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Towards zero variance estimators for rare event

probabilities

Michel Broniatowski and Virgile Caron
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Abstract

Improving Importance Sampling estimators for rare event probabilities
requires sharp approximations of conditional densities. This is achieved
for events En := (f(X1) + ... + f(Xn)) ∈ An where the summands are
i.i.d. and En is a large or moderate deviation event. The approximation
of the conditional density of the vector (X1, ..., Xkn) with respect to En

on long runs, when kn/n → 1, is handled. The maximal value of kn com-
patible with a given accuracy is discussed; simulated results are presented,
which enlight the gain of the present approach over classical IS schemes.
Detailed algorithms are proposed.

Subclass :MSC 60-08 and MSC 65C05

Keywords: Importance sampling, rare event and large deviation, mod-
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1 Introduction and notation

1.1 Motivation and context

Importance Sampling procedures aim at reducing the calculation time which is
necessary in order to evaluate integrals, often in large dimension. We consider
the case when the integral to be numerically computed is the probability of
an event defined by a large number of random components; this case has re-
ceived quite a lot of attention, above all when the event is of small probability,
typically of order 10−8 or so, as occurs frequently in industrial applications or
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in communication devices.The present paper proposes estimators for both large
and moderate deviation probabilities; this lattest case is of interest for statistics.
The situation which is considered is the following.

The r.v’s X,X′

is are i.i.d. with known common density pX on R, and f is
a real valued measurable function defined on R. Let µ := Ef (X) and σ2 :=
V arf (X) . Define

U :=
f(X) − µ

σ

and

Un
1 :=

1

n

n∑

i=1

Ui.

We intend to estimate
Pn := P

(
Un

1 ∈ A
)

for large but fixed n where
A := (an,∞) (1)

and an is positive, either fixed (large deviation case) or satisfies an → 0 slowly
from above (moderate deviation case).

The basic estimate of P (Un
1 ∈ A) is defined as follows: generate L i.i.d.

samples Xn
1 (l) with underlying density pX and define

P (n)(A) :=
1

L

L∑

l=1

1En
(Xn

1 (l))

where
En := {(x1, ..., xn) ∈ R

n : (u1 + .. + un) /n ∈ A} (2)

with ui := (f (xi) − µ) /σ. The Importance Sampling estimator of P (Un
1 ∈ A)

with sampling density g on R
n is

P (n)
g (A) :=

1

L

L∑

l=1

P̂n(l)1En
(Y n

1 (l)) (3)

where P̂n(l) is called ”importance factor” and writes:

P̂n(l) :=

n∏
i=1

pX (Yi(l))

g (Y n
1 (l))

(4)

and where the L samples Y n
1 (l) := (Y1(l), ..., Yn(l)) are i.i.d. with common

density g.
The problem of finding a good sampling density g has been widely explored

when an = a is fixed and positive; this is the large deviation case; see e.g.
Bucklew (2004). The case when a tends slowly to zero from above (the moderate
deviation case) is considered in Ermakov (2007);
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Under hypotheses to be recalled later, the classical IS scheme consists in

the simulation of n i.i.d. replications Y
(l)
1 , ..., Y

(l)
n with density πan on R and

therefore g(y1, ..., yn) = πan(y1)...π
an(yn). The density πan is the so-called tilted

(or twisted) density at point an which , in case when an = a is fixed, is called
the dominating point of the set (a,∞); see Bucklew (2004). In spite of the fact
that this terminology is usually used in the large deviation case, we adopt it
also in the moderate deviation one, for reasons to be stated later on.

This approach produces efficient IS schemes, in the sense that the compu-
tational burden necessary to obtain a relative precision of the estimate with
respect to Pn does not grow exponentially as a function of n. It can be proved
that in the large deviation range the variance of the classical IS is proportional
to P 2

n

√
n.

The numerator in the expression (4) is the product of the pX1
(Yi)’s while

the denominator need not be a density of i.i.d. copies evaluated on the Y ′
i s.

Indeed the optimal choice for g is the density of Xn
1 := (X1, ...,Xn) conditioned

upon Xn
1 ∈ En, leading to a zero variance estimator. We will propose an IS

sampling density which approximates this conditional density very sharply on
its first components y1, ..., yk where k = kn is very large, namely k/n → 1. This
motivates the title of this paper.

Let us introduce a toy case in order to define the main step of the procedure,
namely the simulation of a sample under a proxy of the conditional density.
Assume Xn

1 is a vector of n i.i.d. standard normal real valued random variables
and Pn := P (Sn

1 > na) with Sn
1 := (X1 + ... + Xn) with a > 0.

1- For any s > a the joint density ps of X1, ...Xn−1 conditionally upon
(Sn

1 = ns) is known analytically and simulation under ps is easy for any s. A
general form of this statement is Theorem 1, Section 2.

2-The optimal sampling density g is similar to ps with conditioning event
(Sn

1 > na) .The density g is obtained integrating ps with respect to the the con-
ditional distribution of Sn

1/n under (Sn
1 > na) which is well approximated by an

exponential distribution on (a,∞) with expectation a + 1/na. The correspond-
ing general statement is Theorem 2 Section 2. Therefore samples under a proxy
of g are obtained through Monte Carlo simulation as follows: draw Y n

1 with
density ps where s follows the just cited exponential density. Insert these terms

in (4) repeatedly to get P
(n)
g .

In the general case the joint distribution ps cannot be approximated sharply
on the very long run 1, ..., n− 1, but merely on 1, ..., kn with kn close to n. The
approximation provided in Theorem 1 and, as a consequence in Theorem 2, is
valid on the first kn coordinates; a precise tuning of kn is provided in Section
3. Since s is simulated on the whole set (a,+∞), no search is done in order to
identify dominating points and no part of the target set (a,+∞) is neglected in
the simulation of runs; the example in section 6, where the classical IS scheme
is compared to the present one, is illuminating in this respect.

The merits of an IS estimator are captured through a number of criterions:
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1. The asymptotic variance of the estimate

2. The stability of the Importance Factor

3. The hit rate of the IS scheme, which is the number of times the set En is
reached by the simulated samples

4. Some run time indicator.

Some mixed indices have been proposed (see Glynn and Whitt (1992)), com-
bining 1 and 4 with noticeable extension. The present paper provides an im-
provement over classical IS schemes as measured by 1, 2, 3 hereabove, as shown
numerically on some examples. These progresses are also argued on a theoret-
ical basis, following the quasi-optimality of the proposed IS scheme resulting
from the approximation of the conditional density. When the r.v. Ui’s are
real-valued, the present method might be costly. The toy case which we present
in the simulation study, pertaining to events

(
|Un

1 |/n > an

)
under dissymetric

Ui’s proves however that the observed bias of the estimate through IS i.i.d.
sampling can be important for reasonnable L, which does not happen with the
present approach. Also the hit rate of the present proposal is close to 100%.

The criterion which we consider is different from the variance, and results
as an evaluation of the MSE of our estimate on specific subsets of the runs
generated by the sampling scheme, which we call typical subsets, namely having
probability going to 1 under the sampling scheme as n increases. On such sets,
the MSE is proved to be of very small order with respect to the variance of the
classical estimate, which cannot be diminished on any such typical subsets. It
will be shown that the relative gain in terms of simulation runs necessary to
perform an α% relative error on Pn drops by a factor

√
n − k/

√
n with respect

to the classical IS scheme. Since k is allowed to be close to n, the resulting
gain in variance is noticeable. Numerical evidence of this reduction in MSE is
produced. Also we present a way of choosing the value of kn with respect to
n in such a way that the accuracy of the sampling scheme with respect to the
optimal one is somehow controlled. This rule is argumented also numerically.

