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Abstract

Improving Importance Sampling estimators for rare event probabilities requires sharp approximations of
conditional densities. This is achieved for events En := (u(X1) + ...+ u(Xn)) ∈ An where the summands
are i.i.d. and En is a large or moderate deviation event. The approximation of the conditional density of
the vector (X1, ..., Xkn) with respect to En on long runs, when kn/n → 1, is handled. The maximal value
of kn compatible with a given accuracy is discussed; simulated results are presented, which enlight the gain
of the present approach over classical IS schemes. Detailed algorithms are proposed.

1 Introduction and notation

1.1 Motivation and context

Importance Sampling procedures aim at reducing the calculation time which is necessary in order to evaluate
integrals, often in large dimension. We consider the case when the integral to be numerically computed is the
probability of an event defined by a large number of random components; this case has received quite a lot of
attention, above all when the event is of small probability, typically of order 10−8 or so, as occurs frequently in
industrial applications or in communication devices.The present paper proposes estimators for both large and
moderate deviation probabilities; this latest case is of interest for statistics. The situation which is considered
is the following.

The r.v’s X,X′
is are i.i.d. with known common density pX on R, and u is a real valued measurable function

defined on R. Define U := u(X) with density pU and

U1,n :=

n∑

i=1

Ui.

We intend to estimate
Pn := P (U1,n ∈ nA)

for large but fixed n where
A := (an,∞) (1)

and an is a convergent sequence. The limit of this sequence either equals EU or is assumed to be larger than
EU. In the first case it will be assumed that an converges slowly in such a way that P (U1,n ∈ nA) is not
obtainable through the central limit theorem; we may call this case a moderate deviation case. The second
situation is classically referred to as a large deviation case.

The basic estimate of Pn is defined as follows: generate L i.i.d. samples Xn
1 (l) with underlying density pX

and define

P (n)(A) :=
1

L

L∑

l=1

1En
(Xn

1 (l))

where
En := {(x1, ..., xn) ∈ R

n : (u (x1) + ..+ u (xn)) ∈ nA} (2)

with ui := u (xi) . The Importance Sampling estimator of Pn with sampling density g on R
n is

P (n)
g (A) :=

1

L

L∑

l=1

P̂n(l)1En
(Y n

1 (l)) (3)

where P̂n(l) is called ”importance factor” and writes

P̂n(l) :=

n∏
i=1

pX (Yi(l))

g (Y n
1 (l))

(4)
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and where the L samples Y n
1 (l) := (Y1(l), ..., Yn(l)) are i.i.d. with common density g.

The problem of finding a good sampling density g has been widely explored when an = a is fixed and
positive; this is the large deviation case; see e.g. [Bucklew 2004]. The case when a tends slowly to E[u (X)]
from above (the moderate deviation case) is considered in [Ermakov 2007];

Under hypotheses to be recalled later, the classical IS scheme consists in the simulation of n i.i.d. replications

Y
(l)
1 , ..., Y

(l)
n with density πan on R and therefore g(y1, ..., yn) = πan(y1)...π

an(yn). The density πan is the so-
called tilted (or twisted) density at point an which, in case when an = a is fixed, is called the dominating point
of the set (a,∞); see [Bucklew 2004]. In spite of the fact that this terminology is usually used in the large
deviation case, we adopt it also in the moderate deviation one, for reasons to be stated later on.

This approach produces efficient IS schemes, in the sense that the computational burden necessary to obtain
a relative precision of the estimate with respect to Pn does not grow exponentially as a function of n. It can be
proved that in the large deviation range the variance of the classical IS is proportional to P 2

n

√
n.

The numerator in the expression (4) is the product of the pX1
(Yi)’s while the denominator need not be a

density of i.i.d. copies evaluated on the Y ′
i s. Indeed the optimal choice for g is the density of Xn

1 := (X1, ...,Xn)
conditioned upon (Xn

1 ∈ En), leading to a zero variance estimator. We will propose an IS sampling density which
approximates this conditional density very sharply on its first components y1, ..., yk where k = kn is very large,
namely k/n→ 1. This motivates the title of this paper.

Let us introduce a toy case in order to define the main step of the procedure, namely the simulation of a
sample under a proxy of the conditional density. Assume Xn

1 is a vector of n i.i.d. standard normal real valued
random variables and Pn := P (S1,n > na) with S1,n := X1 + ...+Xn and a > 0.

1- For any v > a the joint density pnv of X1, ...Xn−1 conditionally upon (S1,n = nv) is known analytically
and simulation under pnv is easy for any v. A general form of this statement is Theorem 1, Section 2.

2-The optimal sampling density g is similar to pnv with conditioning event (S1,n > na) . The density g is
obtained integrating pnv with respect to the the conditional distribution of S1,n/n under (S1,n > na) which is
well approximated by an exponential distribution on (a,∞) with expectation a + (1/na). The corresponding
general statement is Theorem 2 Section 2. Therefore samples under a proxy of g are obtained through Monte
Carlo simulation as follows: draw Y n

1 with density pnV where V follows the just cited exponential density.

Insert these terms in (4) repeatedly to get P
(n)
g .

In the general case the joint distribution pnv cannot be approximated sharply on the very long run 1, ..., n−1,
but merely on 1, ..., kn with kn close to n. The approximation provided in Theorem 1 and, as a consequence
in Theorem 2, is valid on the first kn coordinates; a precise tuning of kn is provided in Section 3. Since v is
simulated on the whole set (a,+∞), no search is done in order to identify dominating points and no part of
the target set (a,+∞) is neglected in the simulation of runs; the example in section 6, where the classical IS
scheme is compared to the present one, is illuminating in this respect.

The merits of an IS estimator are captured through a number of criterions:

1. The asymptotic variance of the estimate

2. The stability of the Importance Factor

3. The hit rate of the IS scheme, which is the number of times the set En is reached by the simulated samples

4. Some run time indicator.

Some mixed index have been proposed (see [Glynn and Whitt 1992]), combining 1 and 4 with noticeable
extension. The present paper provides an improvement over classical IS schemes as measured by 1, 2, 3
here-above, as shown numerically on some examples. These progresses are also argued on a theoretical basis,
following the quasi-optimality of the proposed IS scheme resulting from the approximation of the conditional
density. When the r.v. Ui’s are real-valued, the present method might be costly. The toy case which we present
in the simulation study, pertaining to events (|U1,n| > nan) under Ui’s proves however that the observed bias
of the estimate through IS i.i.d. sampling can be important for reasonable L, which does not happen with the
present approach. Also the hit rate of the present proposal is close to 100%.

The criterion which we consider is different from the variance, and results as an evaluation of the MSE of our
estimate on specific subsets of the runs generated by the sampling scheme, which we call typical subsets, namely
having probability going to 1 under the sampling scheme as n increases. On such sets, the MSE is proved to be
of very small order with respect to the variance of the classical estimate, which cannot be diminished on any
such typical subsets. It will be shown that the relative gain in terms of simulation runs necessary to perform
an α% relative error on Pn drops by a factor

√
n− k/√n with respect to the classical IS scheme. Since k is

allowed to be close to n, the resulting gain in variance is noticeable. Numerical evidence of this reduction in
MSE is produced. Also we present a way of choosing the value of kn with respect to n in such a way that the

2



accuracy of the sampling scheme with respect to the optimal one is somehow controlled. This rule is discussed
also numerically.

