
HAL Id: hal-00624056
https://hal.sorbonne-universite.fr/hal-00624056v1

Submitted on 15 Sep 2011 (v1), last revised 5 Oct 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning the velocity kinematics of iCub for
model-based control: XCSF versus LWPR

Guillaume Sicard, Camille Salaün, Serena Ivaldi, Vincent Padois, Olivier
Sigaud

To cite this version:
Guillaume Sicard, Camille Salaün, Serena Ivaldi, Vincent Padois, Olivier Sigaud. Learning the velocity
kinematics of iCub for model-based control: XCSF versus LWPR. 11th IEEE-RAS International
Conference on Humanoid Robots - Humanoids 2011, Oct 2011, Bled, Slovenia. �hal-00624056v1�

https://hal.sorbonne-universite.fr/hal-00624056v1
https://hal.archives-ouvertes.fr


Learning the velocity kinematics of ICUB for

model-based control: XCSF versus LWPR

Guillaume Sicard, Camille Salaün, Serena Ivaldi, Vincent Padois and Olivier Sigaud

Abstract—The model-based control of humanoid robots re-
quires the availability of accurate mechanical models that can be
hard to obtain in practice. One approach to this problem consists
in calling upon machine learning methods. In this paper, using a
standard control approach based on visual servoing, we compare
the accuracy of two supervised learning methods, namely LWPR

and XCSF, to extract the forward velocity kinematics of the
upper body of the ICUB robot. Experiments are performed in
simulation, using one arm and the head for reaching tasks. We
show that both methods provide accurate models of the robot,
with a slight advantage to XCSF over LWPR.

I. INTRODUCTION

Given the complexity of humanoid robots and of their

associated missions, using machine learning techniques for

the control of these platforms is becoming mandatory (see

[1] for an overview). Among different approaches, trying to

learn models of the robot at the kinematic or the dynamic level

has recently received a lot of interest (e.g. [2], [3], [4]). The

idea consists in extracting these models with general function

approximation methods based on input/output data that are

recorded while using the robot.

In [5], a control framework combining the Resolved Motion

Rate Control (RMRC) framework and learning the Forward

Velocity Kinematics (FVK) of the system with LWPR [2] is

presented. The specificity of this framework is that it can

combine several tasks ranked by priority, either compatible

or not. However, this study is limited in several respects.

First, it is based on a simple planar arm model. Here,

we evaluate the potential of this approach with the ICUB

humanoid robot [6]. In that respect, our robotic set-up and

goal share a lot of similarities with the framework presented

in [7] that uses JAMES, an ancestor of ICUB, and RFWR, an

ancestor of LWPR. Second, in [5] an important motor babbling

stage is required to initialize the learned FVK, which would

be hardly feasible on a real robot. Here, the motor babbling

stage is not necessary anymore. Finally, the focus of the paper

is on an empirical comparison between LWPR and XCSF [8],

another state-of-the-art function approximation algorithm.

In order to elaborate this comparison, we first study the

performance of both learning techniques on 8 sequential

All the authors are with: Université Pierre et Marie Curie, Institut des
Systèmes Intelligents et de Robotique - CNRS UMR 7222, Pyramide Tour
55 - Boite Courrier 173, 4 Place Jussieu, 75252 Paris CEDEX 5, France.
Contact: firstname.lastname@isir.upmc.fr

This work is supported by the French ANR program (ANR 2010 BLAN
0216 01), more at http://macsi.isir.upmc.fr

reaching tasks with the simulator of the ICUB robot [9], using

a FVK based on the CAD parameters of the robot as baseline.

The paper is organized as follows. In Section II, we present

the task, set-up and methods used to perform our comparison.

In Section III, we describe the series of evaluations performed

and present the results. We discuss these results in Section IV

before concluding.

II. METHODS

In this section, we first describe the robotic set-up. Then,

we give a formal presentation of the visual servoing and

inverse velocity kinematics problem that we address. Finally,

we briefly describe LWPR and XCSF, the learning algorithms

used to extract the model out of experimental data.

A. Robotics set-up and objectives

Our goal is to compare the accuracy of two supervised

learning algorithms, LWPR and XCSF, when approximating

the FVK of ICUB, a 53 degrees of freedom and 104cm high

humanoid robot. ICUB is actuated with DC brushless motors.