Alternative methods have been extensively developped for rare event sim-
ulation (see Botev and Kroese (2010) and references therein). The splitting
technique results in an adhoc covering A1 ⊂ A2 ⊂ ... ⊂ A. It is assumed that
the conditional distribution Pk of Un

1 given Un
1 ∈ Ak is known. An ad hoc choice

of the Ak’s leading to a common value for the Pk’s provides efficient estimator
for Pn, with small run-times. However in the present static case the calculation
of the conditional distribution is difficult, even in the real case, and requires a
sharp asymptotic analysis of large or moderate deviation probabilities.

It may seem that we could have reduced this paper to the case when f is
the identity function, hence simulating runs Uk

1 := (f (X1) , ..., f (Xk)) under
Un

1 > a. However it often occurs that the conditioning event is defined through
a joint set of conditions, say

f (X1) + ... + f (Xn) > n (σa + µ) (5)
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and
g (Xn

1 ) ∈ Bn (6)

for some function g and some measurable set Bn. Clearly in most cases the
approximation of the density of Xk

1 under both constraints is untractable and
the approximation of the density of Xk

1 conditionally on En provides a good IS
sampling scheme for the estimation of

P (f (X1) + ... + f (Xn) > n (σa + µ) ∩ g (Xn
1 ) ∈ Bn) .

A simple example is when the constraint writes

Xn
1 ∈ Dn

and Dn is included in a set defined through (5). The function f and the value
of a may be fitted such that (5) makes minimal the difference

P (f (X1) + ... + f (Xn) > n (σa + µ))

− P (Xn
1 ∈ Dn) .

Our proposal therefore hinges on the local approximation of the conditional
distribution of longs runs Xk

1 from Xn
1 . This cannot be achieved through the

classical theory of large deviations, nor through the moderate deviations one,
first developped by de Acosta (1992) and more recently by Ermakov (2007). At
the contrary the ad hoc procedure developped in the range of large deviations
by Diaconis and Freedman (1988) for the local approximation of the conditional
distribution of Xk

1 given the value of Sn
1 := X1 + ... + Xn is the starting point

of the method leading to the present approach. We rely on Broniatowski and
Caron (2010) where the basic approximation used in the present paper can be
found. A first draft in the direction of the present work is in Broniatowski and
Ritov (2009).

The present approach can be extended to the case of a multivariate constraint
for a multidimensional problem, i.e. when for all x in R

d, f (x) and a are R
s

-valued. This will not be considered here.

1.2 Regularity assumptions

The following notation and assumptions are kept throughout the paper without
further reference.

The real valued measurable function f is assumed to be unbounded; standard
transformations show that this assumption is not restrictive.

It is assumed that U = (f(X) − µ) /σ has a density pU w.r.t. the Lebesgue
measure on R. We consider various assumptions on the regularity of pU which
each of them implies the validity of the improved Importance Sampling scheme.
For these densities the approximation of the density of Un

1 in the moderate
and large deviation range, as well as the tail approximation of its distribution
function is uniform. See Jensen (1995), Chapter 6.
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1. Log-concave and almost Log-concave densities: pU can be written as

pU(x) = c(x) exp−h(x), x < ∞

with h a convex function, and where for some x0 > 0 and constants
0 < c1 < c2 < ∞, we have

c1 < c(x) < c2 for x0 < x < ∞.

Examples of densities which satisfy the above conditions include the Nor-
mal, the Gamma, the hyperbolic density, etc. An other example is when
U := (X−ψ)

2
and X has log-normal distribution, X = exp(Z) with

Z ∼N
(
µ, τ2

)
and ψ = EX = µ+ 1

2τ. Then

pU(x) =
exp(− 3

8τ)√
6πτ3

{
1 − exp

(
−
√

3x
)}

exp

{√
3x

2
− x

2τ

}

which is log-concave.

2. Gamma-like densities: the density of the r.v. U satisfies

pU(x) = c(x) exp−h(x)

for all x with 0 < c1 < c(x) < c2 ≤ ∞ when x is larger than some x0 > 0
and h(x) is a convex function which satisfies h(x) = τ + h1(x) with, for
x1 < x2,

a1 log
x2

x1
− b1 < h1(x2) − h1(x1) < a2 log

x2

x1
− b2

where a1, a2, b1 and b2 are positive constants with a2 < 1.

A wide class of densities for which our results apply is when there exist
constants x0 > 0, α > 0, τ > 0 and A such that

pU(x) = Axα−1l(x) exp (−τx) x > x0

where l(x) is slowly varying at infinity.

3. Densities defined through conditions on their characteristic function. Here
is a set of conditions which can easily be verified, once given the charac-
teristic function; see Jensen (1995) Chapter 6 for an exhaustive set of
conditions which imply uniformity in the local and tail approximations of
the distribution of the sample mean in the large (and, indeed, moderate)
deviation case.

Denote ϕ (θ + it) := E exp (θ + it)U, assuming |ϕ (θ + it)| < ∞ when
θ belongs to some non void neighborhood Θ0 of 0. Set κ (θ + it) :=

6



log ϕ (θ + it) , µ (θ + it) := (d/dθ) κ (θ + it) and σ(θ + it) := (d/dθ) µ(θ +
it).

Assume that there exist constants c1, c2 > 0, and ξ such that for θ in Θ0

(i)
∣∣∣ ∂kκ

∂tk (θ + itσ (θ))
∣∣∣
t=0

∣∣∣ ≤ c1 for 2 ≤ k ≤ 6

(ii)for any c > 0 there exists ρ < 1 such that
|ϕ (θ + itσ (θ)) /ϕ (θ)| ≤ ρ for |t| > c

(iii)
∫
|ϕ (θ + itσ (θ)) /ϕ (θ)|ξ dt ≤ c2.

We denote by (R) any of the above condition pertaining to the regularity of
the density pU(x).

We also assume that the characteristic function of the random variable U is
assumed to belong to Lr for some r ≥ 1.

1.3 Notation

1.3.1 Conditional densities and their approximations

Throughout the paper the value of a density pZ of some continuous random
vector Z at point z may be written pZ(z) or p (Z = z) , which may prove more
convenient according to the context. The notation n

(
µ, σ2, x

)
is defined through

n
(
µ, σ2, x

)
:=

(
1/σ

√
2π

)
exp

[
− ((x − µ) /σ)

2
]

for all real x.
Let ps denote the density of Xk

1 under the local condition Un
1 = s

ps

(
Xk

1 = yk
1

)
:= p(Xk

1 = yk
1

∣∣Un
1 = s) (7)

where yk
1 belongs to R

k.
We will also consider the density pA of Xk

1 conditioned upon
(
Un

1 > a
)

pA

(
Xk

1 = yk
1

)
:= p(Xk

1 = yk
1

∣∣Un
1 > a). (8)

The approximating density of ps is denoted gs; the corresponding approxi-
mation of pA is denoted gA. Explicit formulas for those densities are presented
in the next section.

For any of the above densities the symbols Ops
(respectvely ops

), etc , des-
ignate remainder terms which are bounded (resp. go to 0) under the sampling
with density ps on R

k. The same definition applies to OpA
and opA

and the
corresponding terms under the other sampling densities.