Alternative methods have been extensively developed for rare event simulation (see [Botev and Kroese 2010]
and references therein). The splitting technique results in an adhoc covering A1 ⊂ A2 ⊂ ... ⊂ A. It is assumed
that the conditional distribution Pk of U1,n given U1,n ∈ nAk is known. An ad hoc choice of the Ak’s leading
to a common value for the Pk’s provides efficient estimator for Pn, with small run-times. However in the present
static case the calculation of the conditional distribution is difficult, even in the real case, and requires a sharp
asymptotic analysis of large or moderate deviation probabilities.

It may seem that we could have reduced this paper to the case when u is the identity function, hence
simulating runs Uk

1 := (u (X1) , ..., u (Xk)) under (U1,n > na) . However it often occurs that the conditioning
event is defined through a joint set of conditions, say

u (X1) + ...+ u (Xn) > na (5)

and
h (Xn

1 ) ∈ Bn (6)

for some function h and some measurable set Bn. Clearly in most cases the approximation of the density of Xk
1

under both constraints is intractable and the approximation of the density of Xk
1 conditioned upon (Xn

1 ∈ En)
provides a good IS sampling scheme for the estimation of

P (u (X1) + ...+ u (Xn) > na ∩ h (Xn
1 ) ∈ Bn) .

A simple example is when the constraint writes

Xn
1 ∈ Dn

and Dn is included in a set defined through (5). The function u and the value of a may be fitted such that (5)
makes minimal the difference

P (u (X1) + ...+ u (Xn) > na)

− P (Xn
1 ∈ Dn) .

Our proposal therefore hinges on the local approximation of the conditional distribution of longs runs Xk
1

from Xn
1 . This cannot be achieved through the classical theory of large deviations, nor through the moderate

deviations one, first developed by [de Acosta 1992] and more recently by [Ermakov 2007]. At the contrary the
ad hoc procedure developed in the range of large deviations by [Diaconis and Freedman 1988] for the local
approximation of the conditional distribution of Xk

1 given the value of (S1,n := X1 + ...+Xn) is the starting
point of the method leading to the present approach. We rely on [Broniatowski and Caron 2011] where the
basic approximation used in the present paper can be found. A first draft in the direction of the present work
is in [Broniatowski and Ritov 2009].

The present approach can be extended to the case of a multivariate constraint for a multidimensional
problem, i.e. when for all x in R

d, u (x) and a are R
s -valued. This will not be considered here.

1.2 Notations and Assumptions

The following notation and assumptions are kept throughout the paper without further reference.

1.2.1 Conditional densities and their approximations

Throughout the paper the value of a density pZ of some continuous random vector Z at point z may be written
pZ(z) or p (Z = z) , which may prove more convenient according to the context. The normal density function
on R with mean µ and variance τ at x is denoted n (µ, τ, x) .

Let pnv denote the density of Xk
1 under the local condition (U1,n = nv)

pnv
(
Xk

1 = Y k
1

)
:= p(Xk

1 = Y k
1

∣∣U1,n = nv) (7)

where Y k
1 belongs to R

k.
We will also consider the density pnA of Xk

1 conditioned upon (U1,n > na)

pnA
(
Xk

1 = Y k
1

)
:= p(Xk

1 = Y k
1

∣∣U1,n > na). (8)

The approximating density of pnv is denoted gnv; the corresponding approximation of pnA is denoted gnA.
Explicit formulas for those densities are presented in the next section.
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1.2.2 Tilted densities and related quantities

The real valued measurable function u is assumed to be unbounded; standard transformations show that this
assumption is not restrictive. It is assumed that U = u (X) has a density pU w.r.t. the Lebesgue measure on
R. We also assume that the characteristic function of the random variable U is assumed to belong to Lr for
some r ≥ 1.

The r.v. U is supposed to fulfill the Cramer condition: its moment generating function satisfies

φU(t) := E exp tU <∞
for t in a non void neighborhood of 0. Define the functions m(t), s2(t) and µ3(t) as the first, second and third
derivatives of log φU(t), and m−1 denote the reciprocal function of m.

Denote

πα
U
(u) :=

exp tu

φU(t)
pU (u) (9)

with m(t) = α and α belongs to the support of PU, the distribution of U. The density πα
U

is the tilted density
with parameter α. Also it is assumed that this latest definition of t makes sense for all α in the support of
U. Conditions on φU(t) which ensure this fact are referred to as steepness properties, and are exposed in
[Barndorff-Nielsen 1978], p153.

We also introduce the family of densities

πα
u (x) :=

exp tu(x)

φU(t)
pX (x) . (10)

with Πα
u the associated distribution.

1.2.3 Specific sequences

The sequence an is introduced in the paper. For notational convenience its current terms will be denoted a
without referring to the subscript n.

2 Conditioned samples

The starting point is the approximation of pnv defined in (7) on R
k for large values of k under the point condition

(U1,n = nv)

when v belongs to (a,∞) . We refer to [Broniatowski and Caron 2011] for this result.
We introduce a positive sequence ǫn which satisfies

lim
n→∞

ǫn
√
n− k =∞ (E1)

lim
n→∞

ǫn (logn)
2
= 0. (E2)

Define a density gnv(y
k
1 ) on R

k as follows. Set

g0(y1| y0) := πv
u(y1) (11)

with y0 arbitrary and, for 1 ≤ i ≤ k − 1, define g(yi+1| yi1) recursively.
Set ti the unique solution of the equation

mi := m(ti) =
n

n− i
(
v − u1,i

n

)
(12)

where u1,i := u(y1) + ...+ u(yi).
Define

g(yi+1| yi1) = CipX(yi+1)n (αβ + v, α, u(yi+1)) (13)

where Ci is a normalizing constant. Here

α = s2(ti) (n− i− 1) (14)

β = ti +
µ3 (ti)

2s4(ti) (n− i− 1)
. (15)

Set

gnv
(
yk1
)
:= g0(y1| y0)

k−1∏

i=1

g(yi+1| yi1). (16)
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Theorem 1 Assume (E1) and (E2). Then (i)

pnv
(
Xk

1 = Y k
1

)
= gnv(Y

k
1 )(1 + oPnv

(ǫn (logn)
2
)) (17)

and (ii)

pnv
(
Xk

1 = Y k
1

)
= gnv(Y

k
1 )(1 + oGnv

(ǫn (logn)
2
)). (18)

The approximation stated in the above statement (i) holds on typical paths generated under the conditional
density pns; in the same way, statement (ii) holds under the sampling scheme gns. Therefore they do not hold
on the entire space Rk which would require more restrictive hypotheses on the characteristic function of u (X1);
see [Diaconis and Freedman 1988] for such conditions in the case when k is allowed to grow slowly with respect
to n and a is fixed. However the above theorem provides optimal approximations on the entire space R

k for all
k between 1 and n− 1 in the gaussian case and u(x) = x, since gns

(
yk1
)
coincides with the conditional density.