It was designed in the context of the ROBOTCUB project1

and is present in several research laboratories in Europe. The

ICUB software architecture is based on YARP [10] which

provides a powerful abstraction layer allowing, for example,

to transparently test most of the code in simulation before

actually executing it on the real robot without any additional

implementation effort. This is possible because the ICUB rigid

body dynamics simulator also uses YARP as its software

interface.

In the following experiments, we use an arm and the head of

ICUB in different contexts during a reaching task. The shoulder

is a 3 degrees of freedom joint with some coupling between

degrees of freedom. The decoupling is done with a low level

controller. The elbow is a one degree of freedom joint. The

neck is composed of two consecutive joints, namely the head

yaw and pitch angles. It is actuated with two direct drive DC

motors whereas for the arm, transmissions based on cables

and pulleys are used.

In total, as illustrated in Fig. 1, we control 4 degrees of

freedom for the arm and 2 degrees of freedom for the head2

while the torso of the robot is attached to a fixed base.

1http://www.robotcub.org
2see http://eris.liralab.it/wiki/ICub joints for more information about iCub

joints

http://www.robotcub.org
http://eris.liralab.it/wiki/ICub_joints


Fig. 1: Parametrization of the arm and head of ICUB. Head,

shoulder and elbow controlled axes are represented as well as

the head and torso frames.

To learn the FVK in simulation, we simulate the vision

process as it would be implemented on the real robot. Fur-

thermore, Gaussian noise is added to the control layer to

emulate a physical setup. In order to provide a baseline for the

comparison, an analytical expression of this model is obtained

using the Kinematic Dynamics Library (KDL) from the Orocos

Project [11] using the parameters of the CAD model, which

are available in the ICUB wiki3.

B. Visual servoing problem formulation

In terms of control, the goal of this paper is to derive, at

the velocity kinematics level, a closed-loop controller for the

end-effector of the considered kinematic chain (ICUB hand

here) based on visual feedback from the cameras of the robot.

Our main focus being not vision, we define the end effector

of the robot as a green ball that the robot holds with a stick

(cf. Fig. 1). We use the Cartesian position of the center of the

ball expressed in the head frame as features ξ = (ξx, ξy, ξz)
T

.

This position is reconstructed based on a reprojection software

module that uses a ball tracker algorithm based on the OpenCV

software [12] as well as on the camera calibration matrices.

The visual servoing problem consists in ensuring the reach-

ing or the tracking of the desired values of the features

ξ⋆ =
(
ξ⋆x, ξ

⋆
y , ξ

⋆
z

)T
. In that case, both the target and the

end effector need to be visible at any time. An exponential

decrease of the error is achieved by a proportional controller

ξ̇⋆ = λ (ξ⋆ − ξ) where λ is a positive definite matrix. In order

to design a velocity-level controller for our system, we thus

need to relate ξ̇ to the articular velocity of the robot.

3http://eris.liralab.it/wiki/ICubForwardKinematics

C. Inverse Velocity kinematics

From the structure of the robot, we know that ξ is a function

of both the head configuration qh =
(
qhp

, qhy

)T
and the arm

configuration qa =
(
qsp , qsr , qsy , qe

)T
, i.e. we have a surjec-

tive non-linear function fξ, namely the forward kinematics,

that relates the configuration of the robot q =
(
qh

T , qa
T
)T

to features ξ = fξ (q).

The considered kinematic chain being redundant with re-

spect to the end-effector task, there is an infinite number of

possible inverses for fξ. However, there is no simple method

to span the set of possible solutions at the geometric level and

this type of mapping is often described at the velocity level.

