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Abstract—Nowadays, modeling complex domains such those
involving the description of human behaviors is still a challenge.
An answer is to apply the Domain Specific Languages principle,
which advocates that Domain Experts should model themselves
their knowledge in order to avoid misunderstanding or loss
of information during the knowledge elicitation phase. But
Domain Experts must then be provided a modeling language
enabling them to describe such complex domains. Moreover, in
order to help them build models, immediate feedbacks would
have to be available so that they can revise their modeling
choices in earlier steps. Model execution is a way to address
this issue.

We provide xOWL, a language that can be used as a backend
for multiple domain-specific syntaxes enabling Domain Experts
to model themselves the structural as well as behavioral
knowledge of their domain. xOWL comes with an interpreter
integrated in an environment offering models executability
in such way that Domain Experts can work in an iterative
and incremental way using a trial and error approach. The
implemented prototype is currently in use at EADS.

Keywords-Model-Driven Development; Semantic Web; Exe-
cutable Models

I. INTRODUCTION

These last years, Domain Specific Languages (DSL) are

gaining in importance in the Model-Driven Development

(MDD) community. They enable Domain Experts to model

themselves their knowledge, rather than transmitting this task

to a software engineer. This lowers the risk of misunder-

standing, or loss of information during the elicitation phase.

But this requires making available a visual concrete syntax

intuitive enough and close to the experts’ domain.

EADS is strongly interested in the modeling of human

behavior and user-system interaction. Experts in these areas

need a modeling language not only to represent their

knowledge but also to perform analyses on the resulting

models.

Knowledge representation is a well-known activity for

which the Knowledge Management community has designed

powerful languages. The Web Ontology Language 2 (OWL2),

one of these languages, is supported by tools that first allow

Domain Experts to represent their knowledge using familiar

concepts [1] and then to reason about it thanks to inference

mechanisms.

In addition, OWL2 natively supports the expression of

multi-level models through a mechanism called “punning”,

enabling a model element representing a domain entity to

be a class and an instance at the same time. This makes it

suitable for the modeling of domains as those of our interests,

i.e., human and user-system interaction [1], [2].

However, OWL2 does not provide behavioral modeling

concepts but only structural modeling ones. This prevents

Domain Experts from automatically executing their models.

Modeling and analyses on the resulting model cannot be

done in a round-trip way. Working in an iterative and

incremental way using a trial and error approach is therefore

not facilitated.

To overcome this limitation, we propose xOWL, a mod-

eling language built upon the OWL2 standard, extending it

with concepts enabling the expression of domain entities’

behaviors. xOWL comes with an interpreter integrated in

an environment offering models executability as well as

inference facilities. In an approach similar to the design

of DSLs, a domain-specific visual syntax for the general

purpose xOWL can be developed for each of the targeted

class of Domain Experts, thus allowing them to manipulate

concepts of their domain. Thanks to the coupling of these two

techniques, Domain Experts have immediate feedbacks on

the model they built using a syntax having familiar concepts

and can therefore improve it step by step.

This paper is structured as follows. In the next section, we

provide an example we use in this paper. Section III details

xOWL, the language we defined as an extension of OWL2.

The technical implementation is described in Sect. IV. We

present related works in Sect. V, and conclude in Sect. VI.

II. EXAMPLE

Organizing and maintaining the security of an event such

as the Olympics Games is a challenging issue. Nowadays it

is addressed by building a network of information systems

interconnecting several emergency services and surveillance
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Figure 1. Representation of operators’ procedures by UI experts

systems. In order to ensure a coherent use of security and

emergency resources during a crisis, specific procedures

have to be followed by information systems’ operators.

These information systems, as well as the procedures for

interacting with them are security-critical. Thus, they have

to be thoroughly tested. Although the information systems

themselves may be developed using formal methods in order

to minimize the risk of failure, the operator/system couple

is still error-prone due to possible misinterpretations from

either part.

In order to efficiently design security-critical systems,

human interactions have to be taken into account from

the very beginning. In a model-based testing approach1,

preliminary models of the information systems are used

to test preliminary models of the procedures. These tests

realized in advance, before the complete system is available,

can give useful feedbacks to designers in order to cover for

potential flaws. In this context, we aim at building a system

that will allow User Interaction (UI) Experts to test operators’

procedures.

In the following fictive example2, UI Experts want to

represent (model) their domain in order to simulate (test) it.