1.3.2 Tilted densities and related quantities

The r.v. U is supposed to fulfill the Cramer condition: its moment generating
function satisfies

φU(t) := E exp tU < ∞
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for t in a non void neighborhood of 0. Define the functions m(t), s2(t) and
µ3(t) as the first, second and third derivatives of log φU(t), and m−1 denote the
reciprocal function of m.

Denote

πα
U(x) :=

exp t (f(x) − µ) /σ

φU(t)
pX (x)

with m(t) = α and α belongs to the support of PU, the distribution of U. The
density πα

U
is the tilted density with parameter α. Also it is assumed that this

lattest definition of t makes sense for all α in the support of U. Conditions
on φU(t) which ensure this fact are referred to as steepness properties, and are
exposed in Barndorff-Nielsen (1978), p153.

1.3.3 Specific sequences

Two sequences an and cn are introduced in the paper. For notational con-
venience their current terms will be denoted a and c without referring to the
subscript n. This convention holds only for these specific sequences, satisfying
therefore conditions (A) and (C), to be introduced in the sequel.

2 Conditioned samples

The starting point is the approximation of ps defined in (7) on R
k for large

values of k under the point condition

Un
1 = s

when s belongs to (a,∞) . We refer to Broniatowski and Caron (2010) for this
result.

We introduce a positive sequence εn which satisfies

lim
n→∞

εn

√
n − k = ∞ (E1)

lim
n→∞

εn (log n)
2

= 0. (E2)

Assume that

lim
n→∞

s2

εn (log n)
= ∞. (As)

Define a density gs(y
k
1 ) on R

k as follows. Set

g0(y1| y0) := πs
U(y1) (9)

with y0 arbitrary and, for 1 ≤ i ≤ k − 1, define g(yi+1| yi
1) recursively.

Set ti the unique solution of the equation

mi := m(ti) =
n

n − i

(
s − Σi

1

n

)
(10)
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where Σi
1 :=

∑i
j=1 (f(yj) − µ) /σ .

Define

g(yi+1| yi
1) = CipX(yi+1) n (αβ + s, α, (f(yi+1) − µ) /σ) (11)

where Ci is a normalizing constant. Here

α = s2(ti) (n − i − 1) (12)

β = ti +
µ3 (ti)

2s4(ti) (n − i − 1)
. (13)

Set

gs

(
yk
1

)
:= g0(y1| y0)

k−1∏

i=1

g(yi+1| yi
1). (14)

Theorem 1 Assume (As) and (E1,2) . Then (i)

ps

(
Xk

1 = Y k
1

)
= gs(Y

k
1 )(1 + ops

(εn (log n)
2
)) (15)

and (ii)

ps

(
Xk

1 = Y k
1

)
= gs(Y

k
1 )(1 + ogs

(εn (log n)
2
)). (16)

The approximation stated in the above statement (i) holds on typical paths
generated under the conditional density ps; in the same way, statement (ii)
holds under the sampling scheme gs. Therefore they do not hold on the entire
space R

k which would require more restrictive hypotheses on the characteristic
function of f (X1); see Diaconis and Freedman (1988) for such conditions in the
case when k is allowed to grow slowly with respect to n and a is fixed. However
the above theorem provides optimal approximations on the entire space R

k for
all k between 1 and n − 1 in the gaussian case and f(x) = x, since gs

(
yk
1

)

coincides with the conditional density.
As stated above the optimal choice for the sampling density is pA for which

we state an approximation result, extending Theorem 1.
Assume that a satisfies

lim
n→∞

a2

εn (log n)
= ∞. (A)

The case when a does not depend on n satisfies (A) for any sequence εn

under (E1,2). Conditions (A) and (E1,2) jointly imply that a cannot satisfy

a = O
(√

log log n/n
)

; the Iterated Logarithm zone , as the Central Limit one,

is not covered by our result.
Under these assumptions k can be fixed or can grow together with n with the

restriction that n−k should tend to infinity; when a is fixed this rate is governed
through (E1) (or reciprocally given k ,εn is governed by k) independently on a.
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In the moderate deviation case for a given sequence a close to 0, εn has rapid
decrease, which in turn forces n − k to grow rapidly.

We state the approximating density for pA defined in (8). It holds

pA(xk
1) =

∫ ∞

a

ps

(
Xk

1 = xk
1

)
p(Un

1 = s
∣∣Un

1 > a)ds (17)

so that, in contrast with the classical IS approach for this problem we will not
consider the dominating point approach but merely realize a sharp approxi-
mation of the integrand at any point of the domain (a,∞) and consider the
dominating contribution of all those distributions in the evaluation of the con-
ditional density pA. A similar point of view has been considered in Barbe and
Broniatowski (2004) for sharp approximations of Laplace type integrals in R

d.
The approximation of pA is handled on some small interval (a, a + c), thus

on the principal part of this integral.
Let c := cn denote a positive sequence satisfying the following set of condi-

tions, denoted (C).
(n − k)2−δc → ∞

nac → ∞
c → 0

for some positive δ.
Let ta be defined through the equation

m(ta) = a.

Define on R
k the density

gA(yk
1 ) (18)

:=
nm−1 (a)

∫ a+c

a
gs(y

k
1 )

(
exp−nm−1 (a) (s − a)

)
ds

exp−nm−1 (a) c

where

nm−1 (a)
(
exp−nm−1 (a) (s − a)

)
1(a,a+c)(s)

exp−nm−1 (a) c

approximates p(Un
1 = s

∣∣Un
1 ∈ (a, a + c)).

It then holds

Theorem 2 Assume (A) , (C) and (E1,2) . Then (i)

pA

(
Xk

1 = Y k
1

)
= gA(Y k

1 )(1 + opA
(δn)) (19)

and (ii)
pA

(
Xk

1 = Y k
1

)
= gA(Y k

1 )(1 + ogA
(δn)) (20)

where

δn := max

(
εn (log n)

2
,

1

(n − k)
2−δ

c
, exp−nca

)
. (21)

The proof is deferred to the Appendix.
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3 How far is the approximation valid?

This section provides a rule leading to an effective choice of the crucial param-
eter k = kn in order to achieve a given accuracy bound for the relative error
committed substituting pA by gA. The largest k the best the estimate of the
rare event probability. We consider the large deviation case, assuming a fixed.
The accuracy of the approximation is measured through

ERE(k) := EgA

(
1Dk

(
Y k

1

) pA

(
Y k

1

)
− gA

(
Y k

1

)

pA

(
Y k

1

)
)

and

V RE(k) := V argA

(
1Dk

(
Y k

1

) pA

(
Y k

1

)
− gA

(
Y k

1

)

pA

(
Y k

1

)
)

(22)

respectively the expectation and the variance of the relative error of the approxi-
mating scheme when evaluated on Dk , the subset of R

k where
∣∣gA(Y k

1 )/pA

(
Y k

1

)
− 1

∣∣ <
δn; therefore

∫
Dk

gA (x) dx → 1.The r.v′s Y k
1 are sampled under gA. Note that

the density pA is usually unknown. The argument is somehow heuristic and un-
formal; nevertheless the rule is simple to implement and provides good results.
We assume that the set Dk can be substituted by R

k in the above formulas,
therefore assuming that the relative error has bounded variance, which would
require quite a lot of work to be proved under appropriate conditions, but which
seems to hold, at least in all cases considered by the authors. We keep the above
notation omitting therefore any reference to Dk .

Consider a two-sigma confidence bound for the relative accuracy for a given
k, defining

CI(k) :=
[
ERE(k) − 2

√
V RE(k), ERE(k) + 2

√
V RE(k)

]
.

