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When using Hartree-Fock (HF) trial wave functions in quantum Monte Carlo calculations, one
faces, in case of HF instabilities, the HF symmetry dilemma in choosing between the symmetry-
adapted solution of higher HF energy and symmetry-broken solutions of lower HF energies. In this
work, we have examined the HF symmetry dilemma in hydrogen rings which present singlet instabil-
ities for sufficiently large rings. We have found that the symmetry-adapted HF wave function gives
a lower energy both in variational Monte Carlo and in fixed-node diffusion Monte Carlo. This indi-
cates that the symmetry-adapted wave function has more accurate nodes than the symmetry-broken
wave functions, and thus suggests that spatial symmetry is an important criterion for selecting good
trial wave functions.

I. INTRODUCTION

It is well known that the symmetry-adapted solution
of the nonlinear Hartree-Fock (HF) equations of an elec-
tronic system is sometimes unstable. An unstable so-
lution corresponds to a saddle point of the energy as a
function of the orbital parameters, and breaking of space
and/or spin symmetries of the wave function then neces-
sarily leads to one or several lower-energy HF solutions.
The stability conditions of the HF equations were first
formulated by Thouless [1], and the different instabil-
ities were first categorized by Čižek and Paldus [2–7].
For closed-shell systems, one may encounter “singlet in-
stabilities” when only spatial symmetry is broken, and
“triplet (or nonsinglet) instabilities” when spin symme-
try is also broken. There is thus a symmetry dilemma [8]
in choosing between the symmetry-adapted wave func-
tion of higher HF energy and a symmetry-broken wave
function of lower HF energy, in particular as a reference
for a post-Hartree-Fock calculation.

A clear example is provided by closed-shell hydro-
gen rings H4n+2 with equal bond lengths [9] (see, also,
Ref. 10). The symmetry-adapted HF solution exhibits
singlet instabilities for sufficiently large numbers of hy-
drogen atoms, and one can obtain symmetry-broken HF
solutions with orbitals localizing on either the atoms or
the bonds. However, both Møller-Plesset perturbation
theory and linearized coupled cluster doubles theory (also
called CEPA–0 or DMBPT–∞) give a lower total en-
ergy when starting from the symmetry-adapted solution
than when starting from the symmetry-broken solutions,
which casts doubts on the physical significance of the
symmetry-broken solutions. Of course, the symmetry
dilemma would be removed with a full configuration-
interaction calculation which must give one unique so-
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lution, independent of the orbitals used.

Quantum Monte Carlo (QMC) approaches are alterna-
tives to the traditional quantum chemistry methods [11–
13]. The two most commonly used variants are varia-
tional Monte Carlo (VMC) which simply evaluates the
energy of a flexible trial wave function by stochastic
sampling, and fixed-node diffusion Monte Carlo (DMC)
which improves upon VMC by projecting the trial wave
function onto the ground state subject to the condition
that the nodes of the projected wave function are the
same as those of the trial wave function. For large sys-
tems, the most common form of the trial wave function
is a Jastrow factor multiplied by a fixed HF determinant
(though for small systems one can do much better by re-
placing the HF determinant by a linear combination of
optimized Slater determinants). If a system exhibits HF
instabilities, then QMC also faces the symmetry dilemma
in choosing between different HF wave functions. Indeed,
different HF wave functions necessarily lead to different
energies not only in VMC, but also in DMC since the
nodes of these HF wave functions are generally differ-
ent. This symmetry dilemma in DMC is only due to the
fixed-node approximation, since without this approxima-
tion DMC would give one unique solution, independent
of the trial wave function. Of course, for systems that
are not very large, symmetry breaking could probably
be avoided in the first place by optimizing the orbitals
within VMC [14, 15], instead of using fixed HF orbitals.

In this work, we study the impact of the HF symmetry
dilemma for QMC in hydrogen rings H4n+2. In Sec. II,
we review the HF symmetry-breaking problem in these
systems, and discuss the effect of using a Slater basis
versus a Gaussian basis. In Sec. III, we explain the QMC
methodology and report our VMC and DMC results. Our
conclusions are summarized in Sec. IV.
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FIG. 1: Structure of the one-particle density matrix for the HF symmetry-adapted (SA) and symmetry-broken (SB-AC and
SB-BC) solutions.

