
HAL Id: hal-00618140
https://hal.sorbonne-universite.fr/hal-00618140

Submitted on 31 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rationale for a new class of double-hybrid
approximations in density-functional theory

Julien Toulouse, Kamal Sharkas, Eric Brémond, Carlo Adamo

To cite this version:
Julien Toulouse, Kamal Sharkas, Eric Brémond, Carlo Adamo. Rationale for a new class of double-
hybrid approximations in density-functional theory. Journal of Chemical Physics, 2011, 135 (10),
pp.101102. �10.1063/1.3640019�. �hal-00618140�

https://hal.sorbonne-universite.fr/hal-00618140
https://hal.archives-ouvertes.fr


Rationale for a new class of double-hybrid approximations in density-functional theory

Julien Toulouse1∗ and Kamal Sharkas1,2
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We provide a rationale for a new class of double-hybrid approximations introduced by Brémond
and Adamo [J. Chem. Phys. 135, 024106 (2011)] which combine an exchange-correlation density
functional with Hartree-Fock exchange weighted by λ and second-order Møller-Plesset (MP2) cor-
relation weighted by λ

3. We show that this double-hybrid model can be understood in the context
of the density-scaled double-hybrid model proposed by Sharkas et al. [J. Chem. Phys. 134, 064113
(2011)], as approximating the density-scaled correlation functional Ec[n1/λ] by a linear function of
λ, interpolating between MP2 at λ = 0 and a density-functional approximation at λ = 1. Numerical
results obtained with the Perdew-Burke-Ernzerhof density functional confirms the relevance of this
double-hybrid model.

The double-hybrid (DH) approximations introduced
by Grimme [1], after some related earlier work [2, 3],
are increasingly popular for electronic-structure calcu-
lations within density-functional theory. They consist
in mixing Hartree-Fock (HF) exchange with a semilo-
cal exchange density functional and second-order Møller-
Plesset (MP2) correlation with a semilocal correlation
density functional:

EDH
xc = axE

HF
x + (1− ax)Ex[n]

+(1− ac)Ec[n] + acE
MP2
c , (1)

where the first three terms are calculated in a usual self-
consistent hybrid Kohn-Sham (KS) calculation, and the
last perturbative term is evaluated with the previously
obtained orbitals and added a posteriori. The two empir-
ical parameters ax and ac can be determined by fitting to
a thermochemistry database. For example, the B2-PLYP
double-hybrid approximation [1] is obtained by choosing
the Becke 88 (B) exchange functional [4] for Ex[n] and the
Lee-Yang-Parr (LYP) correlation functional [5] for Ec[n],
and the empirical parameters ax = 0.53 and ac = 0.27
are optimized for the G2/97 subset of heats of formation.
Another approach has been proposed in which the per-
turbative contribution is evaluated with normal B3LYP
orbitals rather than orbitals obtained with the weighted
correlation density functional (1− ac)Ec[n] [6, 7].

Recently, Sharkas, Toulouse, and Savin [8] have pro-
vided a rigorous reformulation of the double-hybrid ap-
proximations based on the adiabatic-connection formal-
ism, leading to the density-scaled one-parameter double-
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hybrid (DS1DH) approximation

EDS1DH,λ
xc = λEHF

x + (1− λ)Ex[n]

+Ec[n]− λ2Ec[n1/λ] + λ2EMP2
c , (2)

where Ec[n1/λ] is the usual correlation energy functional

evaluated at the scaled density n1/λ(r) = (1/λ)3n(r/λ).
This reformulation shows that only one independent em-
pirical parameter λ is needed instead of the two parame-
ters ax and ac. The connection with the original double-
hybrid approximations can be made by neglecting the
density scaling

Ec[n1/λ] ≈ Ec[n], (3)

which leads to the one-parameter double-hybrid (1DH)
approximation [8]

E1DH,λ
xc = λEHF

x + (1 − λ)Ex[n]

+(1− λ2)Ec[n] + λ2EMP2
c . (4)