This domain is a time-critical Procedure: the reaction to

a medical emergency call. The purpose of the test is to deter-

mine whether the Procedure can be safely accomplished

by the Operator under a certain time threshold, even

under stressful circumstances. In order to do this, UI Experts

have identified the key operator/system Interactions

composing the Procedure:

1) Get the emergency nature

2) Get the emergency location

3) Query nearest medical outpost

4) Query outpost for availability

5) If available: Dispatch emergency call

6) Else: Query next nearest medical outpost, go to 4

For each of these Interaction elements, UI Experts

have attached a time limit. Then, they have organized

the Interactions into broad classes. For instance, the

gathering of information from a distressed person over the

1Here, model-based testing is used in contrast to testing with real systems
2Inspired from the EADS involvement in the Beijing Olympics Games.

phone (1 and 2) is an Interaction Kind that requires

specific skills. Then, determining the location and availability

of medical teams is another Interaction Kind involv-

ing the information system. Each of these Interaction
Kind has also been given an estimated difficulty index

in order to represent that some Interaction are more

prone to errors than others. Finally, UI Experts also represent

results of Procedure simulations with information such as

the timestamps for start and end in order to draw meaningful

results. Figure 1 illustrates this example.

For the simulation of the represented Procedure to

be realistic, UI Experts have to link their Procedure
models to the information system model, as well as to

a model of the Operator behavior. This allows test-

ing the domain Procedure against multiple profiles of

Operator, such as novice or experimented, under normal

or stressful conditions, etc. For the time being, UI Experts

have identified the following rules determining the success

and time consumption of Procedure, depending on the

interaction’s difficulty and the operator skill and

stress:

1) difficulty ≤ skill ⇒ success ∧ in time

2) difficulty > skill ∧ stress < 5 ⇒ success ∧ in time

3) difficulty > skill ∧ stress ≥ 5 ⇒ success ∧ time * 1.5

4) difficulty > skill ∧ stress ≥ 10 ⇒ failure ∧ time * 3

Other rules of this domain can be written in a similar fashion.

Due to the high specificity of this knowledge, it has

to be represented by UI Experts themselves for being the

most accurate and complete. UI Experts work in an iterative

fashion, constantly testing their domain models in order to

ensure that chosen values like the skill in our example

are still relevant.

To summarize, this example highlights the following needs:

1) Structural knowledge representation, e.g. the

Operator concept has a skill attribute.

2) Behavioral knowledge representation, e.g. the

EmergencyCall procedure, which specifies the

behavior of the Operator.

3) Inference rules representation, e.g. the success rules

stated above.

4) Execution of the behavioral knowledge, e.g. the simu-
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lation of the Procedure.

Multiple technologies described in the litterature address

some of the needs expressed above. On one hand, the

expression of structural knowledge in conjunction with

inference rules is a problem addressed by the Semantic Web

community, which produced languages such as OWL2 and the

Semantic Web Rule Language (SWRL) [1], [3]. Reasoning

capabilities are needed because much of the targeted audience

will express their knowledge as (domain) rules, especially in

human sciences. In our opinion, the best way to leverage this

kind of knowledge is to use inference rules. However, these

technologies do not enable their users expressing executable

domain behavior, such as Procedure in our example. On

the other hand, the representation of structural and behavioral

knowledge supported by an execution engine is addressed by

technologies from the Model-Driven Engineering community,

such as fUML [4] and Kermeta [5]. Technologies emanating

from the OMG world (with UML and MOF as flagships) can

also be connected to reasoning capabilities [6]. However, this

often comes down to providing a mapping to Description

Logic (or similar) whereas OWL is readily based on the said

DL. Furthermore, OMG Ontology Definition Metamodel

standard strive to fill in the gap, but reasoning capabilities

are still stronger in the semantic technologies ecosystem.

In any case, we cannot expect Domain Experts such as the

UI Experts to learn a general purpose modeling language that

is therefore not from their domain. To remedy this situation,

a DSL-like approach is to be taken, where a concrete visual

syntax for each class of Domain Experts (such as the UI

Experts) will have to be provided. Taking inspiration from

the behavior representation and execution capabilities of

technologies such as fUML, we chose to base our work on

semantic technologies in order to readily benefit from the

strong support for inferences. Consequently, to overcome

behavior representation and execution limitations we propose

xOWL, described hereafter, along with an application case

showing an example of concrete visual syntax for UI Experts.

III. XOWL: AN EXECUTABLE MULTI-LEVEL MODELING

LANGUAGE

The following paragraph expands on OWL2 in order to

give a better view on how it has been extended. Then, we

give details about the proposed extensions, leading to the

construction of xOWL, an executable OWL2-based language.

