

∀l ∈ L ∀σ1, σ2 ∈ Σ σ1
l
−→δ σ2

⇒

((

∃(R, d) ∈ R×D Jσ1KIA

Σ

(R,d)
−−−→JRKD

A

Jσ2KIA

Σ

)

∨ Jσ1KIA

Σ

= Jσ2KIA

Σ

)

then Exec
(

⌊S⌋
IA

Σ

P,C

)

⊆ Exec
(

⌊S⌋
IA

Σ

P,C,JRKD
A

,I

)

⊆ Exec
(

⌊S, ⋆⌋
IA

Σ

P,C,JRKD
A

,I

)

.

5 Related works

As we said, there exists now a large collection of literature describing how to de-
fine and to reason about policies. Without being exhaustive, we give in table 1
a classification of some of the most representative of the existing approaches.
Rule-based approaches. In [1], C-Datalog programs are used to specify some
entities (subjects, authorizations, etc), their structure (hierarchies, roles, etc)
and the relationships existing between them: the meaning of a policy is based
on a stable semantics model of C-Datalog programs. Like in [15], such develop-
ment aims to define an architecture within a particular authorization language.
In [2, 3], an access control policy is defined as a set authorizations: a policy
is viewed as a configuration together with its semantics and only free policies
can be expressed. Such framework is used to compose policies. In [5], a more
general approach to compose policies is introduced and is based on the Belnap
logic, used to resolve conflicts and unspecified answers. In [7], in the context
of access control, a clear distinction is done between configurations and autho-
rizations, but security targets are not introduced in an explicit way: a policy is
defined by a set of configurations, a set of operations allowing to modify config-
urations, and a relation characterizing correct access judgements according to
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Distinction Approach Def. Def. of a Application of D
betwwen of system policies over

A and C JRKD
A

from the independent
policy systems

[1–3, 13, 18] no rules no no no {yes, no}

[4, 9] no rules yes yes no arbitrary

[5] no rules no no no {yes, no,⊤,⊥}

[6, 7] yes rules no no no {yes, no}

[8] no rules yes yes no {yes, no}

[12] yes property yes yes no arbitrary

[17] no property yes yes no {yes, no}
Table 1. Related works

configurations. Such an approach aims to compare policies in term of expres-
sive power of the administrative language allowing to transform configurations
and can only be used for free policies. A similar approach can be found in [6],
where security engineering of lattice-based policies is considered. In [18], a finer
comparison mechanism for rule-based policies (in term of expressive power of the
administrative language) is introduced. In [13], a rule-based policy is defined as a
conjuntion of first-order logic formula, and the authors characterize fragments of
logic for which � is decidable. In [8], rule-based policies are expressed as Datalog
programs and semantics of requests is considered. Such an approach is similar
to the one introduced in section 4 to define a system from a rule-based policy.
However, the system and the policy are defined over the same vocabulary. In [9],
the authors represent rule-based access control policies as rewriting systems and
use such an approach to compose policies. In [4], this approach is modified in
order to make a clear distinction between the policy and the semantics of re-
quests: such a development is close to the approach introduced in section 4 to
define a system from a rule-based policy but the system and the policy share the
same “actions” and are defined over the same signature. This framework is used
to check security properties (such as confidentiality or integrity) via a notion of
morphisms between environments (close to our notion of interpretation).

Property-based approaches. Property-based approaches are simpler than
rule-based approaches and few generic frameworks allow to define them: defining
a property-based policy can be easily done without a framework. A framework
becomes useful when comparing or composing policies, or when dealing with a
particular class of properties (information flows, etc). Hence, many policies are
defined by following the property-based approach in an implicit way. The most
famous property-based policy is the Bell and LaPadula policy [16], based on the
MAC and MAC⋆ properties over sets of accesses. These developments specify se-
curity properties and define a transition system, which preserves these properties:
this corresponds to the definition of a relation  characterizing secure targets
together with the (direct) definition of a secure system from the policy. Further-
more, note that many access control policies [1, 15, 2, 3, 5, 7, 18, 13, 8] are defined
in term of sets of authorizations and could also be viewed as property-based poli-
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cies: in this context, authorizations can be viewed as (parts of) secure targets,
as well as granted access requests. In [12], property-based policies are defined
and a comparison mechanism (based on simulation of the executions of secure
systems obtained from policies) is introduced. A policy is defined by a predicate
Ω over a set of states, describing both the targets and the configurations, and
two mappings are introduced to distinguish targets and configurations: given a
state σ, Λ(σ) (resp. Υ (σ)) denotes the target (resp. the configuration), and we
have Υ (σ)  Λ(σ) ⇔ Ω(σ). In [17], property-based policies are introduced and
the framework is used to check that executions of a system are correct according
to the policy. Other works aiming to formally characterize security properties
preserved by executions of systems can be found in [10, 11].

6 Conclusion

Security of information systems has become a well-established field of computer
science. Hence many approaches dealing with security have been developed. In
this paper, we have identified the components involved in these approaches and
the role they play in the definition of a policy, a system and a secure system.
Two main approaches have been considered here: the property-based approach
is an abstract way to specify the security properties we want to enforce, while
the rule-based approach specifies which actions are granted. Hence, rule-based
policies allows a fine control over executions of a system that cannot always be
ensured by a property-based policy. However, in most of cases, rule-based poli-
cies one can find in the literature satisfies the switching property and can be
expressed as property-based policies. Moreover, it should be notice that when
targets contain information about the past, defining property-based policies that
aim to control sequences of actions becomes possible. In any case, rule-based and
property-based approaches are not equivalent, and our results allow to enlighten
differences between the two approaches, by characterizing some properties the
policies have to satisfy to be equivalent, and by characterizing some properties
the policies and the systems have to satisfy in order to have the same execu-
tions. Thanks to this study, it becomes possible to relate the different existing
approaches, thus allowing to reuse policies in a particular context even if these
policies have been defined by following another approach. Hence, this paper pro-
vides a generic formal framework in which many security policies and systems can
be specified, implemented and proved correct according to some security prop-
erties. We think that using formal specifications is largely beneficial. Indeed, in
the literature, one can find papers presenting a particular security mechanism
through examples without any formalisation (or generalisation) of the concepts
involved in the mechanism. Of course, such papers are very useful to understand
how a particular mechanism works but they provide little help to implement it.
We also think that genericity is important: it allows to have a common formalism
(in which policies are described) thus allowing to characterize particular classes
of policies and systems (such as free policies), to compare, to define operations
(such as composition) and to reason in a generic way about policies and sys-
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tems. The definition of such a framework contributes to a better understanding
of what is a security policy. This framework has been successfully used to define
and analyse classical access control policies (HRU, RBAC, Bell & LaPadula,
Chinese Wall, Trust Management).
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