As stated in [Broniatowski and Caron 2011], the extension of our results from typical paths to the whole space
R

k holds: convergence of the relative error on large sets imply that the total variation distance between the
conditioned measure and its approximation goes to 0 on the entire space. So our results provide an extension
of [Diaconis and Freedman 1988] and [Dembo and Zeitouni (1996)] who considered the case when k is of small
order with respect to n; the conditions which are assumed in the present paper are weaker than those assumed in
the just cited works; however, in contrast with their results, we do not provide explicit rates for the convergence
to 0 of the total variation distance on R

k.
As stated above the optimal choice for the sampling density is pnA for which we state an approximation

result, extending Theorem 1.
We state the approximating density for pnA defined in (8). It holds

pnA(x
k
1) =

∫ ∞

a

pnv
(
Xk

1 = xk1
)
p(U1,n/n = v|U1,n > na)dv (19)

so that, in contrast with the classical IS approach for this problem we do not consider the dominating point
approach but merely realize a sharp approximation of the integrand at any point of the domain (a,∞) and
consider the dominating contribution of all those distributions in the evaluation of the conditional density pnA.
A similar point of view has been considered in [Barbe and Broniatowski 2004] for sharp approximations of
Laplace type integrals in R

d.
The approximation of pnA is handled on some small interval (a, a+ c), thus on the principal part of this

integral.
Let cn denote a positive sequence such that (C)

limn→∞ ncnm
−1(a) =∞

sup
n≥1

ncn
(n− k) <∞

and denote c the current term of the sequence cn.
Denote (A) the following set of conditions

lim
n→∞

(n− k)
(
m−1 (a)

)2
=∞

lim
n→∞

m−1 (a)

ǫn
=∞

which trivially holds when limn→∞ an > EU.
Define on R

k the density

gnA(y
k
1 ) (20)

:=
nm−1 (a)

∫ a+c

a
gnv(y

k
1 )
(
exp−nm−1 (a) (v − a)

)
dv

1− exp−nm−1 (a) c
.

The density

nm−1 (a)
(
exp−nm−1 (a) (v − a)

)
1(a,a+c)(v)

1− exp−nm−1 (a) c
(21)

which appears in (20) approximates p(U1,n/n = v| a < U1,n/n < a+ c).
The variance function V of the distribution of U is defined on the span of U through

v → V (v) := s2(m−1(v))
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Denote (V) the condition

sup
n≥1

(√
nm−1(a)

∫ ∞

a

V ′(v)
(
exp−nm−1(a) (v − a)

)
dv

)
<∞. ((V))

Theorem 2 Assume (A), (C), ((V)), (E1) and (E2).. Then (i)

pnA
(
Xk

1 = Y k
1

)
= gnA(Y

k
1 )(1 + oPnA

(δn)) (22)

and (ii)
pnA

(
Xk

1 = Y k
1

)
= gnA(Y

k
1 )(1 + oGnA

(δn)) (23)

where
δn := max

(
ǫn (logn)

2
,
(
exp

(
−ncm−1(a)

))δ)
. (24)

for any positive δ < 1.
The proof of Theorem 2 is deferred to the Appendix.

Remark 3 Most distributions used in statistics satisfy (V); numerous papers have focused on the properties of
variance functions and classification of distributions. see e.g.[Letac and Mora (1990)] and references therein.

Remark 4 When a is fixed, the set of conditions (A) hold. In the case where a = an converges to EU, the set
of conditions (A) does not cover the CLT zone. Indeed, the first condition of (A) implies that m−1(a) satisfies,
for some δ > 0,

|m−1(a)n1/2+δ| <∞.
Besides this limitation, choosing k and ǫn according to (A), (C), (E1) and (E2) is always possible. More an
convergences slowly to EU, more k can be choosen large with respect to n.

3 How far is the approximation valid?

This section provides a rule leading to an effective choice of the crucial parameter k = kn in order to achieve
a given accuracy bound for the relative error committed substituting pnA by gnA. The largest k the best the
estimate of the rare event probability. We consider the large deviation case, assuming a fixed.

The accuracy of the approximation is measured through

ERE(k) := EGnA

(
1Dk

(
Y k
1

) pnA
(
Y k
1

)
− gnA

(
Y k
1

)

pnA
(
Y k
1

)
)

(25)

and

V RE(k) := V arGnA

(
1Dk

(
Y k
1

) pnA
(
Y k
1

)
− gnA

(
Y k
1

)

pnA
(
Y k
1

)
)

(26)

respectively the expectation and the variance of the relative error of the approximating scheme when evaluated
on

Dk :=
{
yk1 ∈ R

k such that
∣∣gu1,n

(yk1 )/pu1,n

(
yk1
)
− 1
∣∣ < δn

}

with ǫn (logn)
2 /δn → 0 and δn → 0; therefore Gu1,n

(Dk)→ 1. The r.v′s Y k
1 are sampled under gnA. Note that

the density pnA is usually unknown. The argument is somehow heuristic and informal; nevertheless the rule is
simple to implement and provides good results. We assume that the set Dk can be substituted by R

k in the
above formulas, therefore assuming that the relative error has bounded variance, which would require quite a
lot of work to be proved under appropriate conditions, but which seems to hold, at least in all cases considered
by the authors. We keep the above notation omitting therefore any reference to Dk .

Consider a two-sigma confidence bound for the relative accuracy for a given k, defining

CI(k) :=

[
ERE(k)− 2

√
V RE(k), ERE(k) + 2

√
V RE(k)

]
.

Let δ denote an acceptance level for the relative accuracy. Accept k until δ belongs to CI(k). For such k
the relative accuracy is certified up to the level 5% roughly.
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In [Broniatowski and Caron 2011], a similar question is addressed and a proxy of the curve δ → kδ is provided
in order to define the maximal k leading to a given relative accuracy under the point condition (U1,n = na) ,
namely when pnA is replaced by pna and gnA by gna.

Consider the ratio gnA(Y
k
1 )/pnA

(
Y k
1

)
and use Cauchy’s mean value theorem to obtain

gnA(Y
k
1 )/pnA

(
Y k
1

)

=

∫ a+c

a gnv(X
k
1 = Y k

1 )
(
exp−nm−1 (a) (v − a)

)
dv

∫ a+c

a pnv
(
Xk

1 = Y k
1

)
(exp−nm−1 (a) (v − a)) ds

(1 + oGnA
(1))

=
gnα(X

k
1 = Y k

1 )

pnα
(
Xk

1 = Y k
1

) (1 + oGnA
(1))

for some α between a and a + c. Since a and c are fixed, eventually small, it is reasonable to substitute α by
a in order to evaluate the accuracy of the approximation. We thus inherit of the relative efficiency curve in
[Broniatowski and Caron 2011], to which we refer for definition and derivation.