A. OWL2 Basics

OWL2 ontologies are formally defined as sets of ax-

ioms [7], where an Axiom is a basic unit of information

stating what is true in the domain described by the ontology.

The OWL2 language defines multiple kinds of axiom; a

few are represented in Fig. 2 as examples. For instance, the

Declaration axiom expresses the existence of a particular

entity within the domain. OWL2 entities include classes,

individuals and properties. Each Entity is identified by an

IRI (International Resource Identifier). An IRI is basically

a name to which can be attached different interpretations

represented by the OWL2 entities. From the Sect. II example,

the Declaration axiom would state the existence of the

Procedure class. Also, the Procedure concept is at the

same time a classifier for the EmergencyCall concept

and an ontological instance of the InteractionKind
concept. This kind of modeling approach, coined “Multi-

Level Modeling” is needed to accommodate knowledge from

fields such as human sciences. The ClassAssertion
axiom is used to state the ontological instantiation between

these three concepts:

Listing 1. OWL2 axioms
1 D e c l a r a t i o n ( Class ( : P r o c e d u r e ) )
2 C l a s s A s s e r t i o n ( : I n t e r a c t i o n K i n d : P r o c e d u r e )
3 C l a s s A s s e r t i o n ( : P r o c e d u r e : EmergencyCal l )

Figure 2. Excerpt of the OWL2 meta-model (from [1]) expressed in OWL2

These simple concepts are extended by the xOWL language,

which is built using an architecture presented in the following

paragraph.

B. xOWL Architecture

In order to extend OWL2, we reuse the OMG Model-

Driven Architecture (MDA), which is a layer-oriented ar-

chitecture. It enables the expression of a model at a layer i
using the language defined at the layer i+1 [8]. In the OMG

terminology, a layer i is said an instance of its upper layer

i+ 1. Some works call this instantiation relation a linguistic
instantiation [9].

OWL2

OWL2

xOWL

Executable Domain 
Ontologies

M3

M2

M1

Action

linguistic instance of

linguistic instance of

Figure 3. xOWL architecture

As shown in Fig. 3, the OWL2 language itself has been

used to express the abstract syntax of xOWL, which includes
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two ontologies (packages): the OWL2 package and the

Action package. The OWL2 package redefines the abstract

syntax of OWL2 within xOWL. Then, the Action package

defines the abstract syntax for behaviors, in relation to

the OWL2 package. Thus, domain ontologies expressed

using OWL2 can also be considered as expressed in xOWL.

Therefore, xOWL is immediately backward compatible with

existing ontologies.

The next paragraphs detail the Action package containing

concepts related to the modeling of behaviors and xOWL

expressions, as well as their relations with the OWL2
package.

C. Behavior Modeling

Behaviors can be represented using a wide variety of ways,

such as state machines, activities, processes and algorithms.

In xOWL, behaviors are represented as algorithmic structures

containing actions executed on xOWL ontologies. Since these

basic structures are not suitable for Domain Experts, they

are encapsulated into domain-specific high-level constructs

defined in xOWL libraries. These libraries also contain the

xOWL algorithms stating how to execute the high-level

constructs. In the example from Sect. II, UI Experts build their

behavioral models using a xOWL library developed by IT

Professionals. This library contains a small set of foundation

concepts allowing UI Experts to easily express themselves

procedures such as EmergencyCall. The library also

contain a xOWL algorithm stating how to execute procedures.

Algorithms themselves can be expressed using many

languages implementing different paradigms. In xOWL,

inspired from the OMG fUML language [4], we chose an

imperative paradigm enhanced with some features borrowed

from the functional paradigm: The language is also able

to manipulate lambda expressions, as will be shown in

the next paragraphs. Hence, as shown in Fig. 4, classical

imperative control structures are provided, such as loops (For
and While), conditional statements (If ), blocks, invocation of

sub-behaviors (Invokation), etc. xOWL implements a lexical

scoping paradigm for variables.

In the example from Sect. II, IT Professionals write an al-

gorithm for the execution of the corresponding Procedure
high-level constructs. An excerpt is shown in Listing 2. It

simply creates a new instance of the current Procedure
and loops through the sub-Interaction (steps) invoking

another function for executing them. Finally, it returns the

created instance.

