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We explore diferent variants of the random phase approximation (RPA)ecctirelation energy derived
from closed-shell ring-diagram approximations to coupgkmter doubles theory. We implement these variants
in range-separated density-functional theory, i.e. byamg the long-range random phase approximations
with short-range density-functional approximations. Végfprm tests on the rare-gas dimers,Hie,, and
Ar,, and on the weakly interacting molecular complexes of th2 €2 of Jureckat al. [Phys. Chem. Chem.
Phys.8, 1985 (2006)]. The two best variants correspond to the origisally proposed by Szabo and Ostlund
[J. Chem. Phys67, 4351 (1977)]. With range separation, they reach mean atesefrors on the equilibrium
interaction energies of the S22 set of about 0.4/keal, corresponding to mean absolute percentage errors of
about 4%, with the aug-cc-pVDZ basis set.

. INTRODUCTION Il. THEORY

We first show how to rigorously combine a long-range
In the last decade, there has been a revived interest in tHeCD calculation with a short-range density functional (for
random phase approximation (RPA) and other related approxetails on range-separated density-functional theoeyesg.
imations for calculating the electron correlation enerdy o Refs. 33, 51, 52). We start from a self-consistent range-
atomic, molecular and solid-state systems [1-41]. One paiseparated hybrid (RSH) calculation [52]
ticularly appealing feature of RPA is its correct descaptof _ A -
dispersion forces at large separation [42—44]. HoweveA RP Erst = MINPIT + Vext + WD) + Effnoll, (1)
is a poor approximation to short-range correlations [1,an
in a Gaussian localized basis, RPA calculations have a slowhereT is the kinetic energy operato¥e, is the external
convergence with respect to the basis size [2]. A promisingotential operator (e.g., nuclei-electron interactioff, is a
strategy is thus to combine a long-range RPA-type approximdong-range electron-electron interaction operakf, [n] is
tion with a short-range density-functional approximafibb-  the associated short-range Hartree-exchange-coredeio-
17, 28, 31, 33], hence avoiding the inaccurate descriptiority functional, andb is a single-determinant wave function
and slow basis-set convergence of short-range correfation with densityny. The long-range interaction is constructed
RPA. with the error functionw!(r) = erf(ur)/r, wherey is a pa-
rameter whose inverse gives the range of the separation. The
Among the diferent formulations of RPA, the one based minimizing RSH single-determinant wave function is dedote
on a ring-diagram approximation to coupled cluster doubleby @, and its associated (approximate) densitypyln prin-
(CCD) theory [14, 45-47] is particularly attractive sinde i ciple, the exact ground-state energy can be obtained frem th
avoids the numerical integration over the adiabatic connecRSH energy by adding the long-range correlation en&ly
tion, and in principle is amenable to a fast algorithm [14].
However, due to the fact that the ring approximation breaks E = Ersn + EY. 2
the antisymmetry property of the coupled-cluster ampétyd ) )
several non-equivalent variants of ring CCD can be con-Several formally exact expressions can be derivegforThe
structed, especially when the exchange terms are included. One that is most convenient for applying coupled-cluster th
this paper, we explore these various ring CCD variants foP'Y IS
closed-shell systems, and show that some of them correspond A A
to the RPA correlation energy expressions originally peggb Ee = CPIR"INIIY") — (@olH"[n]io)
b_y Szabo anql Ostl_und [48, 49]. We apply these closed-shell +AES - fvﬂxc[n](r)An(r)dr, 3)
ring CCD variants in the context of range-separated density
functional theory, and test them on rare-gas dimers and on ) _
the weakly interacting molecular complexes of the S22 set ofvhere'¥" is the ground-state wave function of the long-range
Juretkeet al.[50]. interacting Hamiltoniatd" [n] = T + Wi+ Vey+ VS [n] with
the short-range Hartree-exchange-correlation poteopiata-
tor VS [n] = fv,i’xc[n](r) A(r)dr written with the density op-

Hxc!

eratorri(r) andvy, [n](r) = 6EF [n]/én(r). The long-range

Hxc
*Electronic addressjulien. toulouse@upmc. fr wave function¥" is associated with the exact density In



Eq. (3), the last two terms are the variation of the energgfun is the matrix of the RSH orbital eigenvaluefférencesi( j
tional, AEP, . = E}. [n] — EZ, [no], and the variation of the anda, b refer now to occupied and virtual spatial orbitals, re-
associated potential expectation value due to the vaniatio spectively). Contracting the dRPA amplitudes with the non-
the density from the RSH one to the exact ofir,= n — ng. antisymmetrized two-electron integrdli<'" gives the dRPA

The contribution of these last two terms is expected to bélsmalong-range correlation energy (also referred to as dRRA-I i

since it is of second order ifin Ref. 54)