We briefly state the necessary steps required for the calculation of the graph of a proxy of k → CI(k).
Introduce

D :=

[
πa
U
(a)

pU(a)

]n

and

N :=

[
πmk

U
(mk)

pU (mk)

](n−k)

with mk defined in (12). Define t by m(t) = a and tk by m(tk) = mk. Define

A
(
Y k
1

)
:=

n− k
n

(
gnA

(
Y k
1

)

pX
(
Y k
1

)
)3(

N

D

)2
s2(tk)

s2(t)
. (27)

Simulate L i.i.d. samples Y k
1 (l) , each one made of k i.i.d. replications under pX; set

Â :=
1

L

L∑

l=1

A
(
Y k
1 (l)

)
.

We use the same approximation for B. Define

B
(
Y k
1

)
:=

√
n− k
n

(
gnA

(
Y k
1

)

pX
(
Y k
1

)
)2(

N

D

)
s2(tk)

s2(t)
(28)

and

B̂ :=
1

L

L∑

l=1

B
(
Y k
1 (l)

)

with the same Y k
1 (l)

′s as above.
Set

V RE(k) := Â− B̂2.

which is a fair approximation of V RE(k).
In the same way a proxy for ERE is defined through

ERE(k) := 1− B̂.

A proxy of CI(k) can now be defined through

CI(k) :=

[
ERE(k)− 2

√
V RE(k), ERE(k) + 2

√
V RE(k)

]
. (29)

We now check the validity of the just above approximation, comparing CI(k) with CI(k) on a toy case.
Detailed algorithms leading to effective procedures are exposed in the next section.
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Consider u(x) = x. The case when pX is a centered exponential distribution with variance 1 allows for an
explicit evaluation of CI(k) making no use of Lemma 11. The conditional density pnv is calculated analytically,

the density gnv is obtained through (16), hence providing a benchmark for our proposal. The terms Â and B̂
are obtained by Monte Carlo simulation following the algorithm presented hereunder. Tables 1,2 and 3,4 show
the increase in δ w.r.t. k in the large deviation range, with a such that Pn := P (S1,n > na) ≃ 10−8. We have
considered two cases, when n = 100 and when n = 1000. These tables show that the approximation scheme is
quite accurate, since the relative error is fairly small even in very high dimension spaces. Also they show that
ERE et CI provide good tools for the assessing the value of k. Denote Pn := P (S1,n > na) .

Figure 1: ERE(k)(solid line) along with upper and lower bound of CI(k)(dotted line) as a function of k with
n = 100 and a such that Pn ≃ 10−8.

Figure 2: ERE(k)(solid line) along with upper and lower bound of CI(k)(dotted line) as a function of k with
n = 100 and a such that Pn ≃ 10−8.

Figure 3: ERE(k)(solid line) along with upper and lower bound of CI(k)(dotted line) as a function of k with
n = 1000 and a such that Pn ≃ 10−8.
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Figure 4: ERE(k)(solid line) along with upper and lower bound of CI(k)(dotted line) as a function of k with
n = 1000 and a such that Pn ≃ 10−8.

4 The new Estimator and the algorithms

4.1 Adaptive IS Estimator for rare event probability

The IS scheme produces samples Y := (Y1, ..., Yk) distributed under gnA, which is a continuous mixture of
densities gnv as in (16), with exponential mixing measure with parameter nm−1 (a) on (a,∞)

1(a,∞)(v)nm
−1 (a) exp

[
−nm−1 (a) (v − a)

]
(30)

Since all IS schemes produce unbiased estimators, and since the truncation parameter c in (20) is immaterial,
we consider untruncated versions of gnA defined in (20) integrating on (a,∞)instead of (a, a+ c) . This avoids a
number of computational and programming questions, a difficult choice of an extra parameter c, and does not
change the numerical results; this point has been checked carefully by the authors. Wee keep the notation gnA
for the untruncated density.

The density gnA is extended from R
k onto R

n completing the n− k remaining coordinates with i.i.d. copies
of r.v’s Yk+1, ..., Yn with common tilted density

gnA
(
ynk+1

∣∣ yk1
)
:=

n∏

i=k+1

πmk
u (yi) (31)

with mk := m(tk) = n
n−k

(
v − u1,k

n

)
as in (12) and

u1,k =

k∑

i=1

u(yi)

The last n − k r.v’s Yi’s are therefore drawn according to the classical i.i.d. scheme in phase with
[Sadowsky and Bucklew 1990] or [Ermakov 2007] schemes in the large or moderate deviation setting.

We now define our IS estimator of Pn := P (U1,n > na) .
Let Y n

1 (l) := Y1(l), ..., Yn(l) be generated under gnA. Let

P̂n(l) :=

∏n
i=0 pX(Yi(l))

gnA(Y n
1 (l))

1En
(Y n

1 (l)) (32)

and define

P̂n :=
1

L

L∑

l=1

P̂n(l). (33)

in accordance with (3).

4.2 Algorithms

First, we present a series of three algorithms (Algorithms 1, 2 and 3) which produces the curve k → RE(k).
The resulting k = kδ is the longest size of the runs which makes gnA a good proxy for pnA.

9



Input : yk1 , pX, n, v
Output : gnv

(
yk1
)

Initialization:
t0 ← m−1 (v);
g0(x1|x01)← πv

u(x1);
u1,1 ← u(y1);

Procedure :
for i← 1 to k − 1 do

mi ← (12);
ti ← m−1(mi) ∗;
α←(14);
β ←(15);
Calculate Ci;
g(yi+1| yi1)←(13);
u1,i+1 ← u1,i + u(yi+1);

end

Compute gnv
(
yk1
)
←(16);

Return : gnv(y
k
1 )

Algorithm 1: Evaluation of gnv(y
k
1 )

Input : yn1 , pX, n, k, a, M
Output : gnA (yn1 )

Procedure :
for m← 1 to M do

Simulate vm with density (30);

Calculate gnvm
(
yk1
)
with Algorithm 1;

Calculate gnvm
(
ynk+1|yk1

)
← (31);

Calculate gnvm (yn1 )← gnvm
(
yk1
)
gnvm

(
ynk+1|yk1

)

end

Compute gnA (yn1 )← 1
M

∑M
m=1 gnvm (yn1 );

Return : gnA (yn1 )

Algorithm 2: Evaluation of gnA (yn1 )

The calculation of gnv
(
yk1
)
above requires the value of

Ci =

(∫
pX(x)n (αβ + v, β, u(x)) dx

)−1

.

This can be done through Monte Carlo simulation. The value of M need not be very large.

Remark 5 Solving ti = m−1(mi) might be difficult. It may happen that the reciprocal function of m is at hand,
but even when pX is the Weibull density and u(x) = x, such is not the case. We can replace step ∗ by

ti+1 := ti −
(m (ti) + ui)

(n− i) s2 (ti)
. (34)

Indeed since

m(ti+1)−m(ti) = −
1

n− i (m(ti) + ui)

with ui := u (yi), use a first order approximation to derive that ti+1 can be subtituted by τi+1 defined through

τi+1 := ti −
1

(n− i) s2(ti)
(m(ti) + ui) .