Listing 2. Excerpt from the procedures’ execution xOWL algorithm
1 / / P a r a m e t e r o f t h e a l g o r i t h m
2 Param p r o c e d u r e
3 / / I n s t a n t i a t e t h e p r o c e d u r e
4 Var i n s t a n c e = NewIndividual ( p r o c e d u r e )
5 Var s t e p s =
6 Query ( O b j e c t P r o p e r t y A s s e r t i o n ( : c o n t a i n s p r o c e d u r e ? ) )
7 For ( Var i =0 , i != LengthOf ( s t e p s ) , i ++)
8 / / Invoke exec e lem
9 Var sub = I n v o k a t i o n ( : exec e lem s t e p s [ i ] )

10 / / Get t h e p r o c e d u r e−>sub o b j e c t p r o p e r t y
11 Var l i n k = . . .
12 Add ( O b j e c t P r o p e r t y A s s e r t i o n ( l i n k i n s t a n c e sub ) )
13 Return i n s t a n c e

These algorithmic structures can express the modification

of xOWL ontologies using specific statements called Action
in Fig. 4. Actions allow the addition and removal of axioms

from the xOWL ontology. This is coherent with the OWL2

philosophy because axioms are the basic unit of information

within an ontology (see Sect. III-A) and actions only offer

to add or remove some of these units of information. An

example can be seen in the previous listing where a new

ObjectPropertyAssertion axiom is added (line 12).

In order to express axioms such as this one using variables we

need more complex expressions shown in the next paragraph.

D. xOWL Expressions as OWL2 Extensions

Initially, OWL2 provides concepts for class expressions,

individuals, dataranges, literal expressions, etc. xOWL ex-

tends them by adding new kinds of expression, allowing the

use of variables, queries and invocations amongst others (see

Fig. 5). The extension of the expressions’ grammar allows

stating “parametric” axioms. For example, in Listing 2, line

12:

Add ( O b j e c t P r o p e r t y A s s e r t i o n ( l i n k i n s t a n c e sub ) )

This statement adds the axiom asserting that the two individ-

uals in the ‘instance’ and ‘sub’ variables are related by the

property contained in the ‘link’ variable (defined in Listing 2,

line 11). This is equivalent to “ instance . link = sub” in an

object-oriented languages, except that ‘metalink’ is itself a

variable and not the name of a property.

Figure 5. xOWL expressions (excerpt of the Action package) expressed
in OWL2

For the xOWL algorithms being able to manipulate

information, xOWL must provide a way for them to re-

trieve information from the ontologies. To this end, xOWL

provides the Query language element expressing a query

for information stated within the ontologies. The common

task of getting the value of a property for a given object is

expressed using a simple Query. In our example, a Query
is used to retrieve the sub-Interaction contained by the

Procedure:

Var s t e p s =
Query ( O b j e c t P r o p e r t y A s s e r t i o n ( : c o n t a i n s p r o c e d u r e ? ) )
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Figure 4. Statements (excerpt of the Action package) expressed in OWL2

Here the Query will return all values of the free variable ‘?’

that enable the pattern to be matched to an axiom within

the ontology. This allows a uniform access to information

within the xOWL ontologies without discriminating between

ontological levels, or the kind of information queried. In

addition, queries are to be interpreted by an inference engine,

thus providing powerful capabilities. For example, querying

for the subclasses of a given Class would also return the

inferred subclasses and not only the asserted subclasses

(subclass relationships explicitly stated using an axiom).
Finally, xOWL provides language elements for represent-

ing common literal expressions, such as mathematical and

logical operations (arithmetic operators, Boolean operators,

comparators, etc.). The next paragraph will present how

the behavior modeling concepts in this Action package are

related to the plain OWL2 concepts.

E. Relation with the OWL2 Package
xOWL separates the syntax for structural knowledge

(OWL2 package) from the syntax for behavioral knowledge

(Action package). However, we still need to provide a “glue”

that will remain in the OWL2 philosophy. In the previous

paragraph, we demonstrated how to express algorithms using

statements (Statement). Hereafter is explained how algorithms

integrate with OWL2 concepts.
As shown in Fig. 6, we encapsulated algorithms within

lambda expressions (Lambda). In this context, lambdas rep-

resent anonymous pieces of “parametric” behaviors, having

parameters (Variable) and being defined using a Statement.
However, lambda expressions cannot be used directly because

they depend on the lexical context in which they have

been defined. Consequently, we use the Closure concept

to represent a lambda expression within a certain lexical

context represented by a collection of Upvalue, associating

variables to values.

