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Abstract

In this note we prove the dual representation formula of the

divergence between two distributions in a parametric model. Re-

sulting estimators for the divergence as for the parameter are

derived. These estimators do not make use of any grouping nor

smoothing. It is proved that all differentiable divergences induce

the same estimator of the parameter on any regular exponential

family, which is nothing else but the MLE.
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1 Introduction

1.1 Context and scope of this note

This note presents a short proof of the duality formula for ϕ− diver-
gences defined through differentiable convex functions ϕ in parametric
models and discusses some unexpected phenomenon in the context of
exponential families. First versions of this formula appear in [8] p 33,
in [1] in the context of the Kullback-Leibler divergence and in [7] in a
general form. The paper [3] introduces this form in the context of min-
imal χ2− estimation; a global approach to this formulation is presented
in Broniatowski and Kéziou (2006)[2]. Independently Liese and Vajda
(2006)[9] have obtained a similar expression based on a much simpler
argument as presented in all the above mentioned papers (formula (118)
in their paper); however the proof of their result is merely sketched and
we have found it useful to present a complete treatment of this interest-
ing result in the parametric setting, in contrast with the aforementioned
approaches.
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The main interest of the resulting expression is that it leads to a wide
variety of estimators, by a plug in method of the empirical measure eval-
uated on the current data set; so, for any type of sampling its estimators
and inference procedures, for any ϕ−divergence criterion. In the case of
the simple i.i.d. sampling resulting properties of those estimators and
subsequent inferential procedures are studied in [4].

A striking fact is that all minimum divergence estimators defined
through this dual formula coincide with the MLE in exponential families.
They henceforth enjoy strong optimality under the standard exponential
models, leading to estimators different from the MLE under different
models than the exponential one. Also this result proves that MLE ’s
of parameters of exponential families are strongly motivated by being
generated by the whole continuum of ϕ−divergences.

This note results from joint cooperation with late Igor Vajda.

1.2 Notation

Let P := {Pθ, θ ∈ Θ} an identifiable parametric model on R
d where

Θ is a subset of R
s. All measures in P will be assumed to be mea-

sure equivalent sharing therefore the same support. The parameter
space Θ need not be open in the present setting. It may even hap-
pen that the model includes measures which would not be probability
distributions; cases of interest cover models including mixtures of prob-
ability distributions; see [4]. Let ϕ be a proper closed convex function
from ] − ∞,+∞[ to [0,+∞] with ϕ(1) = 0 and such that its domain
domϕ := {x ∈ R such that ϕ(x) < ∞} is an interval with endpoints
aϕ < 1 < bϕ (which may be finite or infinite). For two measures Pα

and Pθ in P the ϕ-divergence between Q and P is defined by

φ(α, θ) :=

∫

X

ϕ

(
dPα

dPθ

(x)

)
dPθ(x).

In a broader context, the ϕ-divergences were introduced by [5] as “f -
divergences”. The basic property of ϕ− divergences states that when ϕ
is strictly convex on a neighborhood of x = 1, then

φ(α, θ) = 0 if and only if α = θ.

We refer to [8] chapter 1 for a complete study of those properties. Let us
simply quote that in general φ(α, θ) and φ(, θ, α)are not equal. Hence,
ϕ-divergences usually are not distances, but they merely measure some
difference between two measures. A main feature of divergences between
distributions of random variables X and Y is the invariance property
with respect to common smooth change of variables.
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1.3 Examples of ϕ-divergences

The Kullback-Leibler (KL), modified Kullback-Leibler (KLm), χ
2, mod-

ified χ2 (χ2
m), Hellinger (H), and L1 divergences are respectively associ-

ated to the convex functions ϕ(x) = x log x−x+1, ϕ(x) = − log x+x−1,

ϕ(x) = 1
2
(x− 1)2, ϕ(x) = 1

2
(x− 1)2/x, ϕ(x) = 2(

√
x− 1)

2
and ϕ(x) =

|x− 1|. All these divergences except the L1 one, belong to the class of
the so called “power divergences” introduced in [6] (see also [8] chap-
ter 2), a class which takes its origin from Rényi [10]. They are defined
through the class of convex functions

x ∈]0,+∞[7→ ϕγ(x) :=
xγ − γx+ γ − 1

γ(γ − 1)
(1)

if γ ∈ R \ {0, 1}, ϕ0(x) := − log x+ x− 1 and ϕ1(x) := x log x − x+ 1.
So, the KL-divergence is associated to ϕ1, the KLm to ϕ0, the χ

2 to ϕ2,
the χ2

m to ϕ−1 and the Hellinger distance to ϕ1/2.