In the moderate deviation scale the function s2(.) does not vary from 1 and the above approximation is fair. For
the large deviation case, the same argument applies, since s2(ti) keeps close to s2(ta).
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Input : pX, δ, n, a, L
Output : kδ

Initialization: k = 1
Procedure :

while δ /∈ CI(k) do
for l← 1 to L do

Simulate Y k
1 (l) i.i.d. with density pX;

A
(
Y k
1 (l)

)
:=(27) using Algorithm 2 ;

B
(
Y k
1 (l)

)
:=(28) using Algorithm 2 ;

end

Calculate CI(k)←(29);
k := k + 1;

end

Return : kδ := k

Algorithm 3: Calculation of kδ

The next algorithms 4, 5 and 6 provide the estimate of Pn.

The following algorithm provides a simple acceptance/rejection simulation tool for Yi+1 with density g(yi+1| yi1).
Denote N the c.d.f. of a normal variate with parameter

(
µ, σ2

)
,and N

−1 its inverse.

Input : p, µ, σ2

Output : Y
Initialization:

Select a density f on [0, 1] and
a positive constant K such that
p
(
N

−1(x)
)
≤ Kf(x) for all x in [0, 1]

Procedure :
while Z < p

(
N

−1(X)
)
do

Simulate X with density f ;
Simulate U uniform on [0, 1] independent of X ;
Compute Z := KUf(X);

end

Return : Y := N
−1(X)

Algorithm 4: Simulation of Y with density proportional to p(x)n
(
µ, σ2, x

)

Remark 6 The paper [Barbe and Broniatowski 1999] can be used in order to simulate Y1.
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Input : pX, δ, n, v
Output : Y k

1

Initialization:
Set k ← kδ with Algorithm 3;
t0 ← m−1(v);

Procedure :
Simulate Y1 with density πv

u;
u1,1 ← u(Y1);
for i← 1 to k − 1 do

mi ←(12);
ti ← m−1(mi);
α←(14);
β ←(15);
Simulate Yi+1 with density g(yi+1| yi1) using Algorithm 4;
u1,i+1 ← u1,i + u(Yi+1);

end

Return : Y k
1

Algorithm 5: Simulation of a sample Y k
1 with density gnv

Input : pX, δ, n, a, M , L
Output : P̂n

Initialization:
Set k → kδ with Algorithm 3;

Procedure :
for l← 1 to L do

Simulate vl with density (30);

Simulate Y k
1 (l) with density gnvl with Algorithm 5;

Simulate Y n
k+1(l) i.i.d. with density παl

u ;

Calculate gnA (Y n
1 (l)) with Algorithm 2;

Calculate P̂n(l)← (32);

end

Compute P̂n ← (33);

Return : P̂n

Algorithm 6: Calculation of P̂n

Remark 7 παl

U
is defined as in (31)

αl :=
n

n− k
(
vl −

u1,k
n

)

as in (12) and

u1,k =

k∑

i=1

u(Yi(l)).
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5 Compared efficiencies of IS estimators

The situation which we face with our proposal lacks the possibility to provide an order of magnitude of the
variance our our IS estimate, since the properties necessary to define it have been obtained only on typical paths
under the sampling density gnA and not on the whole space R

n . This leads to a quasi-MSE measure for the
performance of the proposed estimator, which quantifies the variability evaluated on classes of subsets of Rn

whose probability goes to 1 under the sampling gnA. Not surprisingly the loss of performance with respect to
the optimal sampling density is due to the n − k last i.i.d. simulations, leading a quasi- MSE of the estimate
proportional to

√
n− k.

5.1 The efficiency of the classical IS scheme

We first recall the definition of the classical IS sampling scheme and its asymptotic performance. The r.v.’s Yi’s
in (4) are i.i.d. and have density g = πa

u , hence with m(t) = a. See [Sadowsky and Bucklew 1990] in the LDP
case and [Ermakov 2007] in the MDP case. The reason for this sampling scheme is the fact that in the large
deviation case, a is the ”dominating point” of the set (a,∞) i.e. a is such that the proxy of the conditional
distribution of X1 given (U1,n > na) is Πa

u; this is the basic form of the Gibbs conditioning principle.
Although developed for the large deviation case, the classical IS applies for the moderate deviation case

since for a→ E[u (X)] and (a− E[u (X)])
√
n→∞ it holds

P (X1 ∈ B|U1,n > na) = (1 + o(1)) Πa
u(B) (35)

for any Borel set B as n → ∞. This follows as a consequence of Sanov Theorem for moderate deviations (see
[Ermakov 2007] and [de Acosta 1992]) and justifies the classical IS scheme in this range.

The classical IS is defined simulating L times a random sample of n i.i.d. r.v’s Y n
1 (l), 1 ≤ l ≤ L, with tilted

density πa
u. The standard IS estimate is defined through

Pn :=
1

L

L∑

l=1

1En
(Y n

1 (l))

∏n
i=1 pX(Yi(l))∏n
i=1 π

a
u(Yi(l))

where the Xi(l) are i.i.d. with density πa
u and 1En

(Y n
1 (l)) is as in (2). Set

Pn(l) := 1En
(Y n

1 (l))

∏n
i=1 pX(Yi(l))∏n
i=1 π

a
u(Yi(l))

.

The variance of Pn is given by

V arPn =
1

L

(
EΠa

u

(
Pn(l)

)2 − P 2
n

)
.

The relative accuracy of the estimate Pn is defined through

RE(Pn) :=
V arPn

P 2
n

=
1

L

(
EΠa

u

(
Pn(l)

)2

P 2
n

− 1

)
.

The following result holds.

Proposition 8 The relative accuracy of the estimate Pn is given by

RE(Pn) =

√
2π
√
n

L
a(1 + o(1))

as n tends to infinity.

We will prove that no reduction of the variance of the estimator can be achieved on subsets Bn of Rn such
that Πa

u(Bn)→ 1.
The easy case when U1, ...,Un are i.i.d. with standard normal distribution and u(x) = x is sufficient for our

need.
The variance of the IS estimate of P (U1,n > na) is proportional to

V := EPU
1(a,∞)

(
U1,n

n

)
pU (Un

1 )

πa
U
(Un

1 )
− P 2

n

= EPU
1(a,∞)

(
U1,n

n

)(
exp

na2

2

)
(exp−aU1,n)− P 2

n

13



A set Bn resulting as reducing the MSE should penalize large values of − (U1 + ...+Un) while bearing nearly
all the realizations of U1+ ...+Un under the i.i.d. sampling scheme πa

U
as n tends to infinity. It should therefore

be of the form (b,∞) for some b = bn so that
(a)

lim
n→∞

EΠa
U
1(b,∞)

(
U1,n

n

)
= 1

and
(b)

lim
n→∞

sup
EPU

1(a,∞)∩(b,∞)

(
U1,n

n

)
pU(Un

1 )

πa
U(Un

1 )

V
< 1

which means that the IS sampling density πa
U

can lead a MSE defined by

MSE(Bn) := EPU
1(na,∞)∩(nb,∞)

pU (Un
1 )

πa
U
(Un

1 )
− P 2

n

with a clear gain over the variance indicator. However when b ≤ a, (b) does not hold and, when b > a, (a) does
not hold.