Figure 6. Binding Action package to OWL2 package

From this, we introduce the Function concept. A Function,

as shown in Fig. 6 is a new kind of ontological entity

(Entity). Function are also a kind of FunctionExpression,

which are expressions (Expression). In this way, it is

possible for a variable to hold a Function as a value. Because

a Function is an Entity, it is referenced by an IRI. This

makes a Function a new possible interpretation for IRI.

Consequently, a single concept (IRI) can now be a Class,

an Individual and a Function at the same time.

Finally, Function are associated to behaviors (Closure)

through the use of an axiom. This new kind of axiom, called

FunctionDefinition, is also shown in Fig. 6. It is similar to

the DatatypeDefinition axiom shown in Fig. 2 in the

way it associates an ontological Entity to its definition.

Doing so, xOWL is respectful of the OWL2 philosophy, in

which the Axiom is the unit of information. In our example,

this new axiom is used to define the execution function of

the Procedure:

F u n c t i o n D e f i n i t i o n ( : e x e c p r o c e d u r e
Lambda ( Var p r o c e d u r e . . . )

)
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When applying the axiom, the Lambda containing the content

of the Listing 2 will be evaluated as a Closure. Consequently,

behaviors can be attached to ontological entities, thus

providing a multi-level modeling language supporting the

representation of behaviors.

Additional extensions have been provided for usability,

although not detailed in this paper. These usability features

include:

• Native support for the expression of arrays and asso-

ciated expressions including array concatenation and

slicing.

• Native support for interoperability with a host lan-

guage. As shown in the next section describing the

implemented prototype, Java has been used as a host

language. Therefore, algorithms expressed using xOWL

can manipulate Java objects and invoke Java operations.

This gives access from xOWL ontologies to the entire

Java ecosystem. This host language may not have formal

declarative semantics. However, one can still either

forbid the use of such constructs or limit them to

particular ontologies in order to leverage the formal

declarative semantics of xOWL for verification purposes.

Finally, OWL2 is a formally defined language, thus bearing

precise semantics. Then, in order for xOWL to be consistent,

it also had to provide a formal definition based on the

one provided by OWL2. Consequently, the operational

semantics of xOWL have been formally defined using a

transition system, based on the OWL2 direct semantics [7]3.

These formally defined operational semantics have then been

implemented in a proof of concept prototype.

IV. THE XOWL IMPLEMENTATION AND APPLICATION

This section will first present some general aspects of the

implemented interpreter. Then, we apply the language key

features to the example presented in Sect. II.

A. Prototype Interpreter

The implemented prototype has been designed in a modular

way, reusing existing libraries, in order to limit development

efforts while maximizing functionalities. Figure 7 shows the

general architecture of our proposal.

Frontends

Functional OWL
Syntax Parser

OWL/XML
Syntax Parser

Backends

Virtual Machine

Manager

Pellet OWLAPI
Repository
Query Engine

In-house MLM
Repository
Query Engine

user

Thread 2Thread 1

Figure 7. Architecture of the xOWL interpreter

3See http://www.xowl.info/

The prototype can be split into three main parts. The

first and central one encompasses the Virtual Machine
for the language interpreter, as well as the Management
layer. The second part contains what are called Frontends,

i.e. sets of components allowing the loading of extended

ontologies. Finally, the last part contains Backends, i.e.

sets of components for the in-memory representation of

extended ontologies and querying capabilities, etc.

The Virtual Machine is responsible for the imple-

mentation of the language operational semantics. It contains

the logic for the interpretation of expressed algorithms. On

top of the Virtual Machine, the Management layer

acts as an interface layer with users, providing a clean and

simple API facade.

Backends are the parts of the prototype that take care of

the in-memory representation of extended ontologies. Multi-

ple Backends mean that multiple methods of representation

are available. Two Backends are currently implemented

in the prototype and as shown in Fig. 7. The first one

is an experimental in-house multi-level modeling backend.

The second relies on OWLAPI, a free set of libraries for

OWL2 and Pellet [10], an OWL2 reasoner. Doing so we take

advantage of the inference and querying capabilities of the

reasoner. Finally, one can also implement Backends based

on the Jena API [11] or CORESE [12], a reasoner developed

by the INRIA for RDF [13].

In order for the interpreter to be easily and efficiently

used, some additional features have been included. The

interpreter then natively provides support for debugging

through specific interfaces. Debugging features include run-

time breakpoint injection and removal, step-by-step execution,

stack and context (variable values) exploration and on-the-fly

expression parsing and evaluation.