Let δ denote an acceptance level for the relative accuracy. Accept k until δ
belongs to CI(k). For such k the relative accuracy is certified up to the level
5% roughly.

In Broniatowski and Caron (2010) a similar question is addressed and a
proxy of the curve δ → kδ is provided in order to define the maximal k leading
to a given relative accuracy under the point condition Un

1 = an, namely when
pA is replaced by pan

and gA by gan
.

Consider the ratio gA(Y k
1 )/pA

(
Y k

1

)
and use Cauchy’s mean value theorem

to obtain
gA(Y k

1 )/pA

(
Y k

1

)

=

∫ a+c

a
gs(X

k
1 = Y k

1 )
(
exp−nm−1 (a) (s − a)

)
ds

∫ a+c

a
ps

(
Xk

1 = Y k
1

)
(exp−nm−1 (a) (s − a)) ds

11



(1 + ogA
(1))

=
gα(Xk

1 = Y k
1 )

pα

(
Xk

1 = Y k
1

) (1 + ogA
(1))

for some α between a and a + c. Since a is fixed and c → 0 it is reasonable to
substitute α by a in order to evaluate the accuracy of the approximation. We
thus inherit of the relative efficiency curve in Broniatowski and Caron (2010),
to which we refer for definition and derivation.

We briefly state the necessary steps required for the calculation of the graph
of a proxy of k → CI(k).

Introduce

D :=

[
πa
U

(a)

pX(a)

]n

and

N :=

[
πmk

U
(mk)

pX (mk)

](n−k)

with mk defined in (10). Define t by m(t) = a. Define

A
(
Y k

1

)
:=

n − k

n

(
gA

(
Y k

1

)

pX

(
Y k

1

)
)3 (

D

N

)2
s2(tk)

s2(t)
. (23)

Simulate L i.i.d. samples Y k
1 (l) , each one made of k i.i.d. replications under

pX; set

Â :=
1

L

L∑

l=1

A
(
Y k

1 (l)
)
.

We use the same approximation for B. Define

B
(
Y k

1

)
:=

√
n − k

n

(
gA

(
Y k

1

)

pX

(
Y k

1

)
)2 (

D

N

)
s2(tk)

s2(t)
(24)

and

B̂ :=
1

L

L∑

l=1

B
(
Y k

1 (l)
)

with the same Y k
1 (l)′s as above.

Set
V RE(k) := Â − B̂2. (25)

which is a fair approximation of V RE(k).
In the same way a proxy for ERE is defined through

ERE(k) := 1 − B̂.

A proxy of CI(k) can now be defined through

CI(k) :=

12



[
ERE(k) − 2

√
V RE(k), ERE(k) + 2

√
V RE(k)

]
. (26)

We now check the validity of the just above approximation, comparing CI(k)
with CI(k) on a toy case. Detailed algorithms leading to effective procedures
are exposed in the next section.

Consider f(x) = x. The case when p is a centered exponential distribution
with variance 1 allows for an explicity evaluation of CI(k) making no use of
Lemma 16. The conditional density ps is calculated analytically, the density gs

is obtained through (14), hence providing a benchmark for our proposal. The

terms Â and B̂ are obtained by Monte Carlo simulation following the algorithm
presented hereunder. Tables 1,2 and 3,4 show the increase in δ w.r.t. k in
the moderate deviation range, with a such that Pn := P (Sn

1 > na) ' 10−2.
In Table 5,6 and 7,8, a is such that P (Sn

1 > na) ' 10−8 corresponding to a
large deviation case. We have considered two cases, when n = 100 and when
n = 1000. These tables show that the approximation scheme is quite accurate,
since the relative error is fairly small even in very high dimension spaces. Also
they show that ERE et CI provide good tools for the assessing the value of k.
Denote Pn := P (Sn

1 > na) . The abscissa is k.

Figure 1: CI(k) and Pn ' 10−2. Figure 2: CI(k) and Pn ' 10−2.

Figure 3: CI(k) and Pn ' 10−2. Figure 4: CI(k) and Pn ' 10−2.
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Figure 5: CI(k) and Pn ' 10−8. Figure 6: CI(k) and Pn ' 10−8.

Figure 7: CI(k) and Pn ' 10−8. Figure 8: CI(k) and Pn ' 10−8.

4 The new Estimator and the algorithms

4.1 Adaptive IS Estimator for rare event probability

The IS scheme produces samples Y := (Y1, ..., Yk) distributed under gA, which is
a continuous mixture of densities gs as in (14), with exponential mixing measure
with parameter nm−1 (a) on (a,∞)

1(a,∞)(x)nm−1 (a) exp
[
−nm−1 (a) (x − a)

]
(27)

Since all IS schemes produce unbiaised estimators, and since the trucation
parameter c in (18) is unmaterial, we consider untruncated versions of gA de-
fined in (18) integrating on (a,∞) instead of (a, a + c) . This avoids a number of
computational and programming questions, a difficult choice of an extra param-
eter cn, and does not change the numerical results; this point has been checked
carefully by the authors. Wee keep the notation gA for the untruncated density.

The density gA is extended from R
k onto R

n completing the n−k remaining
coordinates with i.i.d. copies of r.v’s Yk+1, ..., Yn with common tilted density

gA

(
yn

k+1

∣∣ yk
1

)
:=

n∏

i=k+1

πα
U(yi) (28)

14



with α := m(tk) = n
n−k

(
s − Σk

1

n

)
as in (10) and

Σk
1 =

k∑

i=1

f(yi) − µ

σ

The last n− k r.v’s Yi’s are therefore drawn according to the classical i.i.d.
scheme in phase with Sadowsky and Bucklew (1990) or Ermakov (2007) schemes
in the large or moderate deviation setting.

We now define our IS estimator of Pn := P
(
Un

1 > a
)
.

Let Y n
1 (l) := Y1(l), ..., Yn(l) be generated under gA and let Sn

1 (l) := Y1(l) +
... + Yn(l). Let

P̂n(l) :=

∏n
i=0 pX(Yi(l))

gA(Y n
1 (l))

1En
(Sn

1 (l)) (29)

and define

P̂n :=
1

L

L∑

l=1

P̂n(l). (30)

in accordance with (3).

4.2 Algorithms

First, we present a series of three algorithms (Algorithms 1, 2 and 3)
which produces the curve k → RE(k). The resulting k = kδ is the

longest size of the runs which makes gA a good proxy for pA.

Algorithm 3 Evaluation of gs(y
k
1 )

1. INPUT : yk
1 , pX, n s.

2. OUTPUT : gs

(
yk
1

)
.

3. INITIALIZATION :

t0 := m−1 (s)

h0(x1|x0
1) := πs(x1)

Σ1
1 := (f(y1) − µ) /σ

4. PROCEDURE :

For i from 1 to k − 1

mi :=(10)

ti := m−1(mi) ∗
α :=(12)

β :=(13)

15



Calculate Ci

g(yi+1| yi
1) :=(11)

endFor

Compute gs

(
yk
1

)
:=(14)

5. RETURN gs

(
yk
1

)

Algorithm 4 Evaluation of gA (yn
1 )

1. INPUT: yn
1 , pX, n, k, a, M

2. OUTPUT : gA (yn
1 )

3. PROCEDURE

For m from 1 to M

Simulate sm with density (27)

Calculate gsm

(
yk
1

)
with Algorithm 1

Calculate gsm

(
yn

k+1|yk
1

)
:= (28)

Calculate gsm
(yn

1 ) =: gsm

(
yk
1

)
gsm

(
yn

k+1|yk
1

)

endFor

Compute gA (yn
1 ) := 1

M

∑M
m=1 gsm

(yn
1 )

4. RETURN gA (yn
1 )

The calculation of gs

(
yk
1

)
above requires the value of

Ci =

(∫
pX(x)n (αβ + s, β, (f(x) − µ) /σ) dx

)−1

.