II. HARTREE-FOCK SYMMETRY BREAKING

In previous studies [9, 16], the electronic structure of
periodic rings of 4n + 2 evenly spaced hydrogen atoms
(with a fixed distance of rH−H = 0.74747 Å) has been in-
vestigated. The number of hydrogen atoms is restricted
to 4n+2 in order to obtain a possible closed-shell single-
determinant solution with 2n+1 occupied orbitals. The
symmetry-adapted HF wave function has a metallic char-
acter (in the limit of an infinite ring) and can be ex-
pressed with either delocalized canonical orbitals or lo-
calized Wannier orbitals (which do not have an exponen-
tial decay). The canonical orbitals, except for the low-
est one, are doubly degenerate, and in a minimal basis
the orbital coefficients are fixed by the cyclic symme-
try. Besides the symmetry-adapted (SA) solution, two
different symmetry-broken HF solutions of lower energy
can be obtained beyond critical ring sizes, when using
unit cells of 2 hydrogen atoms. One solution corresponds
to orbitals localized on hydrogen atoms and is referred
to as the symmetry-broken atom-centered (SB-AC) solu-
tion, while the other corresponds to orbitals localized on
bonds and is referred to as the symmetry-broken bond-
centered (SB-BC) solution. The SB-BC solution has the
lowest HF energy. The three solutions can be schemat-
ically described as · · ·H· · ·H· · · , · · ·H+ · · ·H− · · · , and
· · ·H—H· · · . In each case, the symmetry breaking is ac-
companied by an opening of an energy gap between occu-
pied and virtual orbitals, and orbitals decay much more
rapidly than for the symmetry-adapted solution [9] , in
agreement with the theoretical result of Kohn [17].
In order to distinguish the three different wave func-

tions, one may look at the one-particle density matrix
P

Pαβ = 2
∑

i∈occ.

cα i cβ i, (1)

containing the coefficients cαi of the occupied molecular

orbitals ϕi(~r),

ϕi(~r) =
∑

α

cα i χα(~r), (2)

expanded in a minimal set of atom-centered basis func-
tions, i.e. one single basis function χα(~r) per hydrogen
atom. As depicted in Figure 1, for the SA solution, we
see equal elements on the diagonal and the sub-diagonals
of the density matrix. For the SB-AC solution, an alter-
nation of element values on the diagonal of the density
matrix is obtained, but equal elements on the first sub-
diagonal, and for the SB-BC solution we have equality
of the diagonal elements and alternation on the first sub-
diagonal.
In Ref. 9, a minimal Gaussian basis set (five s Gaussian

functions contracted to one single basis function for each
hydrogen atom) was used. However, Gaussian basis func-
tions are not appropriate for all-electron QMC calcula-
tions. They give large statistical fluctuations due to their
incorrect vanishing gradient at the nuclear positions. It is
thus much preferable to use Slater basis functions which
correctly have a non-zero gradient on the nuclei and an
exponential decay at large distance. In this work, we
use a minimal Slater basis set (one 1s Slater function on
each hydrogen atom) with an exponent of 1.17, which is
smaller than the optimal exponent of 1.24 for an isolated
H2 molecule. Spin-restricted HF (and MP2) calculations
were performed with an experimental code for ring sys-
tems, employed already for the previous studies [18]. The
necessary integrals over Slater functions have been calcu-
lated with the program SMILES [19]. In order to obtain
the symmetry-broken HF solutions, we start from a set
of localized Wannier orbitals describing either an ionic
situation or an explicit bond in the two-atom unit cell,
and use an iterative configuration interaction procedure
using singly excited determinants [20, 21] instead of di-
agonalizing a Fock operator.
Table I reports the HF energy differences between the
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TABLE I: HF energy differences of H4n+2 rings, per H2 cell in mhartree, between the symmetry-broken solutions (SB-AC and
SB-BC) and the symmetry-adapted (SA) one, for the Gaussian and Slater basis sets.

