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In this note we prove the dual representation formula of the divergence between two distributions in a parametric model. Resulting estimators for the divergence as for the parameter are derived. These estimators do not make use of any grouping nor smoothing. It is proved that all differentiable divergences induce the same estimator of the parameter on any regular exponential family, which is nothing else but the MLE.

1 Introduction

Context and scope of this note

This note presents a short proof of the duality formula for ϕ-divergences defined through differentiable convex functions ϕ in parametric models and discusses some unexpected phenomenon in the context of exponential families. First versions of this formula appear in [START_REF] Liese | Convex statistical distances[END_REF] p 33, in [START_REF] Broniatowski | Estimation of the Kullback-Leibler divergence[END_REF] in the context of the Kullback-Leibler divergence and in [START_REF] Keziou | Dual representation of ϕ-divergences and applications[END_REF] in a general form. The paper [START_REF] Broniatowski | An estimation method for the Neyman chi-square divergence with application to test of hypotheses[END_REF] introduces this form in the context of minimal χ 2 -estimation; a global approach to this formulation is presented in Broniatowski and Kéziou (2006) [START_REF] Broniatowski | Minimization of ϕ-divergences on sets of signed measures[END_REF]. Independently [START_REF] Liese | On divergences and informations in statistics and information theory[END_REF] [START_REF] Liese | On divergences and informations in statistics and information theory[END_REF] have obtained a similar expression based on a much simpler argument as presented in all the above mentioned papers (formula (118) in their paper); however the proof of their result is merely sketched and we have found it useful to present a complete treatment of this interesting result in the parametric setting, in contrast with the aforementioned approaches.

The main interest of the resulting expression is that it leads to a wide variety of estimators, by a plug in method of the empirical measure evaluated on the current data set; so, for any type of sampling its estimators and inference procedures, for any ϕ-divergence criterion. In the case of the simple i.i.d. sampling resulting properties of those estimators and subsequent inferential procedures are studied in [START_REF] Broniatowski | Parametric estimation and tests through divergences and the duality technique[END_REF].

A striking fact is that all minimum divergence estimators defined through this dual formula coincide with the MLE in exponential families. They henceforth enjoy strong optimality under the standard exponential models, leading to estimators different from the MLE under different models than the exponential one. Also this result proves that MLE 's of parameters of exponential families are strongly motivated by being generated by the whole continuum of ϕ-divergences.

This note results from joint cooperation with late Igor Vajda.

Notation

Let P := {P θ , θ ∈ Θ} an identifiable parametric model on R d where Θ is a subset of R s . All measures in P will be assumed to be measure equivalent sharing therefore the same support. The parameter space Θ need not be open in the present setting. It may even happen that the model includes measures which would not be probability distributions; cases of interest cover models including mixtures of probability distributions; see [START_REF] Broniatowski | Parametric estimation and tests through divergences and the duality technique[END_REF]. Let ϕ be a proper closed convex function from ] -∞, +∞[ to [0, +∞] with ϕ(1) = 0 and such that its domain domϕ := {x ∈ R such that ϕ(x) < ∞} is an interval with endpoints a ϕ < 1 < b ϕ (which may be finite or infinite). For two measures P α and P θ in P the ϕ-divergence between Q and P is defined by

φ(α, θ) := X ϕ dP α dP θ (x) dP θ (x).
In a broader context, the ϕ-divergences were introduced by [START_REF] Csiszár | Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten[END_REF] as "fdivergences". The basic property of ϕ-divergences states that when ϕ is strictly convex on a neighborhood of x = 1, then φ(α, θ) = 0 if and only if α = θ.

We refer to [START_REF] Liese | Convex statistical distances[END_REF] chapter 1 for a complete study of those properties. Let us simply quote that in general φ(α, θ) and φ(, θ, α)are not equal. Hence, ϕ-divergences usually are not distances, but they merely measure some difference between two measures. A main feature of divergences between distributions of random variables X and Y is the invariance property with respect to common smooth change of variables.