Equation (4) exactly corresponds to the double-hybrid
approximation of Eq. (1) with parameters ax = λ and
ac = λ2.
Very recently, Brémond and Adamo [12] have proposed

a new class of double-hybrid approximations where the
correlation functional is weighted by (1 − λ3) and the
MP2 correlation energy is weighted by λ3, instead of
(1 − λ2) and λ2, respectively. Applying this formula
with the Perdew-Burke-Ernzerhof (PBE) [13] exchange-
correlation density functional, they have constructed
the PBE0-DH double-hybrid approximation which per-
forms reasonably well. In this work, we give a ratio-
nale for this class of double-hybrid approximations. For
this, we start by recalling that the density-scaled cor-
relation functional Ec[n1/λ] tends to the second-order
Görling-Levy (GL2) [14] correlation energy when the
density is squeezed up to the high-density limit (or weak-
interaction limit)

lim
λ→0

Ec[n1/λ] = EGL2
c , (5)
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FIG. 1: (Color online) Density-scaled correlation energy Ec[n1/λ] for the He (left) and Be (right) atoms as a function of λ.
Accurate calculations (from the parametrizations of Ref. 9) are compared with different approximations: PBE without density
scaling [Eq. (3)], PBE with density scaling (from the parametrizations of Ref. 9), and linear interpolation between MP2 (with
PBE orbitals) and PBE [Eq. (9)]. The MP2 calculations for He and Be (including core excitations) have been performed with
the cc-pV5Z and cc-pCV5Z basis sets [10, 11], respectively.
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FIG. 2: (Color online) Mean absolute errors for the AE6 (left) and BH6 (right) test sets as functions of the parameter λ for the
1DH, and DS1DH, and LS1DH approximations with the PBE exchange-correlation density functional. All calculations were
carried out with the cc-pVQZ basis set.

which is finite for nondegenerate KS systems. The
GL2 correlation energy can be decomposed as (see, e.g.,
Ref. 15)

EGL2
c = EMP2

c + E∆HF
c , (6)

where EMP2
c is the usual MP2 correlation energy expres-

sion

EMP2
c = −

1

4

∑

ij

∑

ab

|〈φiφj ||φaφb〉|
2

εa + εb − εi − εj
, (7)

with the antisymmetrized two-electron integrals
〈φiφj ||φaφb〉, and E∆HF

c is an additional contribution
involving the difference between the local multiplica-
tive KS exchange potential v̂KS

x and the nonlocal
nonmultiplicative HF exchange potential v̂HF

x

E∆HF
c = −

∑

i

∑

a

∣

∣〈φi|v̂
KS
x − v̂HF

x |φa〉
∣

∣

2

εa − εi
. (8)

In both Eqs. (7) and (8), φk are the KS orbitals and
εk are their associated energies, and the indices i,j and
a,b stand for occupied and virtual orbitals, respectively.
The single-excitation contribution E∆HF

c vanishes for
two-electron systems, and in most other cases is negli-
gible [15], so that the GL2 correlation energy is well ap-
proximated by just the MP2 contribution (evaluated with
KS orbitals), EGL2

c ≈ EMP2
c . This leads us to propose an

approximation for Ec[n1/λ] based on a linear interpola-
tion formula

Ec[n1/λ] ≈ (1 − λ)EMP2
c + λEc[n]. (9)

Plugging Eq. (9) into Eq. (2), we directly arrive at what
we call the linearly scaled one-parameter double-hybrid

(LS1DH) approximation

ELS1DH,λ
xc = λEHF

x + (1− λ)Ex[n]

+(1− λ3)Ec[n] + λ3EMP2
c , (10)

with the weights (1− λ3) and λ3, thus giving a stronger
rationale to the expression that Brémond and Adamo
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have proposed on the basis of different considerations.
Further insight into this approximation can be gained by
rewriting Eq. (9) in the alternative form

Ec[n1/λ] ≈ EMP2
c + λ

(

Ec[n]− EMP2
c

)

, (11)

which can then be interpreted as a first-order expansion
in λ around λ = 0 with Ec[n] − EMP2

c approximating

the third-order correlation energy correction E
(3)
c [n] in

Görling-Levy perturbation theory. In comparison, the
zeroth-order approximation Ec[n1/λ] ≈ EMP2

c plugged in
Eq. (2) just gives the usual one-parameter hybrid (1H)
approximation with the full correlation density func-
tional [16, 17]