B. Usage and Concrete Syntax

xOWL Interpreter

UI Expert

xOW Library for UI

Concrete Visual 
Syntax for UI

IT Professional

Figure 8. Architecture of the solution for UI Experts

As explained in previous sections, we aim at endowing

Domain Experts that have no software-related skills with the

xOWL language. The abstract syntax of which is described in

Sect. III. In order to maximize Domain Experts’ engagement

regarding their modeling task, domain-specific representation

metaphors are preferable. Then, the challenge that needs to

be addressed is the elaboration of concrete syntaxes, one for
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each class of Domain Experts. The approach chosen here,

summarized in Fig. 8, is two-fold.

First, IT Professionals have to build a minimal xOWL

library for the targeted class of Domain Experts. This xOWL

library for one particular domain will typically package the

domain-specific concepts expressed in the form of xOWL

ontologies. It will also contain the algorithms (expressed

in xOWL) that specify how to interpret these concepts in

term of behaviors. Consequently, user models built using this

library can be executed.

Then, a domain-specific concrete syntax has to be imple-

mented. This concrete syntax provides terms from the domain-

specific xOWL library. Consequently, Domain Experts can

use the xOWL language transparently through a concrete

syntax depending on a domain-specific xOWL library.

C. Application to the Example

This section illustrates how UI experts use xOWL to

describe their structural and behavioral knowledge and

test the resulting model. We come back to the example

of Sect. II. Figure 9 is a structural representation of

what UI Experts want to model, namely the behavior of

the EmergencyCall procedure. As shown in the figure,

Figure 9. Excerpt from the structural multi-level representation of
EmergencyCall

the InteractionKind concept classifies the different

Interaction. It declares that each kind of interaction

has a difficulty index. The Procedure concept is

a classifier for UI Experts’ procedures, for instance the

EmergencyCall. The Interaction concept federates

new kinds of interaction created by UI Experts. Using

these concepts, UI Experts express the behavior of the

EmergencyCall procedure. The 6 steps described in

Sect. II are then to be represented, although not all of

them are shown in Fig. 9 due to lack of space. The

GetEmergencyNature is then an ontological instance of

the GetInfoOverPhone, which is an interaction kind de-

fined by UI Experts. Similarly, the QueryAvailability
interaction is an instance of the QueryIS interaction kind.

Level 0 contains the result of Procedure’ simulations

as ontological instances of the Procedure themselves.

Figure 9 also shows that the Procedure model is connected

to a model of the Operator. Albeit not shown here due

to space, the Procedure model is also connected to the

Information System’s model.

The kind of representation shown in Fig. 9 akin to a UML

class diagram could be a concrete visual syntax for OWL2

ontologies. However, it implicitely refers to terms that are

not from the domain of the UI Experts. Actually, in order

to efficiently manipulate such a representation, UI Experts

would have to understand concepts such as “Class” and

“Individual”. Consequently, following the approach described

in subsection IV-B, IT Professionals have been commisioned

for the development of the corresponding xOWL library and

a concrete visual syntax.

The xOWL library contains both the core concepts and the

algorithm for their execution. Thus InteractionKind,

Procedure and Interaction are contained in the

library. Others (e.g.: EmergencyCall) being all either

direct or indirect ontological instances of those ones do not

need to be included in the library. The algorithm, a excerpt

of which is given in Listing 2 from Sect. III., enabling UI

experts to apply analyses to the represented Procedures
only uses these three concepts. Moreover, as explained in

Sect. II, the knowledge about how to execute Procedures

is complemented by inferences rules. For example, the

knowledge about whether the Procedure is successful or

not is better expressed using inference rules. In this case,

reasoning capabilities are to be directly interwoven with

the execution capabilities because the very result of the

Procedure execution algorithm expressed in xOWL

depends on inference rules. These rules can be written using

the Semantic Web Rule Language (SWRL). For example,

rule 1 cited in Sect. II can be expressed as:

Operator(?x, ?o) ∧ skill(?o, ?s) ∧ · · · ∧
swrlb:lesserThanOrEqual(?d, ?s)

⇒ success(?x, true) ∧ · · ·
The inference rules are not included in the xOWL library

for UI Experts because they will follow the same rapid

prototyping cycle as the Procedure data. The rules

being loaded by the backend reasoner of the xOWL

interpreter, this one is then able to leverage them during the

simulation/execution of the represented Procedure.