It may be convenient to extend the definition of the power divergences
in such a way that φ(α, θ) may be defined (possibly infinite) even when
Pα or Pθ is not a probability measure. This is achieved setting

x ∈]−∞,+∞[7→
{
ϕγ(x) if x ∈ [0,+∞[,
+∞ if x ∈]−∞, 0[.

(2)

when domϕ = R
+/ {0} . Note that for the χ2-divergence, the correspond-

ing ϕ function φ2(x) :=
1
2
(x− 1)2 is defined and convex on whole R.

We will only consider divergences defined through differentiable func-
tions ϕ, which we assume to satisfy

(RC)
There exists a positive δ such that for all c in [1− δ, 1 + δ],
we can find numbers c1, c2, c3 such that
ϕ(cx) ≤ c1ϕ(x) + c2 |x|+ c3, for all real x.

Condition (RC) holds for all power divergences including KL and
KLm divergences.

2 Dual form of the divergence and dual estimators

in parametric models

Let θ and θT be any parameters in Θ. We intend to provide a new
expression for φ(θ, θT ).

By strict convexity, for all a and b the domain of ϕ it holds

ϕ(b) ≥ ϕ(b) + ϕ′(a)(b− a) (3)

with equality if and only if a = b.
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Denote
ϕ# (x) := xϕ′(x)− ϕ(x).

For any α in Θ denote

a :=
dPθ

dPα

(x) .

Define

b :=
dPθ

dPθT

(x) .

Inserting these values in (3) and integrating with respect to PθT yields

φ(θ, θT ) ≥
∫ [

ϕ′

(
dPθ

dPα

)
dPθ − ϕ#

(
dPθ

dPα

)]
dPθT .

Assume at present that this entails

φ(θ, θT ) ≥
∫

ϕ′

(
dPθ

dPα

)
dPθ −

∫
ϕ#

(
dPθ

dPα

)
dPθT (4)

for suitable α’s in some set Fθ included in Θ.
When α = θT the inequality in (4) turns to equality, which yields

φ(θ, θT ) = sup
α∈Fθ

∫
ϕ′

(
dPθ

dPα

)
dPθ −

∫
ϕ#

(
dPθ

dPα

)
dPθT (5)

Denote

h(θ, α, x) :=

∫
ϕ′

(
dPθ

dPα

)
dPθ − ϕ#

(
dPθ

dPα

)
(6)

from which

φ(θ, θT ) = sup
α∈Fθ

∫
h(θ, α, x)dPθT . (7)

Furthermore by (4), for all suitable α

φ(θ, θT )−
∫

h(θ, α, x)dPθT

=

∫
h(θ, θT , x)dPθT .−

∫
h(θ, α, x)dPθT ≥ 0

and the function x → h(θ, θT , x) − h(θ, α, x) is non negative, due to
(3). It follows that φ(θ, θT )−

∫
h(θ, α, x)dPθT is zero only if h(θ, α, x) =

h(θ, θT , x)− PθT a.e. Therefore for any x in the support of PθT

[∫
ϕ′

(
dPθ

dPθT

)
dPθ −

∫
ϕ′

(
dPθ

dPα

)
dPθ

]
−ϕ#

(
dPθ

dPα
(x)

)
+ϕ#

(
dPθ

dPθT

(x)

)
= 0
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which cannot hold for all x when the functions ϕ#
(

dPθ

dPα
(x)

)
, ϕ#

(
dPθ

dPθT

(x)
)

and 1 are linearly independent, unless α = θT . We have proved that θT
is the unique optimizer in (5).

We have skipped some sufficient conditions which ensure that (4)
holds.

Assume that ∫ ∣∣∣∣ϕ
′

(
dPθ

dPα

)∣∣∣∣ dPθ < ∞. (8)

Assume further that φ(θ, θT ) is finite. Since

−
∫

ϕ#

(
dPθ

dPα

(x)

)
dPθT ≤ φ(θ, θT )−

∫
ϕ′

(
dPθ

dPθT

)
dPθ

≤ φ(θ, θT ) +

∫ ∣∣∣∣ϕ
′

(
dPθ

dPθT

)∣∣∣∣ dPθ < +∞

we obtain ∫
ϕ#

(
dPθ

dPα

)
dPθT > −∞

which entails (4). When
∫
ϕ#

(
dPθ

dPα

)
dPθT = +∞ then clearly , under

(8)

φ(θ, θT ) >

∫
ϕ′

(
dPθ

dPα

)
dPθ −

∫
ϕ#

(
dPθ

dPα

)
dPθT = −∞.