1
B - f Vi dn(r) An(rydr = Y grpn = 311K Thepy]- ®)

Sr
1 ff MAn(r)An(r’)drdr’ +O(AR®). (4) Contracting the dRPA amplitudes with the spin-singlet-
2 JJ on(r)sn(r’) adapted antisymmetrized two-electron integray, ;, =
Using a spin-unrestricted CCD ansatz (see Appendix A folX@blij)" —(ablji)" gives the dRPASOSEX (or just SOSEX

a review of CCD theory) for the long-range wave function, for short) long-range correlation energy [23, 28]
PEep) = exp(T2) o), whereT, = (1/4) Xy (129" 8588) 2 . 1 rrier
is the cluster operator for double excitations written inmts Ecsosex= 5”[ B" “Tirpal- 9)
of the long-range amplitudes)", and occupiedi( j) and o . _ o _
virtual (a, b) RSH spin-orbital creation and annihilation oper- ~ Similarly, in the ring approximation with exchange terms,

ators, we approximate the long-range correlation energy as that we will refer to as RPAXx (also sometimes referred to as
RPA or time-dependent Hartree-Fock), the singlet andetipl

Efceo = (@olH"[No]WEcp) — (@olH"[no]| o). (5)  amplitudes T, and Tk, are obtained by the equations

In Eq. (5), the variation of the density has been neglected,'g" +1Alr 17l 1Tk IAV T, BT, =0, (10)
n ~ ng (and thus the contribution of Eq. (4) vanishes), which

seems appropriate if we define the coupled-cluster density séand

the projected one(@o|A(r)[Wheop) = (Dolfi(r)Do) = no(r),

i ) ; 3Rl 3alr 3 37l 3alr 3Tk 3pIr3gl  _
which does not vary since the CCD wave function does not B + A" “Trpat  Trpax A"+ Trpay B" “Trpax = 0. (11)
contain single excitations. The long-range correlatioergn 1l et erindr 3l
can be calculated as, for real spin orbitals, where“Ay j, = Ada jp + 2(iblaj)" —(iblja)", "Ay j, = Aeia,jo -

(iblja)", and®Bj; ;, = —(ablji)". Using these amplitudes in
1 1 ’a . .
[ 1= 10 o1 Irr the CCD correlation energy expression of Eq. (A9) gives what
Eeceo = g [B T ] " [K T ] © e call the RPAX-I long-range correlation energy (seepals
, . , . _ Refs. 48, 49, 54, 56)
WhereBi;Ljb =(abljij)" and Ki;yjb = (ablij)" are the matrices

of antisymmetrized and non-antisymmetrized two-elecimen
tegrals with long-range interactionl’(r), respectively, and

Ir _ (yabylr ; H i i
.Tia’ib p (ti.J') 's the ampll'Fude matrix. The second equality which is equivalent to the plasmon formula expression of
in Eq. (6) Is QUe to the antisymmetry property of the COUp!ecj'McLachlan and Ball [57]. Using the same amplitudes in the
cluster amplitude$!" . with respect to the exchange of the in-

o . ia,jb " ) alternative CCD correlation energy expression of Eq. (A11)
dicesi and]. These amplitudes can be determined by the usugjjyes another RPAX correlation energy which is the second
coupled-cluster equations, replacing the normal Hamidéton approximation proposed by Szabo and Ostlund [Eq. (3.22)

"I . .
by the long-range onéi"[no], which amounts to using the ¢ pat 49] as a zeroth iteration of the self-consistent RPA
RSH orbital eigenvalues and the long-range two-electrt® in - g hame [58-60]

grals. The present range-separated CCD method can be seen
a special case of the more general range-separated coupled- £l 3 1t 1 Ir L7 13
cluster approach of Godit al.[53] which also includes single CRPAX-S02™ 5 r[ RPAX] ‘ (13)

excitations and possibly perturbative triples. . _ .
We now consider the ring-diagram approximation for Equations (12) and (13) are not equivalent because the ring

closed-shell systems. A number of closed-shell ring CCCRAPProximation does not preserve the antisymmetry of the am-

variants can be defined. In the ring approximation withoutP!itudes with respect to the exchange of two spin-orbital in

exchange terms, the direct RPA (dRPA, also sometimes relices. Using the same amplitudes in place of the singlet and

ferred to as RPA or time-dependent Hartree) amplitudes folfiPlet restricted amplitudes in the CCD correlation eryezg-

spin-singlet excitations ", are obtained by the following Pr€sston of Eq. (A23) gives another alternative RPAX carrel

Riccati equation [14] tion energy corresponding to the first approximation preplos
by Szabo and Ostlund [Eq. (3.20) of Ref. 49, or Eq. (17) of

Il 1 ngRPA+ 1TgRPAl|_lr+ngRPAlKlr ngRPA =0, (7) Ref. 48] which is an alternative zeroth iteration of the self

consistent RPA scheme

1
E¢rpaxi = il [lBlr "Tpax + 3°B" STEPAX] . (12)

with the spin-adapted matrice&; ,, = 2(abjij)" and 1
Wi p = Aaajp + "KL, whereAeajp = (ea — €)dijda E{rpax-s01= St [lBlr (lTllgPAx_sTllgPAx)]' (14)
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FIG. 1: (Color online) Interaction energy curves of Héle,, and Ar, calculated by the full-range (left) and range-separateghty RPA
methods with the aug-cc-pV6Z basis set. Cubic splines ard tsinterpolate between the calculated points. The atzgtaves are from
Ref. 55.