Examples of ϕ-divergences

The Kullback-Leibler (KL), modified Kullback-Leibler (KL m ), χ 2 , modified χ 2 (χ 2 m ), Hellinger (H), and L 1 divergences are respectively associated to the convex functions ϕ

(x) = x log x-x+1, ϕ(x) = -log x+x-1, ϕ(x) = 1 2 (x -1) 2 , ϕ(x) = 1 2 (x -1) 2 /x, ϕ(x) = 2( √ x -1)
2 and ϕ(x) = |x -1|. All these divergences except the L 1 one, belong to the class of the so called "power divergences" introduced in [START_REF] Read | Goodness-of-fit statistics for discrete multivariate data[END_REF] (see also [START_REF] Liese | Convex statistical distances[END_REF] chapter 2), a class which takes its origin from Rényi [START_REF] Rényi | On measures of entropy and information[END_REF]. They are defined through the class of convex functions

x ∈]0, +∞[ → ϕ γ (x) := x γ -γx + γ -1 γ(γ -1) (1) if γ ∈ R \ {0, 1}, ϕ 0 (x) := -log x + x -1 and ϕ 1 (x) := x log x -x + 1.
So, the KL-divergence is associated to ϕ 1 , the KL m to ϕ 0 , the χ 2 to ϕ 2 , the χ 2 m to ϕ -1 and the Hellinger distance to ϕ 1/2 .

It may be convenient to extend the definition of the power divergences in such a way that φ(α, θ) may be defined (possibly infinite) even when P α or P θ is not a probability measure. This is achieved setting

x ∈] -∞, +∞[ → ϕ γ (x) if x ∈ [0, +∞[, +∞ if x ∈] -∞, 0[. (2) 
when domϕ = R + / {0} . Note that for the χ 2 -divergence, the corresponding ϕ function φ 2 (x) := 1 2 (x -1) 2 is defined and convex on whole R.

We will only consider divergences defined through differentiable functions ϕ, which we assume to satisfy (RC)

There exists a positive δ such that for all c in [1 -δ, 1 + δ], we can find numbers c 1 , c 2 , c 3 such that ϕ(cx) ≤ c 1 ϕ(x) + c 2 |x| + c 3 , for all real x. Condition (RC) holds for all power divergences including KL and KL m divergences.

Dual form of the divergence and dual estimators in parametric models

Let θ and θ T be any parameters in Θ. We intend to provide a new expression for φ(θ, θ T ). By strict convexity, for all a and b the domain of ϕ it holds

ϕ(b) ≥ ϕ(b) + ϕ ′ (a)(b -a) (3) 
with equality if and only if a = b.

Denote

ϕ # (x) := xϕ ′ (x) -ϕ(x).
For any α in Θ denote

a := dP θ dP α (x) . Define b := dP θ dP θ T (x) .
Inserting these values in (3) and integrating with respect to P θ T yields

φ(θ, θ T ) ≥ ϕ ′ dP θ dP α dP θ -ϕ # dP θ dP α dP θ T .
Assume at present that this entails

φ(θ, θ T ) ≥ ϕ ′ dP θ dP α dP θ -ϕ # dP θ dP α dP θ T (4) 
for suitable α's in some set F θ included in Θ. When α = θ T the inequality in (4) turns to equality, which yields

φ(θ, θ T ) = sup α∈F θ ϕ ′ dP θ dP α dP θ -ϕ # dP θ dP α dP θ T (5) 
Denote

h(θ, α, x) := ϕ ′ dP θ dP α dP θ -ϕ # dP θ dP α (6) 
from which φ(θ, θ T ) = sup

α∈F θ h(θ, α, x)dP θ T . (7) 
Furthermore by ( 4), for all suitable α

φ(θ, θ T ) -h(θ, α, x)dP θ T = h(θ, θ T , x)dP θ T . -h(θ, α, x)dP θ T ≥ 0 and the function x → h(θ, θ T , x) -h(θ, α, x) is non negative, due to (3). It follows that φ(θ, θ T ) -h(θ, α, x)dP θ T is zero only if h(θ, α, x) = h(θ, θ T , x)-P θ T a.
e. Therefore for any x in the support of

P θ T ϕ ′ dP θ dP θ T dP θ -ϕ ′ dP θ dP α dP θ -ϕ # dP θ dP α (x) +ϕ # dP θ dP θ T (x) = 0
which cannot hold for all x when the functions ϕ # dP θ dPα (x) , ϕ # dP θ dP θ T (x) and 1 are linearly independent, unless α = θ T . We have proved that θ T is the unique optimizer in [START_REF] Csiszár | Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten[END_REF].

We have skipped some sufficient conditions which ensure that (4) holds.