This can be done through Monte Carlo simulation. The value of M need
not be very large.

Remark 5 Solving ti = m−1(mi) might be difficult, even through a Newton
Raphson technique and time consuming in simple cases. It may happen that
the reciprocal function of m is at hand, as is assumed in Dupuis and Wang
[DupuisWang2004], but even in such current situation as the Weibull distribu-
tion and f(x) = x, such is not the case. We can replace step ∗ by

ti+1 := ti −
(m (ti) + ui)

(n − i) s2 (ti)
. (31)

Indeed since

m(ti+1) − m(ti) = − 1

n − i
(m(ti) + ui)

16



with Ui(l) := (f (Yi(l)) − µ) /σ, use a first order approximation to derive that
ti+1 can be subtituted by τi+1 defined through

τi+1 := ti −
1

(n − i) s2(ti)
(m(ti) + ui) .

In the moderate deviation scale the function s2(.) does not vary from 1 and the
above approximation is fair. For the large deviation case, the same argument
applies, since s2(ti) keeps close to s2(ta).

Algorithm 6 Calculation of kδ

1. INPUT : pX, δ, n, s, L

2. OUTPUT : kδ

3. INITIALIZE : k = 1

4. PROCEDURE

Do

For l from 1 to L

Simulate Y k
1 (l) i.i.d. with density pX

A
(
Y k

1 (l)
)

:=(23) using Algorithm 2

B
(
Y k

1 (l)
)

:=(24) using Algorithm 2

endFor

Calculate CI(k) :=(26)

k := k + 1

While δ /∈ CI(k)

endDo

5. RETURN : kδ := k

The next algorithms 4, 5 and 6 provide the estimate of Pn.

The following algorithm provides a simple acceptance/rejection simulation
tool for Yi+1 with density g(yi+1| yi

1).
Denote N the c.d.f. of a normal variate with parameter

(
µ, σ2

)
,and N

−1 its
inverse.

Algorithm 7 Simulation of Y with density proportional to p(x)n
(
µ, σ2, x

)

1. INPUT : p, µ, σ2

2. OUTPUT : Y

17



3. INITIALIZATION :
Select a density f on [0, 1] and
a positive constant K such that
p

(
N

−1(x)
)
≤ Kf(x) for all x in [0, 1]

4. PROCEDURE

Do

Simulate X with density f

Simulate U uniform on [0, 1] independent of X

Z := KUf(X)

While Z < p
(
N

−1(X)
)

endDo

5. RETURN Y := N
−1(X)

Algorithm 8 Simulation of a sample Y k
1 with density gs

1. INPUT : pX, δ, n, s, a

2. OUTPUT : Y k
1

3. INITIALIZATION :

Set k:= kδ with Algorithm 3

t0 := m−1(s)

4. PROCEDURE

Simulate Y1 with density πs
U

Σ1
1 := (f(Y1) − µ) /σ

For i from 1 to k − 1

mi :=(10)

ti := m−1(mi)

α :=(12)

β :=(13)

Simulate Yi+1 with density g(yi+1| yi
1)

using Algorithm 4

Σi+1
1 := Σi

1 + (f(Yi+1) − µ) /σ

endFor

5. RETURN Y k
1

Remark 9 The paper Barbe and Broniatowski (1999) can be used in order to
simulate Y1.
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Algorithm 10 Calculation of P̂n

1. INPUT : pX, δ n, a, M , L

2. OUTPUT :P̂n

3. INITIALIZATION

Set k = kδ with Algorithm 3

4. PROCEDURE

For l from 1 to L

Simulate sl with density (27)

Simulate Y k
1 (l) with density gsl

with Algorithm 5

Simulate Y n
k+1(l) i.i.d. with density παl

U

Calculate gA (Y n
1 (l)) with Algorithm 2

Calculate P̂n(l) := (29)

endFor

Compute P̂n := (30)

5. RETURN : P̂n

Remark 11 παl

U
is defined as in (28)

αl := m(tk) =
n

n − k

(
sl −

Σk
1

n

)

as in (10) and

Σk
1 =

k∑

i=1

f(Yi(l)) − µ

σ
.
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5 Compared efficiencies of IS estimators

The situation which we face with our proposal lacks the possibility to provide
an order of magnitude of the variance our our IS estimate , since the properties
necessary to define it have been obtained only on typical paths under the sam-
pling density gA and not on the whole space R

n . This leads to a quasi-MSE
measure for the performance of the proposed estimator, which quantifies the
variability evaluated on classes of subsets of R

n whose probability goes to 1 un-
der the sampling gA. Not surprisingly the loss of performance with respect to
the optimal sampling density pXn

1
/En

is due to the n − k last i.i.d. simulations,

leading a quasi- MSE of the estimate proportional to
√

n − k.

5.1 The efficiency of the classical IS scheme

We first recall the definition of the classical IS sampling scheme and its asymp-
totic performance. The r.v.’s Yi ’s in (4) are i.i.d. and have density g = πa

U
,

hence with m(t) = a. See Sadowsky and Bucklew (1990) in the LDP case and
Ermakov (2007) in the MDP case. The reason for this sampling scheme is
the fact that in the large deviation case, a is the ”dominating point” of the set
(a,∞) i.e. a is such that the proxy of the conditional distribution of X1 given
Un

1 > a is Πa
U

; this is the basic form of the Gibbs conditioning principle.
Although developped for the large deviation case, the classical IS applies for

the moderate deviation case since for a → 0 and a
√

n → ∞ it holds

P
(
X1 ∈ B|Un

1 > a
)

= (1 + o(1)) Πa
U(B) (32)

for any Borel set B as n → ∞. This follows as a consequence of Sanov Theorem
for moderate deviations (see Ermakov (2007) and de Acosta (1992)) and justifies
the classical IS scheme in this range.

The classical IS is defined simulating L times a random sample of n i.i.d.
r.v’s Y n

1 (j), 1 ≤ j ≤ L, with tilted density πa
U

. The standard IS estimate is
defined through

Pn :=
1

L

L∑

l=1

1En
(Y n

1 (l))

∏n
i=1 pU(Yi(l))∏n
i=1 πa

U
(Yi(l))

where the Xi(l) are i.i.d. with density πa
U

and 1En
(l) is as in (2). Set

Pn(l) := 1En
(Y n

1 (l))

∏n
i=1 pU(Yi(l))∏n
i=1 πa

U
(Yi(l))

.

The variance of Pn is given by

V arPn =
1

L

(
Eπa

U

(
Pn(l)

)2 − P 2
n

)
.
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The relative accuracy of the estimate Pn is defined through

RE(Pn) :=
V arPn

P 2
n

=
1

L

(
Eπa

U

(
Pn(l)

)2

P 2
n

− 1

)
.

The following result holds.

Proposition 12 The relative accuracy of the estimate Pn is given by

RE(Pn) =

√
2π

√
n

L
a(1 + o(1))

as n tends to infinity.