This last variant is the one preferred by Szabo and Ostlundvoided (although in practice a single-point quadraturgke/o
because in a supermolecule approach it consistently giveswaell [31]). It can be shown that the SOSEX, RPAX-I, RPAX-II,
dispersion cogicient Cg identical to the one given by the RPAx-SO1 and RPAx-SO2 correlation energies all correctly
Casimir-Polder formula applied with the RPAXx polarizabil- reduce to the MP2 correlation energy at second order in the
ities of the fragments, which is not the case for the otheelectron-electron interaction, but dRPA does not. Finaly
variants RPAx-Il and RPAX-SO2. On the other hand, amongnote that an another RPAX correlation energy variant first pr
the three RPAx methods proposed here, RPAX-SO2 has thmsed by Fukudat al.[61] and defined asB: rpax-it — Ecmp2
advantage of involving only singlet excitations and thus ishas also been discussed in the literature [41, 47-49]. It ob-
not subject to triplet instabilities. The RPAx method of viously correctly reduces to the MP2 correlation energy at
Refs. 15, 33, that we will rename RPAXx-I here, is yet an-second order, but numerical experience [41] shows that this
other alternative correlation energy expression thatlims variant gives very inaccurate correlation energies.

only singlet excitations, but for which, as far as we know, th

numerical integration over the adiabatic connection cabhao



TABLE [: Interaction energies (in kcahol) for the complexes of the S22 set from the range-seghRBA methods with the aug-cc-pVDZ
basis set. For comparison, range-separated CCD resuttoo(wihe ring approximation) are also reported. The genesetf complexes are
taken from Ref. 50 and the reference interaction energigseinightmost column are taken as the CCSIDCBS estimates of Ref. 62. Mean
errors (ME), mean absolute errors (MAE) and mean absoluteptage errors (MA%E) are given.

No. Complex dRPA SOSEX RPAx-I RPAX-Il RPAX-SO1 RPAX-SO2 C®&eference
Hydrogen-bonded complexes (HB7)
1 (NHs): -2.87 -292 -3.07 -3.26 -3.20 -3.18 -3.20 -3.17
2 (H0), -5.16 -5.23 -533 -5.42 -5.40 -5.39 -5.41 -5.02
3 Formic acid dimer -20.30 -20.55 -20.81 -20.98 -20.94 -20:20.94 -18.80
4 Formamide dimer -16.51 -16.68 -17.03 -17.48 -17.32 -17127125 -16.12
5  Uracil dimerCy, -21.03 -21.36 -21.80 -22.58 -22.04 -22.15 -22.00 -20.69
6  2-pyridoxing2-aminopyridine -17.07 -17.28 -17.81 -18.89 -18.25 -18:28.08 -17.00
7  Adeningthymine WC -16.53 -16.73 -17.29 -18.25 -17.81 -17.69 -17.62-16.74
ME -0.28 -0.46 -0.80 -1.33 -1.06 -1.05 -0.99 0.00
MAE 042 053 0.83 1.33 1.06 1.05 0.99 0.00
MA%E 37% 43% 56% 8.6% 6.8% 6.6% 6.4% 0.0%
Complexes with predominant dispersion contribution (WI8)
8 (CHy): -0.30 -0.31 -042 -0.56 -0.53 -0.51 -0.51 -0.53
9  (GHy):2 -0.97 -1.02 -1.28 -1.66 -1.52 -1.47 -1.45 -1.50
10 BenzengH, -0.92 -098 -1.23 -1.75 -1.47 -1.43 -1.40 -1.45
11 Benzene dimeCy, -1.27 -1.38 -2.05 -4.28 -2.72 -2.61 -2.40 -2.62
12 Pyrazine dimer -299 -3.10 -3.78 -6.12 -4.49 -4.34 -4.14 420
13 Uracil dimerC, -8.22 -8.46 -9.38 -11.93 -10.25 -10.13 -9.94 -9.74
14 Indolgbenzene -258 -2.75 -3.70 -7.12 -4.64 -4.48 -4.17 -4.59
15 Adeningthymine stack -9.38 -9.68 -10.97 -15.14 -12.23 -12.02 41.7 -11.66
ME 1.21 1.08 043 -153 -0.20 -0.09 0.07 0.00
MAE 1.21 1.08 0.3 1.53 0.20 0.13 0.13 0.00
MAY%E 34.3% 31.2% 13.9% 31.7% 3.1% 25% 3.8% 0.0%
Mixed complexes (MI7)
16 Ethengethyne -1.31  -1.36 -1.48 -1.67 -1.58 -1.57 -1.55 -1.51
17 Benzen#,0 -290 -296 -3.16 -3.52 -3.34 -3.30 -3.29 -3.29
18 BenzendNHg -1.83 -1.88 -2.11 -2.57 -2.33 -2.29 -2.27 -2.32
19 BenzengCN -420 -431 -454 -4.98 -4.72 -4.71 -4.65 -4.55
20 Benzene dimeCyy -1.92 -2.00 -2.39 -3.40 -2.77 -2.70 -2.61 -2.71
21 Indolgbenzene T-shape -454 -465 -517 -6.57 -5.66 -5.57 -544 .62-5
22 Phenol dimer -6.48 -6.62 -7.07 -8.16 -7.49 -7.43 -7.35 097.
ME 056 047 017 -0.54 -0.11 -0.07 -0.01 0.00
MAE 056 047 0.17 0.54 0.11 0.09 0.11 0.00
MAY%E 15.8% 13.5% 5.0% 13.6% 2.7% 22% 2.6% 0.0%
total ME 0.53 040 -0.04 -1.15 -0.44 -0.39 -0.30 0.00
total MAE 0.75 0.71 0.47 1.15 0.44 0.41 0.40 0.00
total MA%E 18.7% 17.0% 8.4% 18.6% 4.1% 3.7% 4.3% 0.0%
Ill. COMPUTATIONAL DETAILS product with the diagonal part and updating it in the other