Assume that

ϕ ′ dP θ dP α dP θ < ∞. (8) 
Assume further that φ(θ, θ T ) is finite. Since

-ϕ # dP θ dP α (x) dP θ T ≤ φ(θ, θ T ) -ϕ ′ dP θ dP θ T dP θ ≤ φ(θ, θ T ) + ϕ ′ dP θ dP θ T dP θ < +∞ we obtain ϕ # dP θ dP α dP θ T > -∞
which entails (4). When ϕ # dP θ dPα dP θ T = +∞ then clearly , under ( 8)

φ(θ, θ T ) > ϕ ′ dP θ dP α dP θ -ϕ # dP θ dP α dP θ T = -∞.
We have proved that (5) holds when α satisfies [START_REF] Liese | Convex statistical distances[END_REF]. Sufficient and simple conditions encompassing (8) can be assessed under standard requirements for nearly all divergences. We state the following Lemma (see [START_REF] Liese | Convex statistical distances[END_REF] [START_REF] Liese | Convex statistical distances[END_REF]) and Broniatowski and Kéziou (2006) [START_REF] Broniatowski | Minimization of ϕ-divergences on sets of signed measures[END_REF], Lemma 3.2).

Lemma 1 Assume that RC holds and φ(θ, α) is finite. Then (8) holds.

Summing up, we state

Theorem 2 Let θ belong to Θ and let φ(θ, θ T ) be finite. Assume that RC holds.Let F θ be the subset of all α's in Θ such that φ(θ, α) is finite . Then

φ(θ, θ T ) = sup α∈F θ ϕ ′ dP θ dP α dP θ -ϕ # dP θ dP α dP θ T .
Furthermore the sup is reached at θ T and uniqueness holds.

For the Cressie-Read family of divergences with γ = 0, 1 this representation writes

φ γ (θ, θ T ) = sup α∈F θ 1 γ -1 dP θ dP α γ-1 dP θ - 1 γ dP θ dP α γ dP θ T - 1 γ(γ -1)
.

The set F θ may depend on the choice of the parameter θ. Such is the case for the χ 2 divergence i.e. ϕ(x) = (x -1) 2 /2, when p θ (x) = θ exp(-θx)1 [0,∞) (x). In most cases the difficulty of dealing with a specific set F θ depending on θ can be encompassed when exists a neighborhood U of θ T for which (A) φ(θ, θ ′ ) is finite whatever θ and θ ′ in U which for example holds in the above case for any θ T . This simplication deserves to be stated in the next result Theorem 3 When φ(θ, θ T ) is finite and RC holds, then under condition (A)

φ(θ, θ T ) = sup α∈U ϕ ′ dP θ dP α dP θ -ϕ # dP θ dP α dP θ T .
Furthermore the sup is reached at θ T and uniqueness holds.

Remark 4 Identifying F θ might be cumbersome. This difficulty also appears in the classical MLE case, a special case of the above statement with divergence function ϕ 0 ,for which it is assumed that log p θ (x)p θ T (x)dλ(x) is finite for θ in a neighborhood of θ T .

Under the above notation and hypotheses define

T θ (P θ T ) := arg sup α∈F θ h(θ, α, x)dP θ T . (9) 
It then holds

T θ (P θ T ) = θ T
for all θ T in Θ. Also let

S (P θ T ) := arg inf θ∈Θ sup α∈F θ h(θ, α, x)dP θ T . (10) 
which also satisfies

S (P θ T ) = θ T
for all θ T in Θ. We thus state Theorem 5 When φ(θ, θ T ) is finite for all θ in Θ and RC holds, both functionals T θ and S are Fisher consistent for all θ T in Θ.

Plug in estimators

From [START_REF] Keziou | Dual representation of ϕ-divergences and applications[END_REF] simple estimators for θ T can be defined, plugging any convergent empirical measure in place of P θ T and taking the infimum in θ in the resulting estimator of φ(θ, θ T ).

In the context of simple i.i.d. sampling, introducing the empirical measure

P n := 1 n n i=1 δ X i
where the X i 's are i.i.d. r.v's common unknown distribution P θ T in P, the natural estimator of φ(θ, θ T ) is

φ n (θ, θ T ) := sup α∈F θ h(θ, α, x) dP n (x) (11) 
= sup

α∈F θ ϕ ′ dP θ dP α dP θ - 1 n n i=1 ϕ # dP θ dP α (X i ) . Since inf θ∈Θ φ(θ, θ T ) = φ(θ T , θ T ) = 0 the resulting estimator of φ(θ T , θ T ) is φ n (θ T , θ T ) := inf θ∈Θ φ n (θ, θ T ) = inf θ∈Θ sup α∈F θ h(θ, α, x) dP n (x) . ( 12 
)
Also the estimator of θ T is obtained as