We will prove that no reduction of the variance of the estimator can be
achieved on subsets Bn of R

n such that Πa(Bn) → 1.
The easy case when U1, ...,Un are i.i.d. with standard normal distribution

and f(x) = x is sufficient for our need.
The variance of the IS estimate of P

(
Un

1 > a
)
is proportional to

V := EpU
1(a,∞)

(
Un

1

) pU (Un
1 )

πa
U

(Un
1 )

− P 2
n

= EpU
1(a,∞)

(
Un

1

) (
exp

na2

2

) (
exp−naUn

1

)
− P 2

n

A set Bn resulting as reducing the MSE should penalize large values of − (U1 + ... + Un)
while bearing nearly all the realizations of U1+...+Un under the i.i.d. sampling
scheme πa

U
as n tends to infinity. It should therefore be of the form (b,∞) for

some b = bn so that
(a)

lim
n→∞

Eπa
U
1(b,∞)

(
Un

1

)
= 1

and
(b)

lim
n→∞

sup
EpU

1(a,∞)∩(b,∞)

(
Un

1

) pU(Un
1
)

πa
U(Un

1 )

V
< 1

which means that the IS sampling density πa
U

can lead a MSE defined by

MSE(Bn) := EpU
1(na,∞)∩(nb,∞)

pU (Un
1 )

πa
U

(Un
1 )

− P 2
n

with a clear gain over the variance indicator. However when b ≤ a (b) does not
hold and when b > a (a) does not hold.

So no reduction of this variance can be obtained by taking into account the
properties of the typical paths generated under the sampling density: a reduction
of the variance is possible only by conditioning on ”small” subsets of the sample
paths space. On no classes of subsets of R

n with probability going to 1 under
the sampling is it possible to reduce the variability of the estimate, whose rate
is definitely proportional to

√
n, imposing a burden of order L

√
nα in order to

achieve a relative efficiency of α% with respect to Pn.
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5.2 Efficiency of the adaptive twisted scheme

We first put forwards a Lemma which assesses that large sets under the sampling
distribution gA bear all what is needed to achieve a dramatic improvement of
the relative efficiency of the IS procedure. Its proof is deferred to the Appendix.

Lemma 13 Assume k/n → 1. It then holds,

1. There exist sets Cn in R
n such that

• limn→∞ GA (Cn) = 1

• for any yn
1 in Cn, |pA

gA

(
yk
1

)
− 1| < δn with δn as in (21).

2. • when a → 0 (moderate deviation),

tks(tk) = a (1 + o(1)) (33)

• when a is fixed (large deviation) , tks(tk) remains bounded away from
0 and infinity.

We now evaluate the Mean Square Error of the adaptive twisted IS algorithm
on this family of sets. Let

RE
(
P̂n

)
=

1

L




EgA

(
1Cn

P̂n(l)
)2

P 2
n

− 1


 .

We prove that

Proposition 14 The relative accuracy of the estimate P̂n is given by

RE(P̂n) =

√
2π

√
n − k − 1

L
a(1 + o(1))

as n tends to infinity.

Proof. Using the definition of Cn we get

EgA

(
1Cn

P̂n(l)
)2

= PnEpA
1Cn

(Y n
1 )

pX(Y k
1 )pX(Y n

k+1)

gA(Y k
1 )gA(Y n

k+1

∣∣ Y k
1 )

≤ Pn(1 + δn)EpA
1Cn

(Y n
1 )

pX(Y k
1 )

p(Y k
1

∣∣ En)

pX(Y n
k+1)

gA(Y n
k+1

∣∣ Y k
1 )

= P 2
n(1 + δn)EpA

1Cn
(Y n

1 )
1

p(En|Y k
1 )

pX(Y n
k+1)

gA(Y n
k+1

∣∣ Y k
1 )
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= P 2
n(1 + δn)

√
2π

√
n − k − 1

EpA
1Cn

(Y n
1 )tks(tk)(1 + o(1))

= P 2
na

√
2π

√
n − k − 1(1 + o(1)).

The third line is Bayes formula. The fourth line is Lemma 16 (see the Appendix).
The fifth line uses (33) and uniformity in Lemma 16, where the conditions
in Corollary 6.1.4 of Jensen (1995) are easily checked since, in his notation,
J(θ) = R , condition (i) holds for θ in a neighborhood of 0 (Θ0 indeed is
resticted to such a set in our case), (ii) clearly holds and (iii) is a consequence
of the assumption on the characteristic function of f (X1) .

6 Simulation results

6.1 The gaussian case

The random variables X ′
is are i.i.d. with normal distribution with mean 0 and

variance 1. The case treated here is P
(
Sn

n > a
)

= Pn with n = 100, Pn =
0.009972 and a = 0.232. We build the curve of the estimate of Pn (solid lines)
and the two sigma confidence interval (dot lines) with respect to k. The value
of L is L = 2000.

Figure 9: Estimator and confidence interval
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6.2 The exponential case

The random variables X ′
is are i.i.d. with exponential distribution with param-

eter 1 on (−1,∞) . The case treated here is P
(
Sn

n > a
)

= Pn with n = 100,
Pn = 0.013887 and a = 0.232. The solid lines is the estimate of Pn, the dot lines
are the two sigma confidence interval. Abcissa is k; L = 2000.

Figure 10: Estimator and confidence interval
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Figure 11 shows the ratio of the empirical value of the MSE of the adaptive
estimate w.r.t. the empirical MSE of the i.i.d. twisted one, in the exponential
case with Pn = 10−2 and n = 100. The value of k is growing from k = 0
(i.i.d. twisted sample) to k = 70 (according to the rule of section 3). This ratio
stabilizes to

√
n − k/

√
n for L = 2000. The abscissa is k and the solid line is

k →
√

n − k/
√

n.

Figure 11: Empirical Ratio versus Theoretical Ratio

6.3 A comparison study with the classical twisted IS scheme

This section compares the performance of the present approach with respect to
the standard tilted one as described in Section 1.

Consider a random sample X1, ...,X100 where X1 has a normal distribution
N(0.05, 1) and let

E100 :=

{
x100

1 :
|x1 + ... + x100|

100
> 0.28

}

for which
P100 = P ((X1, ...,X100) ∈ E100) = 0.01120.

Our interest is to show that in this simple dissymetric case a direct extension of
our proposal provides a good estimate, while the standard IS scheme ignores a
part of the event E100. The standard i.i.d. IS scheme introduces the dominating
point a = 0.28 and the family of i.i.d. tilted r.v’s with common N(a, 1) distri-
bution. The resulting estimator of P100 is 0, 01074 (with L = 1000), indicating
that the event S100

1 /100 < −0.28 is ignored in the evaluation of P100, inducing
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a bias in the estimation. Since the simulated r.v’s are independent under the
tilted distribution the Importance factor oscillates wildly. Also the hit rate is of
order 50%. It can also be seen that S100

1 /100 < −0.28 is never visited through
the procedure.

Drawing L i.i.d. points s1, ..., sL according to the distribution of S100
1 /100

conditionally upon
∣∣S100

1

∣∣ /100 > 0.28 we evaluate P100 with k = 99; note that
in the gaussian case Theorem 1 provides an exact description of the conditional
density of Xk

1 for all k between 1 and n , and therefore the same nearly holds
in Theorem 2. Simulating the si’s in this toy case is easy; just simulate samples
X1, ...,X100 under N(0.05, 1) until E100 is reached. The resulting value of the
estimate is 0.01125 which is fairly close to P100.

As expected the Importance factor is very close to P100 for all sample paths
Xn

1 simulated under GA; this is in accordance with Theorem 1. Also the hit rate
is very close to 100%.

The histograms pertaining to the Importance factor are as follows (Figures
12 and 13).