terms, and similarly for Egs. (10) and (11). For RPAXx-I calcu

All calculations have been done with a development versiof@tions, the adiabatic-connection integration is perfedrby
of MOLPRO 2008 [63], implementing equations (7)-(14). We & 8-point Gauss-Legendre quadrature for the rare-gas sijmer
first perform a self-consistent RSH calculation with thersho @nd by a single-point quadrature [Eq. (14) of Ref. 31] for the
range Perdew-Burke-Ernzerhof (PBE) exchange-correlatioS22 Sét. We use the correlation-consistent basis sets of Dun
functional of Ref. 64 and add the long-range RPA correlatior"ind [67, 68]. Core electrons are kept frozen (i.e. only exci
energies calculated with RSH orbitals. The range separatiotations of valence electrons are considered). Basis sersup

parameter is taken at = 0.5 bohr?, according to previous position error (BSSE) is removed by the counterpoise method
studies [65], without trying to readjust it. For the raresga The geometries of the complexes of the S22 set are taken from

dimers, we also carry out full-range RPA calculations usingREf- 50. _The gepmetries of the isolated monomers are fixed
PBE orbitals [66] for comparison. The Riccati equation (7)t0 those in the dimers, thus the so-called monomer deforma-
is solved by decomposing the matfik" into diagonal and ~ tion €nergy is not included in the interaction energy. Fahea

off-diagonal parts and iteratively extractii@!|,o, from its method, mean error (ME), mean absolute error (MAE) and
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mean absolute percentage error (MA%E) are given using a@® a compensation of errors between an underestimated long-
a reference the CCSD(T) values extrapolated to the complet@ange contribution and an overestimated short-range ieontr
basis set (CBS) limit of Takatast al.[62]. bution. This is corroborated by the relatively large overes

In our present, most basic implementation, the computatimation of the interaction energies of this subset by range
tional cost of all the RPA methods used here formally scades aseparated CCD which should most accurately describe the
NZNZ for large basis sets, whelg andN, are the numbers of long-range correlation energies. We will thus focus our-ana
virtual and occupied orbitals, respectively. The compatetl  ysis on the WI8 and MI7 subsets.

cost of the CCD (or CCSD) method without the ring approxi- - For the WIS and MI7 subsets, dRPA gives largely under-
mation is higher and it scales BigNG for large basis sets [69]. estimated interaction energies, with MA%ES of 34.3% and
Of course, far better scalings should be obtained by usings gos respectively. SOSEX barely improves dRPA with
integral-direct methods and resolution-of-idenfiiolesky-  \agEs of 31.2% and 13.5%, respectively. This may not be
decomposition techniques [14]. surprising since, in the limit of large separation, SOSEX/on
adds exponentially decaying exchange interactions betwee
the monomers, but does not change the coupled-cluster am-
IV. RESULTS plitudes and thus does not change the polarizabilities ®f th
monomers. The RPAx-1 method of Refs. 15, 33, which in-