θ := arg inf θ∈Θ sup α∈F θ h(θ, α, x) dP n (x) . (13) 
When A holds then F θ may be substituted by U in the above definitions. The resulting minimum dual divergence estimators (12) and (13) do not require any smoothing or grouping, in contrast with the classical approach which involves quantization. The paper [START_REF] Broniatowski | Parametric estimation and tests through divergences and the duality technique[END_REF] provides a complete study of those estimates and subsequent inference tools for the usual i.i.d. sample scheme. For all divergences considered here, these estimators are asymptotically efficient in the sense that they achieve the Cramer-Rao bound asymptotically. The case when ϕ = ϕ 0 leads to θ M L defined as the celebrated Maximum Likelihood Estimator (MLE), in the context of the simple sampling.

Minimum divergence estimators in exponential families

In this section we prove the following result Theorem 6 For all divergence φ defined through a differentiable function ϕ satisfying Condition (RC), the minimum dual divergence estimator defined by ( 13) coincides with the MLE on any full exponential families such that φ (θ, α) is finite for all θ and α in Θ.

Let P be an exponential family on R s with canonical parameter in

R d P := P θ such that p θ (x) = dP θ dλ (x) = exp [T (x) ′ θ -C(θ)] ; θ ∈ Θ where x is in R s and Θ is an open subset of R d ,
and λ is a dominating measure for P. We assume P to be full, namely that the Hessian matrix (∂ 2 /∂θ 2 ) C(θ) is definite positive for all θ in Θ.

Let X 1 , ..., X n be n i.i.d. random variables with common distribution

P θ T with θ T in Θ. Introduce M n (θ, α) := ϕ ′ dP θ dP α dP θ - 1 n n i=1 ϕ # dP θ dP α (X i ) We will prove that inf θ sup α M n (θ, α) = 0 (14)
whatever the function ϕ satisfying the claim. In (14) θ and α run in Θ. This result extends the maximum likelihood case for which inf

θ sup α M n (θ, α) = sup θ inf α 1 n n i=1 log p θ (X i ) -1 n n i=1 log p α (X i ) = 0. Direct substitution shows that for any θ, sup α M n (θ, α) ≥ M n (θ, θ) = 0 from which inf θ sup α M n (θ, α) ≥ 0 (15) 
We prove that 

α = θ M L is the unique maximizer of M n (θ M L , α) (16 

Mϕ

  n (θ, α) ≤ sup α M n (θ M L , α) = M n (θ M L , θ M L ) = 0 (17)which together with (15) completes the proof.DefineM n,1 (θ, α) := ϕ ′ (exp A(θ, α, x)) exp B (θ, x) dλ(x) M n,2 (θ, α) := 1 n n i=1 exp (A (θ, α, X i )) ϕ ′ (exp A(θ, α, X i )) M n,3 (θ, α) (exp A(θ, α, X i ))withA(θ, α, x) := T (x) ′ (θ -α) + C(α) -C(θ) B(θ, x) := T (x) ′ θ -C(θ).It holdsM n (θ, α) = M n,1 (θ, α) -M n,2 (θ, α) + M n,3 (θ, α)with∂ ∂α M n,1 (θ, α) α=θ = -ϕ (2) (1) [∇C (θ) -∇C (α) α=θ ] = 0 for all θ, ∂ ∂α M n,2 (θ M L , α) α=θ M L = ϕ (2) X i ) + ∇C (α) α=θ M L X i ) + ∇C (α) α=θ M L = 0where the two last displays hold iff α = θ M L . Now∂ 2 ∂α 2 M n,1 (θ M L , α) α=θ M L = ϕ (3) (1) + 2ϕ (2) (1) ∂ 2 /∂θ 2 C(θ M L ) ∂ 2 ∂α 2 M n,2 (θ M L , α) α=θ M L = ϕ (3) (1) + 4ϕ (2) (1) ∂ 2 /∂θ 2 C(θ M L ) ∂ 2 ∂α 2 M n,3 (θ M L , α) α=θ M L = ϕ (2) (1) ∂ 2 /∂θ 2 C(θ M L ), whence ∂ ∂α M n (θ M L , α) α=θ M L = 0 ∂ 2 ∂α 2 M n (θ M L , α) α=θ M L = -ϕ (2) (1) ∂ 2 /∂θ 2 C(θ M L )which proves (16), and closes the proof.