We have proved that (5) holds when α satisfies (8).
Sufficient and simple conditions encompassing (8) can be assessed

under standard requirements for nearly all divergences. We state the
following Lemma (see Liese and Vajda (1987)[8]) and Broniatowski and
Kéziou (2006) [2], Lemma 3.2).

Lemma 1 Assume that RC holds and φ(θ, α) is finite. Then (8) holds.

Summing up, we state

Theorem 2 Let θ belong to Θ and let φ(θ, θT ) be finite. Assume that
RC holds.Let Fθ be the subset of all α’s in Θ such that φ(θ, α) is finite
. Then

φ(θ, θT ) = sup
α∈Fθ

∫
ϕ′

(
dPθ

dPα

)
dPθ −

∫
ϕ#

(
dPθ

dPα

)
dPθT .

Furthermore the sup is reached at θT and uniqueness holds.
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For the Cressie-Read family of divergences with γ 6= 0, 1 this repre-
sentation writes

φγ(θ, θT ) = sup
α∈Fθ

{
1

γ − 1

∫ (
dPθ

dPα

)γ−1

dPθ −
1

γ

∫ (
dPθ

dPα

)γ

dPθT − 1

γ(γ − 1)

}
.

The set Fθ may depend on the choice of the parameter θ. Such is
the case for the χ2 divergence i.e. ϕ(x) = (x − 1)2/2, when pθ(x) =
θ exp(−θx)1[0,∞)(x). In most cases the difficulty of dealing with a specific
set Fθ depending on θ can be encompassed when

There exists a neighborhood U of θT for which (A)

φ(θ, θ′) is finite whatever θ and θ′ in U
which for example holds in the above case for any θT . This simplication
deserves to be stated in the next result

Theorem 3 When φ(θ, θT ) is finite andRC holds, then under condition
(A)

φ(θ, θT ) = sup
α∈U

∫
ϕ′

(
dPθ

dPα

)
dPθ −

∫
ϕ#

(
dPθ

dPα

)
dPθT .

Furthermore the sup is reached at θT and uniqueness holds.

Remark 4 Identifying Fθ might be cumbersome. This difficulty also
appears in the classical MLE case, a special case of the above statement
with divergence function ϕ0 ,for which it is assumed that

∫
log pθ(x)pθT (x)dλ(x) is finite

for θ in a neighborhood of θT .

Under the above notation and hypotheses define

Tθ (PθT ) := arg sup
α∈Fθ

∫
h(θ, α, x)dPθT . (9)

It then holds
Tθ (PθT ) = θT

for all θT in Θ. Also let

S (PθT ) := arg inf
θ∈Θ

sup
α∈Fθ

∫
h(θ, α, x)dPθT . (10)

which also satisfies
S (PθT ) = θT

for all θT in Θ. We thus state

Theorem 5 When φ(θ, θT ) is finite for all θ in Θ and RC holds, both
functionals Tθ and S are Fisher consistent for all θT in Θ.
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3 Plug in estimators

From (7) simple estimators for θT can be defined, plugging any conver-
gent empirical measure in place of PθT and taking the infimum in θ in
the resulting estimator of φ(θ, θT ).

In the context of simple i.i.d. sampling, introducing the empirical
measure

Pn :=
1

n

n∑

i=1

δXi

where the Xi’s are i.i.d. r.v’s with common unknown distribution PθT

in P, the natural estimator of φ(θ, θT ) is

φn(θ, θT ) := sup
α∈Fθ

{∫
h(θ, α, x) dPn(x)

}
(11)

= sup
α∈Fθ

∫
ϕ′

(
dPθ

dPα

)
dPθ −

1

n

n∑

i=1

ϕ#

(
dPθ

dPα

(Xi)

)
.

Since
inf
θ∈Θ

φ(θ, θT ) = φ(θT , θT ) = 0

the resulting estimator of φ(θT , θT ) is

φn(θT , θT ) := inf
θ∈Θ

φn(θ, θT ) = inf
θ∈Θ

sup
α∈Fθ

{∫
h(θ, α, x) dPn(x)

}
. (12)

Also the estimator of θT is obtained as

θ̂ := arg inf
θ∈Θ

sup
α∈Fθ

{∫
h(θ, α, x) dPn(x)

}
. (13)

When A holds then Fθ may be substituted by U in the above definitions.
The resulting minimum dual divergence estimators (12) and (13)

do not require any smoothing or grouping, in contrast with the classical
approach which involves quantization. The paper [4] provides a complete
study of those estimates and subsequent inference tools for the usual i.i.d.
sample scheme. For all divergences considered here, these estimators are
asymptotically efficient in the sense that they achieve the Cramer-Rao
bound asymptotically. The case when ϕ = ϕ0 leads to θML defined as
the celebrated Maximum Likelihood Estimator (MLE), in the context of
the simple sampling.