The interaction energy curves of fJeNey, and Ap cal-  corporates exchangéects in the monomers, greatly reduces
culated by the full-range and range-separated RPA methodBe underestimation of the interaction energies, with MA%E
are compared in Fig. 1. We use the large aug-cc-pV6Z baof 13.9% and 5.0%, respectively. The RPAXx-II variant, which
sis set to ensure that the full-range calculations are ggede  May be seen as the most straightforward way of defining a
Full-range dRPA and SOSEX strongly underestimate the inclosed-shell ring CCD with exchange terms, is disappoint-
teraction energies, while full-range RPAx-1l and RPAx-SO1ingly inaccurate. It overestimates the interaction eres gy
strongly overestimate them. The best full-range methoels arabout the same amount that dRPA underestimates them. Fi-
RPAx-I and RPAx-SO2, which is in agreement with the re-nally, the two variants RPAXx-SO1 and RPAx-SO2 give re-
cent study of HeRelmann [41, 70]. In passing, we note thafarkably accurate interaction energies, with MA%Es of 3.1%
the full-range RPAXx-l1 method better performs for Nend and 2.7% for RPAX-SO1, and 2.5% and 2.2% for RPAX-SO2.
Ar, when using PBE orbitals than when using HF orbitals, asThey are globally as accurate as range-separated CCD withou
done in Ref. 33. Range separation greatly improves the accie ring approximation. However, it must be noted that RPAXx-
racy of all the RPA variants. However, range-separated dRPSO1 and RPAX-SO2 tend to overestimate dispersion energies,
and SOSEX still underestimate the interaction energies, anwhile RPAx-1 underestimates them. Therefore, increadieg t
range-separa‘[ed RPAX-II Significanﬂy overestimatesrberdi basis size will Iikely increase the MA%Es of RPAX-SO1 and
action energy of Ar. Range-separated RPAX-I, RPAx-SO1, RPAX-SO2, while it will decrease the MA%E of RPAX-I.
and RPAx-SO2 give the most reasonable interaction energy
curves.

The interaction energies for the complexes of the S22 set
calculated with the range-separated RPA methods with the
aug-cc-pVDZ basis set are given in Table I. For comparison,
range-separated CCD results (without the ring approxonati
are also reported. Although the aug-cc-pVDZ basis set may We have studied various RPA variants that can be cast in
appear small, range-separated RPA methods are weakly dére form of closed-shell ring CCD approximations. We have
pendent on the basis size [15, 33], and indeed it was estimateested these variants with range separation, i.e. by com-
in Ref. 31 that when going from the aug-cc-pVDZ to the aug-bining a long-range RPA-type approximation with a short-
cc-pVTZ basis set the range-separated RPAXx-I interactien e range density-functional approximation, on rare-gas déme
ergies of the S22 set are lower by at most 7%, and the correand on the weakly interacting complexes of the S22 set.
sponding total MA%E decreases by less than 2%. Thereforédmong all these variants, the ones first proposed by Szabo
we believe that the aug-cc-pVDZ basis set iflisientto com-  and Ostlund [48, 49], called here RPAX-SO1 [Eq. (14)] and
pare the dierent range-separated RPA methods. RPAx-SO2 [Eq. (13)], give the most accurate dispersion-ener

The S22 set includes seven hydrogen-bonded complexeges. The other variants tend to either strongly underegém
(HB7 subset), eight weakly interacting complexes with pre{dRPA and SOSEX) or strongly overestimate (RPAx-11) the
dominant dispersion contributions (WI8 subset), and seveinteraction energies. For comparison, we have also regporte
mixed complexes featuring also multipole interactions {MI results from the RPAx-I1 method of Refs. 15, 33, which is not
subset). The trends are quitéfdrent for the HB7 subset on based on a ring CCD approximation but on the adiabatic con-
the one hand, and the WI8 and MI7 subsets on the other handection formula, and which gives reasonable interaction en
It was previously argued that the general overestimatidheof ergies as well. From a practical point of view, RPAX-SO2
interaction energies of hydrogen-bonded complexes is@ue tappears to be the most convenient variant since, contrary to
the approximate short-range density functional [31, 7Xle T RPAXx-I, it does not use any numerical adiabatic-connection
fact that dRPA and SOSEX give the smallest MAEs for theintegration and, contrary to RPAX-SO1, it involves only-sin
HB7 subset is thus not believed to be significant but rather duglet excitations and is thus not subject to triplet insitib8.

V. CONCLUSION
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and can be brought to a block-diagonal spin-adapted matrix
C = UT C U by the orthogonal transformation

Appendix A: CCD correlation energy

1100
) ) _ _ 111-100

In this appendix, we review several equivalent CCD corre- U= 72 oo1 1l (A6)
lation energy expressions, in view of justifying thetdrent 00 1-1

ring CCD variants.
Applying this transformation to the matri&gives the follow-
ing decomposition into singlet and triplet excitations

1. CCD correlation energy in spin-orbital basis

1B 0O O O
) ) ) ) ~ 0°® 0 O
The spin-unrestricted CCD wave functiansatas B=lo 03B 0 | (A7)
0 0 0 -°B

[Ycep) = exp('fg) D), (AL) N ) o
where!Bia jp = 2(ablij) — (ablji) and®Bia jp = —(ablji), with
where|®) is a single-determinant reference wave function,i, j referring now to occupied spatial orbitals aadb to virtual
andT, is the cluster operator for double excitations which isspatial orbitals. Notice the minus sign for the last trifalletck.