Gaussian basis Slater basis
4n+2 E(SB-AC)-E(SA) E(SB-BC)-E(SA) E(SB-AC)-E(SA) E(SB-BC)-E(SA)
42 — — — —
46 — −0.00258 — —
50 — −0.03555 — −0.00199
54 −0.00115 −0.08933 — −0.02739
58 −0.01900 −0.15116 — −0.06961
62 −0.04980 −0.21440 −0.00080 −0.11914
66 −0.08678 −0.27565 −0.01223 −0.17074

symmetry-broken solutions and the symmetry-adapted
one for the Gaussian basis set of Ref. 9 and the Slater
basis set of the present study. With the Gaussian basis
set, the departure of the SB-BC and SB-AC solutions
from the SA solution occurs for H46 and H54 rings, re-
spectively. With the Slater basis set, the onset of sym-
metry breaking takes place for larger rings, i.e. for H50

and H62 for SB-BC and SB-AC, respectively. In addi-
tion, for a fixed ring size, the lowering in energy of the
symmetry-broken solutions is smaller with the Slater ba-
sis set. This is an indication that the Slater basis is better
than the Gaussian basis, since the amount of symmetry
breaking is usually larger for poorer wave functions. The
HF total energies are indeed lower with the Slater ba-
sis, for example for H42, the (SA) energy per two-atom
cell is −0.950252 hartree with the Gaussian basis and
−0.997003 hartree with the Slater basis. As an addi-
tional verification of the usefulness of Slater functions,
we can look at Kato’s cusp condition [22] at the nuclear
positions:

1

2

|~∇ρ(~rn)|av.
ρ(~rn)

= Z, (3)

where ρ(~rn) and |~∇ρ(~rn)|av. are the density and the
spherical average of density gradient at the nuclear po-
sitions, and Z is the nuclear charge. For example, for
the H86 ring, we find 1.009 for SA, 1.012 for SB-BC, and
1.034 and 0.980 for SB-AC, close to the ideal value of
Z = 1. Possibly, symmetry breaking can be further re-
duced by using a larger Slater basis.

III. QUANTUM MONTE CARLO STUDY

QMC methods are sometimes believed to produce
benchmarks in quantum chemistry, approaching the
electronic correlation problem differently than common
wave-function-based methods or density-functional the-
ory. As QMC methods often rely on a HF trial wave
function, it is interesting to check their sensitivity to HF
symmetry breaking. We start by giving a brief overview
of the VMC and DMC methods employed in this work.

A. Brief overview of VMC and DMC

We consider Jastrow-Slater trial wave function of the
form

ΨT (R) = J(R) Φ(R), (4)

where R designates the electron coordinates, Φ(R) is a
HF determinant and J(R) = ef({rij ,rIi}) is a Jastrow
correlation factor depending explicitly on the electron-
electron distances rij and the nucleus-electron distances
rIi. In VMC, one calculates the energy as the expectation
value of the Hamiltonian H over the wave function ΨT

by stochastic sampling

EVMC =

∫

ΨT (R)HΨT (R)dR =

∫

ΨT (R)2EL(R)dR

≈ 1

M

M
∑

i=1

EL(Ri), (5)

where EL(R) = HΨT (R)/ΨT (R) is the local energy,
and the M points Ri are sampled from ΨT (R)2 by a
Metropolis algorithm. In DMC, one improves over the
distribution ΨT (R)2 by generating another distribution
f(R, τ) obtained by evolving the importance-sampling
Schrödinger equation in imaginary time τ = i t

− ∂

∂τ
f(R, τ) = −1

2
~∇2f(R, τ)

+~∇ ·
(

f(R, τ)
~∇ΨT (R)

ΨT (R)

)

+ (EL(R)− ET ) f(R, τ), (6)

which resembles an ordinary diffusion equation with dif-
fusion, drift and source terms on the right-hand side.
This diffusion process is simulated stochastically with
a population of walkers representing the distribution
f(R, τ). The trial energy ET is adjusted in the course of
the calculation in order to maintain a stable population
of walkers. After some iterations, the stationary distribu-
tion is obtained f(R, τ → ∞) = ΨFN(R)ΨT (R) where
ΨFN(R) is the fixed-node (FN) wave function, i.e. the
best approximation to the ground-state wave function
having the same nodes than the trial wave function. In
practice, this fixed-node approximation is automatically
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enforced by using ΨFN(R)ΨT (R) as a positive probabil-
ity density, meaning that ΨFN(R) must necessarily be
of the same sign as ΨT (R). The DMC energy is then
calculated as the statistical average of the local energy
of the trial wave function over the mixed distribution
ΨFN(R)ΨT (R).
The nodes of the wave function are the locations of the