The concrete visual syntax is made available to UI Experts

by its implementation in a CAD 4 (Computer-Aided Design)

tool (see Fig. 10). The tool provides UI Experts a set of

icons corresponding to the UI domain concepts expressed in

the xOWL library. As shown in Fig. 10, the concrete visual

syntax for UI Experts uses boxes to represent elemenents of

the Procedure, such as the GetEmergencyLocation
interaction. Arrows symbolise the flow of Interactions.

4The CAD designation is preferred over CASE (Computer-Aided Software
Engineering) here because the latter focuses on the design of software
artifacts whereas the tool shown here targets the UI domain, outside of the
Software Engineering field.
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Figure 10. Procedure modeling and testing tool implementing the visual concrete for UI Experts

This concrete visual syntax has been constructed using

existing formalisms used by the UI Experts on paper. In

addition to enabling UI Experts to model their knowledge,

this tool allows them to test their models. To this end, it relies

upon the xOWL interpreter for the execution of procedures’

simulations (execution) and analyses. The algorithm defining

how to execute procedures being also defined in the xOWL

library for UI Experts, the interpreter is able able to execute

them. Using at the same time inference rules defined

in Sect. II, the interpreter simulating the procedures can

determine whether these are actually successfully handled by

the operator. For instance, the tool will provide as feedbacks

to the UI Experts that the procedures cannot be safely handled

by the operator because he/she is too much stressed.

To summarize, the xOWL language addresses the identified

needs for structural and behavioral modeling. Because it is

based on OWL2, is can be used in conjunction with the

SWRL language for the expression of inference rules. The

xOWL interpreter is able to execute algorithms expressed in

xOWL, using inference rules Using a DSL-style approach, a

minimal xOWL library has been developed by IT Professional

for UI Experts, as well as a concrete visual syntax. Conse-

quently, UI Experts can represent and test their knowledge

in an iterative fashion using the provided CAD tool.

V. RELATED WORKS

This work relates to multiple fields, each developing

different sets of researches. First, the modeling community

produced several examples of multi-level modeling languages,

and at least one explicitly multi-level programming lan-

guage [14]. In addition, the knowledge engineering and

semantic web communities provided strong logic-based

artifacts, OWL2 being one of them, that are related to this

work.

The model engineering community has produced several

researches proposing multi-level modeling languages. Some

languages like Nivel [15] enforces strict multi-level modeling

(no relation between concepts from different ontological

layers), and provides a formal definition. However, Nivel

is not able to express behavior, a feature provided by the

Kermeta language [5]. Kermeta is an executable modeling lan-

guage that is based on EMOF (conceptually) and ECORE (in

practice). It allows the expression of behaviors as algorithms,

on top of a meta-data modeling language. However, Kermeta

does not support the use of inferences during execution.

Behavior modeling is broad subject that has been explored

by different communities. From a Model-Driven Engineering

point of view, the UML standard provides several ways to

represent the behavior of a system [16]. Other technologies

such as Kermeta have a more fundamental approach. In

addition, other works focus on the formal modeling of

behavior [17]. For instance the B formal method uses the

formal definition of behavior for the mathematical proofs of

programs [18]. However, our motivation is to leverage the

formal operational semantics of the language for the definition

of domain-specific libraries. With different motivations comes

different applications. The B language is not usable in

our context due to its mathematical proving orientation.

Nevertheless, the formal modeling of behaviors is a necessary

step toward reasoning capabilities.

An intermediate approach supporting rules in the context of

programs has been implemented in Jess [19]. Jess allows its

users to express inference rules along normal Java programs.

However, Jess is not a modeling language defined using

formal semantics. Consequently, it does not seem suitable

for our purpose. Nevertheless, the Jess approach is interesting

because the one presented here is somehow symmetric. Jess

extends the Java ecosystem (executable) with inference rules,

whereas we strive to extend ontologies supporting formal

reasoning with executability.

This reasoning feature is indeed provided by technologies

from the semantic web community. For instance, the OWL2

language serves as a base for the definition of various

languages for the expression of rules, most notably SWRL [3],
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which can be used by backends of our xOWL interpreter. The

combined use of OWL2 and SWRL enables the expression

of behaviors through SWRL rules only. However, some

behavioral knowledge such as the procedures of our example

in Sect. II is best expressed using a different formalism.

To this end, xOWL provides a practical solution because it

does not restrict the expression of behaviors to predefined

formalisms. In our example implemented in Sect. IV-C,

operator’s procedures, which are the behavior of the operator,

is expressed using a process formalism. Other formalisms

such as state-machines can be used by building an adequate

domain-specific xOWL framework.