written in a spin-orbital basis as Using Kramers symmetry for spin-conserving real coupled-
cluster amplitudes (see, e.g., Ref. 72), one can show tivat sp
R 1 e . . L
f,= = Z tﬁbagaial‘)aj, (A2) adaptation of the matriX leads to a similar form
ijab T o 0 O
- . : . . ~ 0% 0 O
wherei, j anda, b refer to occupied and virtual spin-orbitals, T= 0 03 o I’ (A8)
respectively, and the amplitudﬁ%b must be antisymmetric 0 0 0 -3T
with respect to any exchange of two indice§® = —t3° =

. . . T o = T S 3T . o = Tivn

—t%* = t5% The CCD correlation energy is obtained by theWhere Tiajb = Tirar.j1br + Tirar,jibr @Nd"Tiajo = Tigar,jror —

transition formula Titar,jiby = Titas,jibr- The CCD correlation energy can thus be
expressed as

ESP = (OIH[Wcep) — (DIH|D) = (DIHT|®)
‘ 1 ) 1 ECCP = %tr ['B1T +3%B°T]. (A9)
= 7 D @bl = Ztr[BT], (A3) . . _ o
ijab Spin adaptation of the matrk gives only a contribution from

the singlet excitations
whereBig j, = (abllij) are the antisymmetrized two-electron

integrals over real spin orbitals afgh j, = tﬁb is the ampli- K000
tude matrix. Using the antisymmetry of the amplitudes, the K = 0 000 , (A10)
CCD correlation energy can also be written as 0 000
0 00O
1 . 1 . . .
ESCP = > Z(abu P = Etr[KT], (A4)  wherelKi,jp = 2(ablij), which leads to an alternative form
ijab for the CCD correlation energy
whereKja jn = (ablij) are the two-electron integrals. ESCP = }tr [lK 1-|—] (Al11)
5 .

2. CCD correlation energy in spatial-orbital basis for

b. Expression in terms of the restricted amplitudes
closed-shell systems

In practice, the CCD correlation energy is normally calcu-
lated starting from the spin-restricted closed-shell CCivev
functionansatz

a. Expression in terms of the singlet and triplet amplitudes

For spin-restricted closed-shell calculations, all therma R
ces in the spin-orbital excitation basis encountered sgefgr, [Weep) = eXp(RTz) D), (A12)



where the restricted cluster operatd® is written in a spatial-  constructed with the singlet single-excitation operator
orbital basis as

~ 1 A A &0,0 1 at a at a 1 -
R __ZR_a_b B S =—(a.8+a &)= —Eai, Al19
T2 - 2 & l:I] EaIEbh (A13) al \/é( ar T al l) \/é al ( )
where éai = AZ‘TéiT + é‘»iuéil is the Sing|et excitation opera- and'faibj is the trlplet double-excitation operator

tor anthf}b are the restricted amplitudes which must be sym-
metric with respect to the exchange of bath anda, b, i.e.,

RE3> = Rt5® but not antisymmetric with respect to the ex-

N Al 1 Aiaa i qn A A 1~ -
Taibj = Tl»lT;] ! —leng’jO +T 1T;].1 = BajBoi + 5Eaibo),
ji

ai ai

change of only two indices. The CCD correlation energy is ) ) ) o (A20)
obtained by the transition formula constructed with the triplet single-excitation operators
EC® = (®IHI¥eep) — (@IHID) = (PIH "T2|P) TH = 4, (A21a)
= ) (abij) - (@abiji) P = r['BRT| (A14)
ijab
whereRTi, i, = Rt = 1 aia s
iajb = ] i = V2 (8,2 -8 a). (A21b)
c. Expression in terms of the singlet and triplet restricted
amplitudes R
Ty =4l & (A21c)

Another equivalent correlation energy expression can be
obtained by decomposing the restricted amplitudes into-spi
singlet and spin-triplet components. Indeed, the restlict
cluster operator can be decomposed as (see, e.g., Ref.)73,

Using the symmetry properties 6Ft2° and*Rt?°, it is easy
19 check that Egs. (A13) and (A15) are equivalent. Combin-
ing Egs. (A16) and (Al17) leads to the decomposition of the

.1 . - restricted amplitudes into spin components
RTZ = E Z (l’RtﬁbSaibj + S’RtﬁbTaibj) s (A15)
ijab
1
Ryab _ 1Rsab _ 3 R:ab
t "E( 5 - 3Rt (A22)

wherelRt;"}b are singlet restricted amplitudes

1,Rtia}b — thjiib + Rtﬁb,

(A16) and the CCD correlation energy [Eq. (A14)] can thus be writ-

ten as
which are totally symmetric (i.e3RtP = MR5P = R =
LRtba), and*R2" are the triplet restricted amplitudes ECCD = %tr ['B(*RT - 3RT). (A23)
S’Rtﬁb — Rt?ib _ Rtﬁb, (Al?) . o . .
This corresponds to the definition of singlet and triplet-con
i 1 i S _ 1p LR
which are totally antisymmetric (i_e_s:,Rtia}b - _3,thj,1ib _ tributions to the correlation enerdy, = (1/2)tr[*B ~"T] and