E1H,λ
xc = λEHF

x + (1− λ)Ex[n] + Ec[n]. (12)

In this sense, the LS1DH approximation of Eq. (10) can
be considered as a next-order approximation in λ beyond
the usual hybrid approximation.
Figure 1 illustrates the different approximations to the

density-scaled correlation energy Ec[n1/λ] as a function
of λ for the He and Be atoms. The accurate reference
curve is from the parametrization of Ref. 9. For λ =
1, it reduces to the exact correlation energy, while for
λ = 0 it is the GL2 correlation energy which tends to
overestimate the correlation energy. In between these two
limits, it is nearly linear with λ. The PBE correlation
energy without density scaling [Eq. (3)] is the crudest
approximation to Ec[n1/λ]. The PBE correlation energy
with density scaling (taken from the parametrization of
Ref. 9) gives a nearly linear curve. It is a fairly good
approximation for He, but a less good approximation for
Be where it underestimates the correlation energy for all
λ, especially at λ = 0. This is due to the presence of
static correlation in this system that is not described by
the PBE functional. Finally, the linear interpolation of
Eq. (9) between MP2 (evaluated with PBE orbitals) and
PBE appears as a good approximation for both He and
Be. In fact, the linear interpolation is clearly the best
approximation for Be, at least with the PBE functional.
For a more comprehensive comparison of the different

approximations, we have performed calculations on the
AE6 and BH6 test sets [18] with the 1DH, DS1DH, and
LS1DH double hybrids for the PBE functional, using a
development version of the MOLPRO 2010 program [19].
The AE6 set is a small representative benchmark set of
six atomization energies consisting of SiH4, S2, SiO, C3H4

(propyne), C2H2O2 (glyoxal), and C4H8 (cyclobutane).
The BH6 set is a small representative benchmark set of
forward and reverse barrier heights of three reactions, OH
+ CH4 → CH3 + H2O, H + OH→ O + H2, and H + H2S

→ HS + H2. All the calculations are performed at the op-
timized QCISD/MG3 geometries [20]. We use the Dun-
ning cc-pVQZ basis set [21, 22]. Core electrons are kept
frozen in all our MP2 calculations. Spin-restricted cal-
culations are performed for all the closed-shell systems,
and spin-unrestricted calculations for all the open-shell
systems. In Fig. 2, we plot the mean absolute errors
(MAE) for the two sets as a function of λ. For the AE6
set, the MAEs of the DS1DH and LS1DH approxima-
tions are quite similar, and are both much smaller that
the MAE of the 1DH approximation for a wide range of
λ. For the BH6 set, the LS1DH approximation gives a
MAE which is significantly smaller than those of both
DS1DH and 1DH for intermediate values of λ.
As regards the choice of the parameter λ, the present

data on the AH6 set gives an optimal value of λ = 0.75
for the LS1DH double hybrid, with a minimal MAE of
3.59 kcal/mol, and for the BH6 set the optimal value
is λ = 0.70 giving a minimal MAE of 0.73 kcal/mol.
However, the MAE is not very sensitive to the value of λ
around the optimal value, and Brémond and Adamo [12]
have argued for using λ = 0.5 in defining the PBE0-DH
approximation, using a similar argument as the one used
by Becke for his “half-and-half” hybrid [23].
In summary, we have shown that the new class

of double-hybrid approximations named here LS1DH
[Eq. (10)] can be understood as approximating the
density-scaled correlation functional Ec[n1/λ] by a lin-
ear function of λ, interpolating between MP2 at λ = 0
and a density-functional approximation at λ = 1. Nu-
merical results obtained with the PBE density functional
confirms that the LS1DH approximation is a relevant
double-hybrid model, and in fact tends to be more ac-
curate than the DS1DH double-hybrid model [Eq. (2)]
in which density scaling is applied to the PBE correla-
tion functional. More generally, it can be expected that
the LS1DH double-hybrid model will be more accurate
than the DS1DH double-hybrid model when applied with
a density-functional approximation that is inaccurate in
the high-density limit. We hope that this work will help
constructing other theoretically justified double-hybrid
approximations.
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