So no reduction of this variance can be obtained by taking into account the properties of the typical paths
generated under the sampling density: a reduction of the variance is possible only by conditioning on ”small”
subsets of the sample paths space. On no classes of subsets of Rn with probability going to 1 under the sampling
is it possible to reduce the variability of the estimate, whose rate is definitely proportional to

√
n, imposing a

burden of order L
√
nα in order to achieve a relative efficiency of α% with respect to Pn.

5.2 Efficiency of the adaptive twisted scheme

We first put forwards a Lemma which assesses that large sets under the sampling distribution gnA bear all what
is needed to achieve a dramatic improvement of the relative efficiency of the IS procedure. Its proof is deferred
to the Appendix.

Lemma 9 Assume k/n→ 1. It then holds,

1. There exist sets Cn in R
n such that

• limn→∞GnA (Cn) = 1

• for any yn1 in Cn, |pnA

gnA

(
yk1
)
− 1| < δn with δn as in (24).

•
• when a→ EU (moderate deviation),

tks(tk) = a (1 + o(1)) (36)

• when limn→∞ an is larger than EU (large deviation) , tks(tk) remains bounded away from 0 and
infinity.

We now evaluate the Mean Square Error of the adaptive twisted IS algorithm on this family of sets. Let

RE
(
P̂n

)
=

1

L



EGnA

(
1Cn

P̂n(l)
)2

P 2
n

− 1


 .

We prove that

Proposition 10 The relative accuracy of the estimate P̂n is given by

RE(P̂n) =

√
2π
√
n− k − 1

L
a(1 + o(1))

as n tends to infinity.
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Proof. Using the definition of Cn we get

EGnA

(
1Cn

P̂n(l)
)2

= PnEPnA
1Cn

(Y n
1 )

pX(Y k
1 )pX(Y n

k+1)

gnA(Y k
1 )gnA(Y

n
k+1

∣∣Y k
1 )

≤ Pn(1 + δn)EPnA
1Cn

(Y n
1 )

pX(Y k
1 )

p(Y k
1

∣∣ En)
pX(Y n

k+1)

gnA(Y n
k+1

∣∣Y k
1 )

= P 2
n(1 + δn)EPnA

1Cn
(Y n

1 )
1

p(En|Y k
1 )

pX(Y n
k+1)

gnA(Y n
k+1

∣∣Y k
1 )

= P 2
n(1 + δn)

√
2π
√
n− k − 1

EPnA
1Cn

(Y n
1 )tks(tk)(1 + o(1))

= P 2
na
√
2π
√
n− k − 1(1 + o(1)).

The third line is Bayes formula. The fourth line is Lemma 11 (see the Appendix). The fifth line uses (36) and
uniformity in Lemma 11, where the conditions in Corollary 6.1.4 of [Jensen 1995] are easily checked since, in his
notation, J(θ) = R , condition (i) holds for θ in a neighborhood of 0 (Θ0 indeed is restricted to such a set in our
case), (ii) clearly holds and (iii) is a consequence of the assumption on the characteristic function of u (X1) .

6 Simulation results

6.1 The gaussian case

The random variables X ′
is are i.i.d. with normal distribution with mean 0 and variance 1. The case treated

here is Pn = P
(

S1,n

n > a
)
= 0.009972 with n = 100, and a = 0.232. We build the curve of the estimate of Pn

(solid lines) and the two sigma confidence interval (dot lines) with respect to k. The value of L is L = 2000.

Figure 5: Curve of P̂n (solid line) in the normal case along with the two sigma confidence interval (dotted lines)
as function of k with n = 100 for L = 2000 instances.
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6.2 The exponential case

The random variables X ′
is are i.i.d. with exponential distribution with parameter 1 on (−1,∞) . The case

treated here is Pn = P
(

S1,n

n > a
)
= 0.013887 with n = 100, and a = 0.232. The solid lines is the estimate of

Pn, the dot lines are the two sigma confidence interval. Abscissa is k.

Figure 6: Curve of P̂n (solid line) in the exponential case along with the two sigma confidence interval (dotted
lines) as function of k with n = 100 for L = 2000 instances.
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Figure 7 shows the ratio of the empirical value of the MSE of the adaptive estimate w.r.t. the empirical MSE
of the i.i.d. twisted one, in the exponential case with Pn = 10−2 and n = 100. The value of k is growing from
k = 0 (i.i.d. twisted sample) to k = 70 (according to the rule of section 3). This ratio stabilizes to

√
n− k/√n

for L = 2000. The abscissa is k and the solid line is k →
√
n− k/√n.

Figure 7: Ratio of the empirical value of the MSE of the adaptive estimate w.r.t. the empirical MSE of the
i.i.d. twisted one (dotted line) along with the true value of this ratio (solid line) as a function of k.

6.3 A comparison study with the classical twisted IS scheme

This section compares the performance of the present approach with respect to the standard tilted one as
described in Section 1.

Consider a random sample X1, ..., X100 where X1 has a normal distribution N(0.05, 1) and let

E100 :=

{
x1001 :

|x1 + ...+ x100|
100

> 0.28

}

for which
P100 = P ((X1, ..., X100) ∈ E100) = 0.01120.

Our interest is to show that in this simple dissymetric case a direct extension of our proposal provides a
good estimate, while the standard IS scheme ignores a part of the event E100. The standard i.i.d. IS scheme
introduces the dominating point a = 0.28 and the family of i.i.d. tilted r.v’s with common N(a, 1) distribution.
The resulting estimator of P100 is 0, 01074 (with L = 1000), indicating that the event S1,100/100 < −0.28 is
ignored in the evaluation of P100, inducing a bias in the estimation. Since the simulated r.v’s are independent
under the tilted distribution the Importance factor oscillates wildly. Also the hit rate is of order 50%. It can
also be seen that S100

1 /100 < −0.28 is never visited through the procedure.
This example is not as artificial as it may seem; indeed it leads to a two dominating points situation which is

quite often met in real life. Exploring at random the set of interest under the distribution of (x1 + ...+ x100) /100
under E100 avoids any search for dominating points. A further paper in R

d explores the advantage of this method,
which already proves to compare favorably with usual methods on R.

Drawing L i.i.d. points v1, ..., vL according to the distribution of S1,100/100 conditionally upon |S1,100| /100 >
0.28 we evaluate P100 with k = 99; note that in the gaussian case Theorem 1 provides an exact description
of the conditional density of Xk

1 for all k between 1 and n, and therefore the same nearly holds in Theorem
2. Simulating the vi’s in this toy case is easy; just simulate samples X1, ..., X100 under N(0.05, 1) until E100 is
reached. The resulting value of the estimate is 0.01125 which is fairly close to P100.

As expected the Importance factor is very close to P100 for all sample paths Xn
1 simulated under GnA; this

is in accordance with Theorem 1. Also the hit rate is very close to 100%.
The histograms pertaining to the Importance factor are as follows (Figures 12 and 13).
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Figure 8: Histogram of Importance Factor with k = 1 and n = 100 for L = 1000 instances.

Figure 9: Histogram of Importance Factor with k = 99 and n = 100 for L = 1000 instances.