El = —(1/2u['B3RT]. By using the symmetry properties
of *RT and*RT, one can show that they are equivalent to
the more usual expressions in terms of the restricted ampli-
A o 1. . tudes (see, e.g., Ref. 75ES = (1/4)t[(*B - 3*B)RT] and
Sainj = S3°507 = >EaiEoj, (A18)  E] = (3/4)tr[(*B + 3B)RT].

—3Rtpa = 3R, In Eq. (A15), S, is the singlet double-
excitation operator

[1] Z. Yan, J. P. Perdew, and S. Kurth, Phys. Rev.6B,. 16430 [6] Y. M. Niguet and X. Gonze, Phys. Rev. B, 245115 (2004).

(2000). [7] M. Fuchs, Y. M. Niquet, X. Gonze, and K. Burke, J. Chem.
[2] F. Furche, Phys. Rev. B4, 195120 (2001). Phys.122, 094116 (2005).
[3] F. Aryasetiawan, T. Miyake, and K. Terakura, Phys. ResttL [8] F. Furche and T. V. Voorhis, J. Chem. Ph$82, 164106 (2005).
88, 166401 (2002). [9] N. E. Dahlen, R. van Leeuwen, and U. von Barth, Phys. Rev. A
[4] T. Miyake, F. Aryasetiawan, T. Kotani, M. v. Schilfgaad 73, 012511 (2006).

M. Usuda, and K. Terakura, Phys. Rev.@8, 245103 (2002). [10] A. Marini, P. Garcia-Gonzalez, and A. Rubio, PhysvReett.
[5] M. Fuchs and X. Gonze, Phys. Rev@B, 235109 (2002). 96, 136404 (2006).



[11] H. Jiang and E. Engel, J. Chem. Ph$27, 184108 (2007).

[12] J. Harl and G. Kresse, Phys. Rev. ®, 045136 (2008).

[13] F. Furche, J. Chem. PhyB29, 114105 (2008).

[14] G. E. Scuseria, T. M. Henderson, and D. C. Sorensen,eimCh
Phys.129 231101 (2008). )

[15] J. Toulouse, I. C. Gerber, G. Jansen, A. Savin, and An@yan,
Phys. Rev. Lett102, 096404 (2009).

[16] B. G. Janesko, T. M. Henderson, and G. E. Scuseria, JnChe
Phys.130, 081105 (2009).

[17] B. G. Janesko, T. M. Henderson, and G. E. Scuseria, JnChe
Phys.131, 034110 (2009).

[18] B. G. Janesko and G. E. Scuseria, J. Chem. P18%.154106
(2009).

[19] X. Ren, P. Rinke, and M. Schiter, Phys. Rev. BBO, 045402
(2009).

[20] D. Lu, Y. Li, D. Rocca, and G. Galli, Phys. Rev. Left02,
206411 (2009).

[21] J. Harl and G. Kresse, Phys. Rev. Ldh3 056401 (2009).

[22] H.-V. Nguyen and S. de Gironcoli, Phys. Rev. B, 205114
(2009).

[23] A. Gruneis, M. Marsman, J. Harl, L. Schimka, and G. Ke&s
J. Chem. Physl31, 154115 (2009).

[24] A. Ruzsinszky, J. P. Perdew, and G. I. Csonka, J. Chemoih
Comput.6, 127 (2010).

[25] H.-V. Nguyen and G. Galli, J. Chem. Phy82 044109 (2010).

[26] M. Hellgren and U. von Barth, J. Chem. Phy82 044101
(2010).

[27] A. HeRelmann and A. Gorling, Mol. Phy%08 359 (2010).

Le, Int. J. Quantum. Cheni01, 579 (2005).

[44] J. F. Dobson, J. Comput. Theor. Nano$:i960 (2009).

[45] E. A. Sanderson, Phys. Lett9, 141 (1965).

[46] D. L. Freeman, Phys. Rev. B5, 5512 (1977).

[47] R. Moszynski, B. Jeziorski, and K. Szalewicz, Int. J.aQtum.
Chem.4009, 45 (1993).

[48] A. Szabo and N. S. Ostlund, Int. J. Quantum Ch&hl, 389
(1977).

[49] A. Szabo and N. S. Ostlund, J. Chem. P1§/%.4351 (1977).

[50] P. Jurecka, JSponer, JCerny, and P. Hobza, Phys. Chem.
Chem. Phys8, 1985 (2006).

[51] J. Toulouse, F. Colonna, and A. Savin, Phys. Rev0A062505
(2004).