points R where the wave function vanishes. For a sys-
tem of N electrons in 3 dimensions, they form (3N − 1)–
dimensional hypersurfaces. A subset of these nodes is
given by the antisymmetry property of the fermionic
wave function with respect to the exchange of two elec-
trons, which implies that the wave function vanishes
when two same-spin electrons are at the same point in
space. However, these “Pauli” (or exchange) nodes form
only (3N − 3)–dimensional hypersurfaces, and are there-
fore far from sufficient to determine the full nodal hy-
persurfaces (see, e.g., Ref. 23–25 for examples of simple
atomic systems). Likewise, spatial symmetry is gener-
ally far from sufficient to specify the nodes. For a given
system, different HF wave functions (of different spatial
symmetries) share the same Pauli nodes, but otherwise
generally have very different nodal hypersurfaces, and
thus lead to different fixed-node errors in DMC energies.

B. Computational details

The QMC calculations have been performed with the
program CHAMP [26] on a massively parallel IBM Blue-
Gene architecture using up to 4096 processors. The
trial wave functions are constructed by multiplying
the previously obtained HF wave functions by a Jas-
trow factor consisting of the exponential of the sum of
electron-nucleus, electron-electron and possibly electron-
electron-nucleus terms, written as systematic polyno-
mial and Padé expansions [27] (see also Refs. 28, 29).
Some Jastrow parameters are fixed by imposing the
electron-electron cusp condition, and the others are op-
timized with the linear energy minimization method in
VMC [14, 15, 30], using an accelerated Metropolis algo-
rithm [31, 32]. The orbital and basis exponent param-
eters are kept fixed in this work. Once the trial wave
functions have been optimized, we perform DMC calcu-
lations within the short-time and fixed-node approxima-
tions (see, e.g., Refs. 33–37). We use an imaginary time
step of ∆τ = 0.01 hartree−1 in an efficient DMC algo-
rithm having very small time-step errors [38]. We use a
target population of 100 walkers per processor, and esti-
mate statistical uncertainties with blocks of 1000 steps,
which is larger than the energy autocorrelation time of
about 50 steps. The statistical uncertainty of the energy
per H2 cell is smaller than 2× 10−5 hartree.
The computational cost of optimizing the two-body

and three-body terms in the Jastrow factor scales as the
third power of the number of hydrogen atoms. When
restricting the Jastrow factor to the two-body terms
only, the computational cost scales quadratically with
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FIG. 2: VMC total energies of H4n+2 rings, per H2 cell
in mhartree, for the symmetry-adapted (SA) and the two
symmetry-broken (SB-AC and SB-BC) HF solutions from 46
to 102 hydrogen atoms. The statistical uncertainty is about
the size of the point.

46 58 70 82 94 106
number of  H atoms

−1078.0

−1077.5

−1077.0

−1076.5

to
ta

l e
ne

rg
y/

 H
2 

(m
H

)

SB−AC
SB−BC
SA

DMC

FIG. 3: DMC total energies of H4n+2 rings, per H2 cell
in mhartree, for the symmetry-adapted (SA) and the two
symmetry-broken (SB-AC and SB-BC) HF solutions from 46
to 102 hydrogen atoms. The statistical uncertainty is about
the size of the point.

the number of hydrogen atoms, indicating that it is the
evaluation of the Jastrow factor that dominates the com-
putational cost and not the evaluation of the Slater de-
terminant. The large reduction of computational cost
achieved by removing the three-body terms comes with-
out a big loss in the VMC energy, and in principle no
loss at all in the DMC energy. For example, for the H26

ring system, we find a VMC energy of −13.8894± 0.0005
hartree with the three-body term, and −13.8430±0.0005
hartree without the three-body term. The computational
effort is about 20 times more time consuming in the for-
mer case. We thus use a two-body Jastrow only. Another
alternative, not employed in this work, is to use a short-
range three-body Jastrow.
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TABLE II: Total energy and energy differences, per H2 cell in
mhartree, of the symmetry-adapted (SA) and the symmetry-
broken (SB-AC and SB-BC) HF solutions, for the H86 ring,
with the Slater basis set.