Figure 12: Histogram of Importance Factor for k=1
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Figure 13: Histogram of Importance Factor for k=99

It is also interesting to draw the hit rate as a function of k. When k = 1
then this rate is close to 50%, since the present algorithms coincides with the
classical i.i.d. IS scheme. As k increases, the hit rate approaches 100%; the
value of L is 1000.

Figure 14: Hit Rate versus k
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7 Appendix

The following two lemmas are used intensively throughout the paper; they pro-
vide asymptotic formulas for the density and the tail probability of the sample
mean of i.i.d. summands Xi satisfying the Cramer condition; the functions
m(t) and s2(t) hereunder are the first and second derivatives of the moment
generating function log EetX. The function I is defined through

I(x) := xm−1 (x) − log φ
(
m−1 (x)

)

where m is defined as in section 1 with f(x) = x. Their proofs are given
in the large deviation scale in Rihter (1957) and Jensen (1995) and can easily
be extended in the moderate deviation one (see also Hoglund (1979)); we omit
details.

Lemma 15 Under the general hypotheses and notation of this paper, when a =
a satisfies

√
na → ∞ it holds

p

(
Sn

1

n
= a

)
=

√
n exp−nI(a)

s(ta)
√

2π
(1 + o(1)) .

Under condition (R) uniformity upon a holds. Here ta satisfies m(ta) = a.

The global counterpart of Lemma 15 in the form used here is due to Jensen
(see Jensen (1995), corollary 6.4.1) and states

Lemma 16 Under the same hypotheses as above

P

(
Sn

1

n
> a

)
=

exp−nI(a)√
2π

√
nψ(a)

(
1 + O(

1√
n

)

)

where ψ(a) := tas(ta).

7.1 Two Lemmas pertaining to the partial sum under its

final value

Lemma 17 It holds (i)EpA
U1 = a + o(1), (ii) EpA

U2
1 = 1 + s2 (t) + o(1) and

(iii) EpA
U1U2 = a2 + o(1) where m(t) = a.

Proof. Under the point conditioning Un
1 = s Lemma 12 in Broniatowski and

Caron (2010) applies and provides Eps
U1 = s, Eps

U2
1 = 1+ s2

U
(t)+O

(
1
n

)
and

Eps
U1U2 = s2 +O

(
1
n

)
where ps denotes the distribution of Un

1 under Un
1 = s.

It holds

EpA
U1 =

∫ ∞

a

Eps
U1p

(
Un

1 = s
∣∣Un

1 > a
)
ds.
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Using Condition (R) and Lemmas 15 and 16 it follows through a second order
Taylor expansion that uniformly on s on (a,∞)

p
(
Un

1 = s
∣∣Un

1 > a
)

= nm−1 (a) (34)

exp
(
−nm−1 (a) (s − a)

) s
(
m−1 (a)

)

s (m−1 (s))
(1 + o(1))

where s2(t) := d
dtm(t) is bounded away from 0 as t is large, since s2 (t) = V arUt

where Ut has d.f πt
U

(x) := etxpU(x)/EetU. Furthemore for c → 0 with nca → ∞
it holds ∫ a+c

a
Eps

U1p
(
Un

1 = s
∣∣Un

1 > a
)
ds

∫ ∞

a
EpS

U1p
(
Un

1 = s
∣∣Un

1 > a
)
ds

→ 1.

Indeed
∫ a+c

a

Eps
U1p

(
Un

1 = s
∣∣Un

1 > a
)
ds (35)

= (1 + o(1))
∫ a+c

a

Eps
U1nm−1 (a) exp

(
−nm−1 (a) (s − a)

)
ds

where we used the continuity of t → s2(t) in (a, a + cn) and its regularity;
indeed when a is fixed (large deviation case), use the continuity of s2(t) at t =
m−1 (a) whilst in the moderate deviation case (a → 0), a first order expansion of
s
(
m−1 (s)

)
on (a, a + c) provides (35). We have proved (i). The same arguments

yield (ii) and (iii). We omit details.
Lemma 17 yields the maximal inequality stated in Lemma 13 in Broniatowski

and Caron (2010) under the condition Un
1 > a.

We also need the order of magnitude of the maximum of (U1, ...,Uk) under
pA which is stated in the following result.

Lemma 18 It holds for all k between 1 and n

max (U1, ...,Uk) = OpA
(log n).

Proof. This Lemma is a slight modification of Lemma 14 in Broniatowski
and Caron (2010). Denote Ps the distribution of (X1, ...,Xn) under the point
conditioning event Un

1 = s. It holds

pA (max (U1, ...,Uk) > t) ≤ kpA (Un > t) (36)

= k

∫ ∞

a

ps (Un > t) p
(
Un

1 = s
∣∣Un

1 > a
)
ds.

When c satisfies
lim

n→∞
nca = ∞
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it holds ∫ a+c

a
ps (Un > t) p

(
Un

1 = s
∣∣Un

1 > a
)
ds

∫ ∞

a
ps (Un > t) p

(
Un

1 = s
∣∣Un

1 > a
)
ds

= 1 + o(1).

Indeed
∫ ∞

a+c

ps (Un > t) p
(
Un

1 = s
∣∣Un

1 > a
)
ds

≤ C

∫ ∞

a+c

ps (Un > t)

nm−1 (a) exp
(
−nm−1 (a) (s − a)

)
ds

≤ C exp−ncm−1 (a) .

Turning back to (36) we provide an upper bound for Ps (Un > t) . We have,
following the proof in Lemma 14 in Broniatowski and Caron (2010), substituting
the r.v. Xn by Un.

ps (Un > t) ≤ Cste
φU (τs + λ)

φU (τs)

∫ ∞

t

p (Un = v)

πs
U

(v)
e−λvdv

where m (τ s) = s and λ is such that φU (τs + λ) is finite (such a λ exists since
s is in (a, a + c) , hence bounded away from ∞). Inserting the above bound in
(36) and restricting this integral to its principal part on (a, a + c) concludes the
proof.

Lemma 18 provides a similar statement as Lemma 14 in Broniatowski and
Caron (2010) under Un

1 > a, which in turn proves Theorem 19 making use of
the same Edgeworth expansions as in Theorem 7 of Broniatowski and Caron
(2010).

7.2 Proof of Theorem 2

Proof of Theorem 2(i).
Step 1.We first prove that the integral (17) can be reduced to its principal

part, namely that
pA(Y k

1 ) = (1 + opA
(1))

∫ a+c

a

p(Xk
1 = Y k

1

∣∣Un
1 = s)p(Un

1 = s
∣∣Un

1 > a)ds (37)

holds.
Apply Bayes formula to obtain

pA(Y k
1 ) =

npX

(
Y k

1

)

(n − k)

∫ ∞

a
p

(
Un

k+1 = n
n−k

(
t − kΣk

1

n

))
dt

P
(
Un

1 > a
)
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where
Σk

1 := 1
k

∑k
i=1 Ui := 1

k

∑k
i=1

f(Yi)−µ
σ .

Denote

I :=

P

(
Un

k+1 > n
n−k

(
a + c − kΣk

1

n

))

P

(
Un

k+1 > n
n−k

(
a − kΣk

1

n

)) .