[52] J. G.Angyan, I|. C. Gerber, A. Savin, and J. Toulouse, Phys.
Rev. A72, 012510 (2005).

[53] E. Goll, H.-J. Werner, and H. Stoll, Phys. Chem. Cheny$h
7, 3917 (2005).

[54] J. G.Angyan, R.-F. Liu, J. Toulouse, and G. Jansen, unpub-
lished.

[55] K. T. Tang and J. P. Toennies, J. Chem. PAyS 4976 (2003).

[56] J. Oddershede, Adv. Quantum Cheit, 275 (1978).

[57] A. D. McLachlan and M. A. Ball, Rev. Mod. Phy86, 844
(1964).

[58] T.-I. Shibuya and V. McKoy, Phys. Rev. 2 2208 (1979).

[59] T.-1. Shibuya and V. McKoy, J. Chem. Phy&4, 1738 (1971).

[60] N. Ostlund and M. Karplus, Chem. Phys. Ldtt, 450 (1971).

[61] N. Fukuda, F. lwamoto, and K. Sawada, Phys. R85 A932
(1964).

[28] J. Paier, B. G. Janesko, T. M. Henderson, G. E. Scuserig62] T. Takatani, E. G. Hohenstein, M. Malagoli, M. S. Markha

A. Gruneis, and G. Kresse, J. Chem. P2 094103 (2010).

[29] J. Harl, L. Schimka, and G. Kresse, Phys. Re\8B 115126
(2010).

[30] S. Ismail-Beigi, Phys. Rev. B1, 195126 (2010).

[31] W. Zhu, J. Toulouse, A. Savin, and J. @ngyan, J. Chem.
Phys.132, 244108 (2010).

[32] H. Eshuis, J. Yarkony, and F. Furche, J. Chem. PHga2
234114 (2010). ]

[33] J. Toulouse, W. Zhu, J. G\ngyan, and A. Savin, Phys. Rev. A
82, 032502 (2010). ]

[34] G. Jansen, R.-F. Liu, and J. @ngyan, J. Chem. Phy4.33
154106 (2010).

[35] D. Lu, H.-V. Nguyen, and G. Galli, J. Chem. Ph{#83 154110
(2010).

[36] A. HeRRelmann and A. Gorling, Phys. Rev. Letf6 093001
(2011).

[37] A. Ruzsinsky, J. P. Perdew, and G. |. Csonka, J. Chems.Phy
134, 114110 (2011).

[38] X. Ren, A. Tkatchenko, P. Rinke, and M. Sdher, Phys. Rev.
Lett. 106, 153003 (2011).

[39] V. Lotrich and R. J. Bartlett, J. Chem. Phyk34, 184108
(2011).

[40] W.Klopper, A. M. Teale, S. Coriani, T. B. Pedersen, anti@&l-
gaker, Chem. Phys. Le®10, 147 (2011).

[41] A. HeRelmann, J. Chem. Phyis34, 204107 (2011).

[42] J.F. Dobson, K. McLennan, A. Rubio, J. Wang, T. GouldH.
Le, and B. P. Dinte, Aust. J. Cher®4, 513 (2001).

[43] J. F. Dobson, J. Wang, B. P. Dinte, K. McLennan, and H. M.

and C. D. Sherrill, J. Chem. Phys32 144104 (2010).

[63] H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. 8izh
et al.,Molpro, version 2008.2, a package of ab initio programs
(2008), see www.molpro.net.

[64] E. Goll, H.-J. Werner, H. Stoll, T. Leininger, P. Goridggi, and
A. Savin, Chem. PhysS329, 276 (2006).

[65] I. C. Gerber and J. GAngyan, Chem. Phys. Letd15 100
(2005).

[66] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev..[7att
3865 (1996).

[67] T. H. Dunning, J. Chem. Phy80, 1007 (1989).

[68] A. K. Wilson, T. v. Mourik, and T. H. Dunning, J. Mol. Stcti
388 339 (1997).

[69] T. J. Lee and J. E. Rice, Chem. Phys. L&&0, 406 (1988).

[70] In Ref. 41, AC-RPA, NRPA1, NRPA3, and NRPA4 refer to
what we call here RPAX-I, RPAx-II, RPA-SO2, and RPA-SO1,
respectively. In addition, NRPA2 corresponds to the varidn
Fukudaet aI., i.e. ZEC,RPAX-II - Ec,MPZ-

[71] E. Goll, T. Leininger, F. R. Manby, A. Mitrushchenkov,.H
J. Werner, and H. Stoll, Phys. Chem. Chem. PHys.3353
(2008).

[72] F. Wang, J. Gauss, and C. van Willlen, J. Chem. Phg8.
064113 (2008).

[73] T. Helgaker, P. Jgrgensen, and J. Olddolecular Electronic-
Structure TheoryWiley, Chichester, 2002).

[74] J. Paldus, J. Chem. Phy&¥, 303 (1977).

[75] W. Klopper, Mol. Phys99, 481 (2001).