7



4 Minimum divergence estimators in exponential

families

In this section we prove the following result

Theorem 6 For all divergence φ defined through a differentiable func-
tion ϕ satisfying Condition (RC), the minimum dual divergence estima-
tor defined by (13) coincides with the MLE on any regular exponential
families such that φ (θ, α) is finite for all θ and α in Θ.

Let P be an exponential family on R
s with canonical parameter in

R
d

P :=

{
Pθ such that pθ(x) =

dPθ

dλ
(x)

= exp [T (x)′θ − C(θ)] ; θ ∈ Θ

}

where x is in R
s and Θ is an open subset of Rd , and λ is a dominating

measure for P. We assume P to be regular, namely that the Hessian
matrix (∂2/∂θ2)C(θ) is definite positive for all θ in Θ.

LetX1, ..., Xn be n i.i.d. random variables with common distribution
PθT with θT in Θ. Introduce

Mn (θ, α) :=

∫
ϕ′

(
dPθ

dPα

)
dPθ −

1

n

n∑

i=1

ϕ#

(
dPθ

dPα

(Xi)

)

We will prove that

inf
θ
sup
α

Mn (θ, α) = 0 (14)

whatever the function ϕ satisfying the claim. In (14) θ and α run in Θ.
This result extends the maximum likelihood case for which infθ supαMn (θ, α) =
supθ infα

[
1
n

∑n
i=1 log pθ (Xi)− 1

n

∑n
i=1 log pα (Xi)

]
= 0.

Direct substitution shows that for any θ,

sup
α

Mn (θ, α) ≥ Mn (θ, θ) = 0

from which
inf
θ
sup
α

Mn (θ, α) ≥ 0 (15)

We prove that

α = θML is the unique maximizer of Mn (θML, α) (16)

which yields

inf
θ
sup
α

Mn (θ, α) ≤ sup
α

Mn (θML, α) = Mn (θML, θML) = 0 (17)
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which together with (15) completes the proof.

Define

Mn,1 (θ, α) :=

∫
ϕ′ (expA(θ, α, x)) expB (θ, x) dλ(x)

Mn,2 (θ, α) :=
1

n

n∑

i=1

exp (A (θ, α,Xi))ϕ
′ (expA(θ, α,Xi))

Mn,3 (θ, α) :=
1

n

n∑

i=1

ϕ (expA(θ, α,Xi))

with

A(θ, α, x) := T (x)′ (θ − α) + C(α)− C(θ)

B(θ, x) := T (x)′θ − C(θ).

It holds

Mn (θ, α) = Mn,1 (θ, α)−Mn,2 (θ, α) +Mn,3 (θ, α)

with

∂

∂α
Mn,1 (θ, α)α=θ = −ϕ(2) (1) [∇C (θ)−∇C (α)α=θ] = 0

for all θ,

∂

∂α
Mn,2 (θ, α)α=θML

= ϕ(2) (1)
1

n

n∑

i=1

[
−T (Xi) +∇C (α)α=θML

]
= 0

and

∂

∂α
Mn,3 (θML, α) =

1

n

n∑

i=1

[
−T (Xi) +∇C (α)α=θML

]
= 0

where the two last displays hold iff α = θML. Now

∂2

∂α2
Mn,1 (θ, α)α=θML

=
(
ϕ(3)(1) + 2ϕ(2)(1)

) (
∂2/∂θ2

)
C(θML)

∂2

∂α2
Mn,2 (θ, α)α=θML

=
(
ϕ(3)(1) + 4ϕ(2)(1)

) (
∂2/∂θ2

)
C(θML)

∂2

∂α2
Mn,3 (θML, α)α=θML

= ϕ(2)(1)
(
∂2/∂θ2

)
C(θML),

whence
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∂

∂α
Mn (θ, α)α=θML

= 0

∂2

∂α2
Mn (θ, α)α=θML

= −ϕ(2)(1)
(
∂2/∂θ2

)
C(θML)

which proves (16), and closes the proof.
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