Then (37) holds whenever I → 0 (under pA).
Under pA it holds

Σk
1 = a + OpA

(
1

nm−1 (a)

)
. (38)

Indeed using classical results for moderate and large deviations (see Lemmas
15 and 16) for all positive u it holds, for k = kn with k/n → 1

lim
n→∞

P

(
Σk

1 >

(
a +

u

nm−1 (a)

)∣∣∣∣ Σn
1 > a

)
= exp−u. (39)

Thus (38) holds whenever
nam−1 (a) → ∞

which holds true when a is fixed or when a → 0 together with a
√

n → ∞, which
follows from (E1,2) and (A). We now prove that I → 0. Inserting (38) in I and
using once more Lemmas 15 and 16 yields

I = (1 + opA
(1)) exp− (n − k)

(
IU

(
a + c − kΣk

1

n

)
− IU

(
a − kΣk

1

n

))
.

A second order expansion in the above display using (38) yields I → 0 (under
pA) with an appropriate rate when

(n − k)
2−δ

c → ∞

for some positive δ. which allows for fixed or small c. It then holds

I = OpA

(
1

(n − k)
2
c

)
= opA

(
1

(n − k)
2−δ

c

)
.

Step 2. (15) holds uniformly in s in (a, a + c) where Y k
1 is generated under

pA. This result follows from a similar proof as in Broniatowski and Caron (2010)
where (15) is proved under the local sampling ps. A close look at the proof shows
that (15) holds whenever Lemmas 12 and 14 in Broniatowski and Caron (2010),
stated for the variables Ui’s instead of Xi’s hold under pA. Those lemmas are
substituted by Lemmas 17 and 18 hereabove.

31



Inserting (15) in (37) yields

pA(Y k
1 ) =

(∫ a+c

a

gs(Y
k
1 )p(Un

1 = s
∣∣Un

1 > a)ds

)

(
1 + opA

(
max

(
εn (log n)

2
,

1

(n − k)
2−δ

c

)))
.

The conditional density of Un
1 given

(
Un

1 > a
)

is given in (39) which holds
uniformly in s on the class of compact sets (a, a + c) for a and c bounded.

Summing up we have proved

pA(Y k
1 ) =

(
nm−1 (a)

∫ a+c

a

gs(Y
k
1 )

(
exp−nm−1 (a) (s − a)

)
ds

)

(
1 + opA

(
max

(
εn (log n)

2
,

1

(n − k)
2−δ

c

)))

as n → ∞.
In order to get the approximation of pA by the density gA it is enough to

observe that

nm−1 (a)

∫ a+c

a

gs(Y
k
1 )

(
exp−nm−1 (a) (s − a)

)
ds

= 1 + o
pA

(
exp−ncm−1 (a)

)

as n → ∞. When a is bounded away from 0 then so is m−1 (a) ; when
limn→∞ a = 0, m−1 (a) ∼ a and the condition

lim
n→∞

nca = ∞

leads to the completion of the proof.
Proof of Theorem 2(ii)
The following Lemma proves that approximating pA by gA under pA is sim-

ilar to approximating pA by gA under gA.
Let Rn and Sn denote two p.m’s on R

n with respective densities rn and sn.

Lemma 19 Suppose that for some sequence εn which tends to 0 as n tends to
infinity

rn (Y n
1 ) = sn (Y n

1 ) (1 + oRn
(εn)) (40)

as n tends to ∞. Then

sn (Y n
1 ) = rn (Y n

1 ) (1 + oSn
(εn)) . (41)

32



Proof. Denote
An,δεn

:=

{yn
1 : (1 − εn)sn (yn

1 ) ≤ rn (yn
1 ) ≤ sn (yn

1 ) (1 + εn)} .

It holds for all positive δ
lim

n→∞
I(n, δ) = 1

where

I(n, δ) :=

∫
1An,δεn

(yn
1 )

rn (yn
1 )

sn(yn
1 )

sn(yn
1 )dyn

1 .

Since
I(n, δ) ≤ (1 + δεn)Sn (An,δεn

)

it follows that
lim

n→∞
Sn (An,δεn

) = 1,

which proves the claim.

7.3 Proof of Lemma 13

Assume k/n → 1. Let Cn in R
n such that for all yn

1 in Cn,
∣∣∣∣∣
pA(yk

1 )

gA

(
yk
1

) − 1

∣∣∣∣∣ < δn

with δn as in (21) and ∣∣∣∣
m(tk)

a
− 1

∣∣∣∣ < αn

where tk is defined through

m(tk) :=
n

n − k

(
a − uk

1

n

)

with uk
1 :=

∑k
i=1 (f(yi) − µ) /σ and αn satisfies

lim
n→∞

αn = 0 (42)

together with
lim

n→∞
αna

√
n − k = ∞. (43)

We prove that
lim

n→∞
GA (Cn) = 1.

Let
An,εn

:= Ak
εn

× R
n−k

with

Ak
εn

:=

{
xk

1 :

∣∣∣∣∣
pA(xk

1)

gA

(
xk

1

) − 1

∣∣∣∣∣ < δn

}
.
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By the above definition
lim

n→∞
PA (An,εn

) = 1. (44)

Note also that

GA (An,εn
) :=

∫
1An,εn

(xn
1 )gA (xn

1 ) dxn
1

=

∫
1Ak

εn
(xk

1)gA

(
xk

1

)
dxn

1

≥ 1

1 + δn

∫
1Ak

εn
(xk

1)pA(xk
1)dxk

1

=
1

1 + δn
(1 + o(1))

which goes to 1 as n tends to ∞. We have just proved that the sequence of sets
An,εn

contains roughly all the sample paths Xn
1 under the importance sampling

density gA.
We use the fact that tk defined through

m(tk) =
n

n − k

(
a − Uk

1

n

)

is close to a under ps uniformly upon s in (a, a + c) and integrate out with
respect to the distribution of Un

1 conditionally on Un
1 ∈ (a, a + c) .

Let δn tend to 0 and limn→∞ aαn

√
n − k = ∞ and

Bn :=

{
xn

1 :

∣∣∣∣
m(tk)

a
− 1

∣∣∣∣ < αn

}
.

We prove that on Bn

tks(tk) = a (1 + o(1)) (45)

holds.
By Lemma 13 in Broniatowski and Caron (2010) and integrating w.r.t. ps

on (a, a + c) it holds, under (42) and (43)

lim
n→∞

PA (Bn) = 1. (46)

There exists δ′n such that for any xn
1 in Bn

∣∣∣∣
tk
a

− 1

∣∣∣∣ < δ′n. (47)

Indeed ∣∣∣∣
m(tk)

a
− 1

∣∣∣∣ =

∣∣∣∣
tk (1 + vk)

a
− 1

∣∣∣∣ < αn
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and limn→∞ vk = 0. Therefore

1 − vktk
a

− αn <
tk
a

< 1 − vktk
a

+ αn.

Since m(tk)
a is bounded so is tk

a and therefore vktk

a → 0 as n → ∞ which implies
(47).

Further (47) implies that there exists δn” such that

∣∣∣∣
tks(tk)

a
− 1

∣∣∣∣ < δn”.

Indeed
∣∣∣∣
tks(tk)

a
− 1

∣∣∣∣ =

∣∣∣∣
tk (1 + uk)

a
− 1

∣∣∣∣

≤ δ′n + (1 + δ′n) uk = δn”

where limn→∞ uk = 0. Therefore (45) holds.
Define

Cn := Bn ∩ An,εn

Since ∫
1Cn

(xn
1 )gA

(
xk

1

)
dxn

1 ≥ 1

1 + δn

∫
1Cn

pA(xn
1 )dxn

1

and by (44) and (46)
lim

n→∞
PA (Cn) = 1

we obtain
lim

n→∞
GA (Cn) = 1.

which concludes the proof of (i) and (ii).
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