Other works focus on the representation of changes within

ontologies. For instance, an ontology of the possible changes

within OWL2 ontologies has been produced [20]. Although

providing insight on ontology modifications, this work does

not allow the representation of changes within algorithmic

structures, a feature provided by xOWL.

Another approach is the representation of behaviors using

pure ontologies only. In particular, the representation of

algorithms using ontologies has been explored in [21].

However, the work of Grassi et al focuses on reasoning

about the behavior and not representing it for its execution.

Because the OWL2 language elements are used to represent

algorithms, it is not possible to differentiate in an ontology

the concepts describing structural knowledge and those

describing algorithms, thus preventing their execution. In

contrast, xOWL provides new language elements for the

expression of algorithms, thus enabling an interpreter to

distinguish the algorithms for their execution.

Also, an approach focusing on the expression of DSLs has

been presented in [22]. The tool called Magic Potion [23]

enables IT Professionals to define executable DSLs using

ontologies. However, whenever knowledge about the domain

change it requires to redesign the DSL, migrate the existing

data, etc. In contrast, xOWL is a general purpose language

which can be adapted to domains using domain-specific

libraries, without losing its ability to express and execute

behaviors. A different approach is also provided by the

Eclipse EProvide plugin, which enables the definition of

executable DSLs with visual concrete syntaxes [24]. EProvide

supports the automatic generation of the appropriate tooling

for executable DSLs, such as debuggers. We differ from

EProvide by defining an general-purpose executable language

that is then specialized for specific domains.

Moreover, designing a new Domain-Specific Language

from scratch is also a risky approach [25]. For one, IT

Professionals has to elicit domain knowledge from the

Domain Experts. Misunderstandings are not uncommon

during these processes [26]. Our approach strives to mitigate

these risks by requiring from the IT Professionals to build

only a minimal domain-specific xOWL library and the

corresponding concrete syntax. The xOWL language itself is

readily available and address the representation and execution

needs expressed by Domain Experts (UI Experts in our

example). This results in an approach much similar to the

UML profiling mechanism, which can be extended to define

DSLs, decoupling the abstract and concrete syntaxes [27].

However, our approach priviledges expressivity by combining

multi-level modeling capabilities with behavior modeling

concepts and inference rules.

VI. CONCLUSION

We are interested in the modeling of complex domains as

illustrated in this paper. A way to tackle this complexity is

to provide Domain Experts with tooling to model themselves

their knowledge and validate their models. To this end, we

have developed xOWL, a language that extends the OWL2

standard language, complementing it with behavioral con-

cepts. xOWL is supported by an interpreter enabling models

executability. In addition, using minimal development IT

Professional can produce a modeling environment targeting

a specific field of expertise, as it has been shown in Sect. IV

A strong advantage of our language is the combination of ex-

ecutability and inference mechanism. This provides Domain

Experts (UI Experts for instance) meaningful feedbacks from

the simulation, thanks to the inference rules.

Although the proof of concept tools have been handed

over to UI Experts at EADS, validation is an ongoing

work. Outside the example we present, xOWL is applied to

industrial-grade data coming from the aeronautics and human

science fields at EADS, i.e., in a diversity of application

fields (a glimpse of which is given in the paper). Future

works investigate several issues. We are studying a full-

fledged integration with the SPARQL language (SPARQL

Protocol and RDF Query Language) [28]. Indeed, current

xOWL Query is a simplified version of SPARQL query. This

integration would allow more expressiveness. Additionally,

taking advantage of the modular architecture of the xOWL

interpreter, new backends supporting other reasoners and

inference engines should be developed. Having different

backends will allow xOWL users to choose the one best

fitting their needs, as each reasoner has its own limitations.

An important issue is the evaluation of performance. Although

the current implementation is satisfactory regarding this

particular application example, a performance study must be

conducted. We are investigating both empirical studies based

on the UI Experts and complexity theoretical studies.
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Language with a Formal Semantics,” Software and Systems
Modeling, vol. 8, 2009.

[16] OMG, UML Version 2.1.2, OMG Std., 2007.

[17] S. Wang, J. Ma, Q. He, and J. Wan, “Formal Behavior
Modeling and Effective Automatic Refinement,” Inf. Sci., vol.
180, pp. 3894–3913, 2010.

[18] J.-R. Abrial, The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[19] E. F. Hill, Jess in Action: Java Rule-Based Systems, E. F. Hill,
Ed. Manning Publications Co., 2003.

[20] R. Palma, P. Haase, O. Corcho, and A. Gómez-Pérez, “Change
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