It is also interesting to draw the hit rate as a function of k. When k = 1 then this rate is close to 50%, since
the present algorithms coincides with the classical i.i.d. IS scheme. As k increases, the hit rate approaches
100%; the value of L is 1000.

Figure 10: Curve of the hit Rate as a function of k with n = 100 for L = 1000 instances.

7 Appendix

The following lemma provide asymptotic formula for the tail probability of U1,n under the hypothesis and
notations of section 3. Define

IU(x) := xm−1 (x) − logφU
(
m−1 (x)

)
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Lemma 11 (see [Jensen 1995], Corollary 6.4.1) Under the same hypotheses and notations as section 3,

P

(
U1,n

n
> a

)
=

exp−nIU(a)√
2π
√
nψ(a)

(
1 +O(

1√
n
)

)

where ψ(a) := m−1(a)s(m−1(a)).

7.1 Proof of Theorem 2

7.1.1 Two Lemmas pertaining to the partial sum under its final value

Lemma 12 Suppose that (V) holds. Then (i)EPnA
U1 = a+ o(1), (ii) EPnA

U2
1 = a2 + s2

(
m−1(a)

)
+ o(1) and

(iii) EPnA
U1U2 = a2 + o(1).

Proof. We make use of Lemma 23 of [Broniatowski and Caron 2011], meaning EPnv
[U1] = v. It holds

EPnA
U1 =

∫ ∞

a

(EPnv
U1) p (U1,n/n = v|U1,n > na) dv.

Integration by parts yields,

EPnA
U1 = a+

∫ ∞

a

P (U1,n/n > v|U1,n > na) dv.

Using Lemma 11 and Chernoff inequality,
∫ ∞

a

P (U1,n/n > v|U1,n > na) dv ≤
√
2πψ(a)

√
n

∫ ∞

a

exp[n (IU(a)− IU(v))]

where ψ(a) is defined in Lemma 11.
Finally, using IU(v) > I

′

U
(a)v + IU(a)− aI ′

U
(a), and integrating

∫ ∞

a

P (U1,n/n > v|U1,n > na) dv ≤
√
2πs(m−1(a))√

n
.

Hence, EPnA
U1 = a+ o(1).

Insert EPnv
U2

1 = v2 + s2
(
m−1(a)

)
+O

(
1
n

)
in

EpnA
U2

1 =

∫ ∞

a

EPnv
U2

1p (U1,n/n = v|U1,n > na) dv.

Firstly, by integration by parts, Lemma 11 and Chernoff inequality,
∫ ∞

a

v2p (U1,n/n = v|U1,n > na) dv = a2 + o(1)

Indeed, since (C) implies nm−1(a)→∞ when n tends to ∞, it holds

∫ ∞

a

vp (U1,n/n > v|U1,n > na)dv ≤ s(m−1(a))√
n

(
a+

1

nm−1(a)

)
.

Secondly, ∫ ∞

a

V (v)p (U1,n/n = v|U1,n > na) dv =

s2(m−1(a)) + 2

∫ ∞

a

V
′

(v)P (U1,n/n > v|U1,n > na) dv.

Using Lemma 11, Chernoff inequality and IU(v) > I
′

U
(a)v + IU(a)− aI ′

U
(a), it holds under condition (V),

∫ ∞

a

V
′

(v)P (U1,n/n > v|U1,n > na) dv

≤ s(m−1(a))

(√
nm−1(a)

∫ ∞

a

V
′

(v) exp
(
−nm−1(a)(v − a)

)
dv

)

and ∫ ∞

a

V (v)p (U1,n/n = v|U1,n > na)dv = s2(m−1(a)) + o(1).
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The third term is handled similarly due to the fact that the O(1/n) consists in a sum of powers of v.
For EPnA

U1U2 = a2 + o(1), the proof is similar.
Lemma 12 yields the maximal inequality stated in Lemma 22 of [Broniatowski and Caron 2011] under the

condition (U1,n > na) . We also need the order of magnitude of the maximum of (|U1| , ..., |Uk|) under PnA

which is stated in the following result.

Lemma 13 It holds for all k between 1 and n

max (|U1| , ..., |Uk|) = OPnA
(logn).

Proof. Using the same argument as in Lemma 23 of [Broniatowski and Caron 2011], we consider the case when
the r.v’s Ui take non negative values. We prove that

lim
n→∞

PnA (max (U1, ...,Uk) > tn) = 0

when

lim
n→∞

tn
logn

=∞.

It holds

PnA (max (U1, ...,Uk) > tn) =

∫ a+c

a

Pnv (max (U1, ...,Uk) > tn|U1,n/n = v)

p (U1,n/n = v|U1,n > na) dv

+

∫ ∞

a+c

Pnv (max (U1, ...,Uk) > tn|U1,n/n = v)

p (U1,n/n = v|U1,n > na) dv

= : I + II.

Now, using the same arguments as before,

II ≤ P (U1,n/n > a+ c)

P (U1,n/n > a)
≤ m−1(a)s(m−1(a))

m−1(a+ c)s(m−1(a+ c))
exp

(
−ncm−1(a)

)

Since c is fixed and m−1(a) is bounded , II → 0 under (C).
Furthermore by Lemma 23 of [Broniatowski and Caron 2011],

lim
n→∞

P (max (U1, ...,Un) > tn|U1,n/n = v) =: lim
n→∞

rn = 0

when v ∈ (a, a+ c) . Hence
I ≤ rn(1 + o(1))→ 0.

This proves the Lemma.
We now prove Theorem 2(i).
Step 1.We first prove that the integral (19) can be reduced to its principal part, namely that

pnA(Y
k
1 ) = (1 + oPnA

(1))

∫ a+c

a

p(Xk
1 = Y k

1

∣∣U1,n/n = v)p(U1,n/n = v|U1,n > na)dv (37)

holds for any fixed c > 0.
Apply Bayes formula to obtain

pnA(Y
k
1 ) =

npX
(
Y k
1

)

(n− k)
∫∞

a p
(

Uk+1,n

n−k = n
n−k

(
t− kU1,k

n

))
dt

P (U1,n > na)

where U1,k :=
U1,k

k .
Denote

I :=
P
(

Uk+1,n

n−k > mk + nc
n−k

)

P
(

Uk+1,n

n−k > mk

) .
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with

mk =
n

n− k

(
a− kU1,k

n

)
.

Then (37) holds whenever I → 0 (under PnA).
Under PnA it holds

U1,n = a+OPnA

(
1

nm−1(a)

)
.

A similar result as Lemma 22 holds under condition (U1,n > na), using Lemma 21; namely it holds

max
0≤i≤k−1

∣∣Ui+1,n

∣∣ = a+ oPnA
(ǫn) .

Using both results, it holds
mk = a+OPnA

(vn) (38)

with vn = max
(
ǫn,

1
(n−k)m−1(a)

)
which tends to 0 under (C).

We now prove that I → 0. Using once more Lemma 11 yields

I ≤ m−1(mk)s(m
−1(mk))

m−1(mk + nc
n−k )s(m

−1(mk) +
nc

n−k )

exp

(
−(n− k)

(
IU

(
mk +

nc

n− k

)
− IU (mk)

))
.