method E(SA) E(SB-AC)-E(SA) E(SB-BC)-E(SA)
HF −996.15 −0.14 −0.39
MP2 −1016.22 1.37 1.55
VMC −1063.24 0.93 1.36
DMC −1077.57 0.31 0.70

As the variance of the local energy of a ring of n H2

molecules is approximately n times the variance for one
H2 molecule, the statistical uncertainty of the energy
grows with the square root of n

σ (E(H2n)) ∼
√

V (EL(H2n))

M
∼
√

nV (EL(H2))

M
, (7)

whereM is the number of Monte Carlo iterations. There-
fore, the statistical uncertainty of the energy per H2

cell decreases as 1/
√
n, and thus calculations aiming at

a given statistical uncertainty for this quantity requite
fewer steps for increasing ring sizes.

C. Results

Figure 2 shows the VMC energies per H2 cell of the
hydrogen rings with 46 to 102 atoms for the three HF
solutions. As in the case of Møller-Plesset perturbation
theory and linearized coupled cluster doubles theory, the
energy ordering of the three solutions is reversed in com-
parison to HF, the SA wave function giving now the low-
est total energy and the SB-BC solution giving the high-
est energy. For H86, we show in Table II the QMC total
energies and energy differences of the symmetry-adapted
and symmetry-broken solutions. For comparison, we also
report MP2 energies calculated with the same Slater ba-
sis set. The VMC total energy per H2 cell lie about 50
mhartree below the MP2 energies, and the energy split-
tings between the different solutions are smaller than
those in MP2, which shows the Jastrow factor does a
good job of describing electron correlation.
Figure 3 shows the corresponding DMC results. The

energy ordering is the same as in VMC and MP2, the SA
wave function giving the lowest DMC total energy, and
thus the smallest fixed-node error. As shown in Table II,
the energy splittings between the different solutions are
much smaller in DMC. This indicates that DMC is less
sensitive to symmetry breaking than other correlation
methods. It is an interesting feature for cases where sym-
metry breaking cannot be avoided. Of course, symmetry

breaking would probably be avoided if the orbitals were
reoptimized in the presence of the Jastrow factor within
VMC, but this is computationally expensive for large sys-
tems.

IV. CONCLUSION

When HF trial wave functions are used in QMC cal-
culations, in case of HF instabilities QMC faces the HF
symmetry dilemma in choosing between the symmetry-
adapted solution of higher HF energy and symmetry-
broken solutions of lower HF energies. In this work,
we have examined the HF symmetry dilemma in hy-
drogen rings H4n+2 which present HF singlet instabil-
ities for sufficiently large ring sizes. We have shown
that using a Slater basis set, instead of a Gaussian ba-
sis set, delays the onset of HF symmetry breaking until
larger rings and slightly reduces the energy splittings be-
tween the symmetry-adapted and symmetry-broken wave
functions. When using these different HF wave func-
tions in VMC and DMC, we have found that the en-
ergy ordering is reversed; the symmetry-adapted wave
function always giving the lowest energy. This con-
firms previous post-Hartree-Fock studies in showing that
these symmetry-broken solutions are bad starting wave
functions for correlated calculations. The fact that the
symmetry-adapted wave function gives the lowest DMC
energy indicates that this wave function has more ac-
curate nodes than the symmetry-broken wave functions.
The present experience thus suggests that spatial sym-
metry is an important criterion for selecting good trial
wave functions. For systems that are not very large, the
symmetry-breaking problem could probably be avoided
altogether by optimizing the orbitals within the quantum
Monte Carlo calculation, rather than using fixed HF or-
bitals.
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chines in Jülich and Munich (Germany). C.J.U. was sup-
ported in part by the NSF (Grant Nos. DMR-0908653
and CHE-1004603). The authors thank the staff of
IDRIS (Orsay, France) for technical assistance to in-
stall, test and run the QMC program CHAMP on these
machines. We also acknowledge using the Slater inte-
gral code SMILES (Madrid, Spain) for obtaining the HF
starting wave functions. Discussions with P. Gori-Giorgi
(Amsterdam, Netherlands) and J.-P. Malrieu (Toulouse,
France) were very helpful for the project.

[1] D. J. Thouless, The Quantum Mechanics of Many Body

Systems (Academic Press, New York, 1961).
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