Now by convexity of the function IU, and (38),

exp− (n− k)
(
IU

(
mk +

nc

n− k

)
− IU (mk)

)

≤ exp−ncm−1(mk) = exp−nc
[
m−1(a) +

1

V (a+ θOPnA
(vn))

OPnA
(vn)

]

for some θ in (0, 1) . which tends to 0 under PnA when (A) and (C) hold. By monotonicity of t→ m(t) and
condition (C) the ratio in I is bounded.

We have proved that
I = OPnA

(
exp−ncm−1(a)

)
.

Step 2. Theorem (2)(i) holds uniformly in v in (a, a+ c) where Y k
1 is generated under PnA. This result follows

from a similar argument as used in Theorem 1 where (22) is proved under the local sampling Pnv. A close look
at the proof shows that (22) holds whenever Lemmas 22 and 23, stated in [Broniatowski and Caron 2011] for
the variables Ui’s instead of Xi’s hold under PnA. Those lemmas are substituted by Lemmas 12 and 13 here
above.

Inserting (22) in (37) yields

pnA(Y
k
1 ) =

(∫ a+c

a

gnv(Y
k
1 )p(U1,n/n = v|U1,n > na)dv

)

(
1 + opnA

(
max

(
ǫn (logn)

2 ,
(
exp

(
−ncm−1(a)

))δ)))
.

dor any positive δ < 1.
The conditional density of U1,n/n given (U1,n > na) is given in (30) which holds uniformly in v on (a, a+c).

Summing up we have proved
pnA(Y

k
1 ) =

(
nm−1 (a)

∫ a+c

a

gnv(Y
k
1 )
(
exp−nm−1 (a) (v − a)

)
dv

)

(
1 + opnA

(
max

(
ǫn (logn)

2
,
(
exp

(
−ncm−1(a)

))δ)))

as n→∞ for any positive δ.
In order to get the approximation of pnA by the density gnA it is enough to observe that

nm−1 (a)

∫ a+c

a

gnv(Y
k
1 )
(
exp−nm−1 (a) (v − a)

)
dv
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= 1 + o
PnA

(
exp−ncm−1(a)

)

as n→∞ which completes the proof of (22). The proof of (23) follows from (22) and Lemma 14 cited hereunder.
The following Lemma proves that approximating pnA by gnA under pnA is similar to approximating pnA by

gnA under gnA.
Let Rn and Sn denote two p.m’s on R

n with respective densities rn and sn.

Lemma 14 Suppose that for some sequence εn which tends to 0 as n tends to infinity

rn (Y
n
1 ) = sn (Y

n
1 ) (1 + oRn

(εn))

as n tends to ∞. Then
sn (Y

n
1 ) = rn (Y n

1 ) (1 + oSn
(εn)) .

Proof. Denote
An,δεn :=

{yn1 : (1− εn)sn (yn1 ) ≤ rn (y
n
1 ) ≤ sn (y

n
1 ) (1 + εn)} .

It holds for all positive δ
lim
n→∞

I(n, δ) = 1

where

I(n, δ) :=

∫
1An,δεn

(yn1 )
rn (y

n
1 )

sn(yn1 )
sn(y

n
1 )dy

n
1 .

Since
I(n, δ) ≤ (1 + δεn)Sn (An,δεn)

it follows that
lim
n→∞

Sn (An,δεn) = 1,

which proves the claim.

7.2 Proof of Lemma 9

Assume k/n→ 1. Let Cn in R
n such that for all yn1 in Cn,

∣∣∣∣∣
pnA(y

k
1 )

gnA
(
yk1
) − 1

∣∣∣∣∣ < δn

with δn as in (24) and ∣∣∣∣
m(tk)

a
− 1

∣∣∣∣ < αn

where tk is defined through

m(tk) :=
n

n− k
(
a− u1,k

n

)

with u1,k :=
∑k

i=1 u(yi) and αn satisfies
lim
n→∞

αn = 0 (39)

together with
lim
n→∞

αna
√
n− k =∞. (40)

We prove that
lim
n→∞

GnA (Cn) = 1.

Let
An,εn := Ak

εn × R
n−k

with

Ak
εn :=

{
xk1 :

∣∣∣∣∣
pnA(x

k
1)

gnA
(
xk1
) − 1

∣∣∣∣∣ < δn

}
.

By the above definition
lim
n→∞

PnA (An,εn) = 1. (41)
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Note also that

GnA (An,εn) :=

∫
1An,εn

(xn1 )gnA (xn1 ) dx
n
1

=

∫
1Ak

εn
(xk1)gnA

(
xk1
)
dxn1

≥ 1

1 + δn

∫
1Ak

εn
(xk1)pnA(x

k
1)dx

k
1

=
1

1 + δn
(1 + o(1))

which goes to 1 as n tends to ∞. We have just proved that the sequence of sets An,εn contains roughly all the
sample paths Xn

1 under the importance sampling density gnA.
We use the fact that tk defined through

m(tk) =
n

n− k
(
a− u1,k

n

)

is close to a under pnv uniformly upon v in (a, a+c) and integrate out with respect to the distribution of U1,n/n
conditionally on U1,n/n ∈ (a, a+ c) .

Let δn tend to 0 and limn→∞ aαn

√
n− k =∞ and

Bn :=

{
xn1 :

∣∣∣∣
m(tk)

a
− 1

∣∣∣∣ < αn

}
.

We prove that on Bn

tks(tk) = a (1 + o(1)) (42)

holds.
By Lemma 22 in [Broniatowski and Caron 2011] and integrating w.r.t. pnv on (a, a+ c) it holds, under (39)

and (40)
lim
n→∞

PnA (Bn) = 1. (43)

There exists δ′n such that for any xn1 in Bn
∣∣∣∣
tk

a
− 1

∣∣∣∣ < δ′n. (44)

Indeed ∣∣∣∣
m(tk)

a
− 1

∣∣∣∣ =
∣∣∣∣
tk (1 + vk)

a
− 1

∣∣∣∣ < αn

and limn→∞ vk = 0. Therefore

1− vkt
k

a
− αn <

tk

a
< 1− vkt

k

a
+ αn.

Since m(tk)
a is bounded so is tk

a and therefore vkt
k

a → 0 as n→∞ which implies (44).
Further (44) implies that there exists δn” such that

∣∣∣∣
tks(tk)

a
− 1

∣∣∣∣ < δn”.

Indeed ∣∣∣∣
tks(tk)

a
− 1

∣∣∣∣ =
∣∣∣∣
tk (1 + uk)

a
− 1

∣∣∣∣
≤ δ′n + (1 + δ′n) uk = δn”

where limn→∞ uk = 0. Therefore (42) holds.
Define

Cn := Bn ∩ An,εn

Since ∫
1Cn

(xn1 )gnA
(
xk1
)
dxn1 ≥

1

1 + δn

∫
1Cn

pnA(x
n
1 )dx

n
1

and by (41) and (43)
lim
n→∞

PnA (Cn) = 1

we obtain
lim
n→∞

GnA (Cn) = 1.

which concludes the proof of (i) and (ii).
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