A a matter of fact, we can derive this expression and obtain

ξ̇ =
[

∂fξ(q)

∂qh
∂fξ(q)

∂qa

]

︸ ︷︷ ︸

J (q)

[
q̇h
q̇a

]

︸ ︷︷ ︸

q̇

. (1)

The terms
∂fξ(q)

∂qh
and

∂fξ(q)

∂qa
define two Jacobian matrices:

Jξ,h(q), which relates ξ̇ to the head velocity, and Jξ,a(q),
which relates ξ̇ to the arm velocity. Thus (1) can be rewritten

ξ̇ = Jξ,h(q)q̇h + Jξ,a(q)q̇a. (2)

In order to keep the target ξ⋆ visible by the cameras of the

robot, we choose to place it along the line of sight and reach

it with the end effector. For that purpose we need to control

the head and the arm independently from one another. Since

we only control the head pitch rate q̇hp
and yaw rate q̇hy

, we

can implement the strategy of [7] to control the head in order

to place the target along the line of sight

{

q̇⋆hp
= Khp

ξ⋆y +KDhp
ξ̇⋆y

q̇⋆hy
= Khy

ξ⋆x +KDhy
ξ̇⋆x

, (3)

which leads asymptotically to ξ⋆x → 0 and ξ⋆y → 0.

Defining q̇⋆
h =

(

q̇⋆hp
, q̇⋆hy

)T

and ξ̇⋆a = ξ̇⋆ −Jξ,h(q)q̇
⋆
h, the

arm FVK (2) can be written

ξ̇⋆a = Jξ,a(q)q̇
⋆
a, (4)

where q̇⋆
a is the velocity to apply to the arm in order to

exponentially decrease the feature errors given a head velocity

q̇⋆
h used to place the target along the line of sight.

In the non singular case, this mapping is redundant [5]

and there is an infinite number of solutions q̇⋆
a satisfying

(4). Among them, the one provided by the Moore-Penrose

pseudo-inverse Jξ,a(q)
+ provides minimum norm solutions

(see [13]). To avoid critical effects due to singular configura-

tions, the Damped Least Square Pseudo-inverse (DLS-PINV) of

Jξ,a (q) is preferred. It can be computed based on the SVD of

http://eris.liralab.it/wiki/ICubForwardKinematics


Jξ,a (q) but an intuitive expression of the DLS-PINV is given

by

Jξ,a (q)
+
= Jξ,a (q)

T
(

Jξ,a (q)Jξ,a (q)
T
+ k2I

)−1

(5)

where I is the identity matrix. The parameter k2 can be

determined adaptively in different ways and we have chosen

to use the method proposed in [14],

k2 =

{

0 σmin > σ̄

[1− (σmin

σ̄
)2]k2max σmin < σ̄

(6)

where σmin is the smallest singular value of the Jaco-

bian matrix, kmax is a regularization term that we set to

0.316 × (180/π) and σ̄ is a threshold which determines if

the plant is in singularity or not, that we set to 7.10−4.

The obtained solution is not exact but is robust to singular

configurations while ensuring minimal errors in any other case.

Redundancy can also be used to partially achieve a secondary

task while not disturbing the main one (in our case, reaching).

This decoupling requires the computation of PJξ,a
(q), the

projector onto the null space of Jξ,a (q). It can be done using

the SVD of Jξ,a and the column vectors vi of the resulting

matrix V . As a consequence, the general form of the solution

to (4) can be written

q̇⋆
a = Jξ,a (q)

+
ξ̇⋆a + PJξ,a

(q)q̇0, (7)

where q̇0 = −knull
∂H
∂q

is chosen accordingly to [15] in order

to maintain the configuration far from joint limits (knull > 0).

The use of the inverse velocity kinematics scheme described

by (7) requires to have access to J (q). The next subsections

give a brief overview of the learning methods used in this work

to incrementally approximate J (q) based on joint positions

and velocities as well as visual features measurements.

D. LWPR in a nutshell

The Locally Weighted Projection Regression (LWPR) al-

gorithm [16] is a recursive function approximator, which

provides accurate approximation in very large spaces at low

computational cost. It uses a sum of linear models weighted by

normalized Gaussians. These Gaussians, also called receptive

fields, define a zone of influence for each corresponding

linear model. The receptive fields and the corresponding linear

models are both updated incrementally to match the training

data. LWPR reduces the input dimensionality using the Partial

Least Squares (PLS) algorithm [17], [18], [19]. The global

algorithm provides as output the weighted sum of all outputs

of each receptive field

ŷ (x) =

∑K
k=1 wkŷk (x)
∑K

k=1 wk

(8)

where K is the number of receptive fields. We refer the reader

to [20] or [21] for a presentation of the incremental version

of the algorithm.

E. XCSF in another nutshell

XCSF [22] is another function approximator that shares

some similarities with LWPR but comes from Learning Clas-

sifier Systems (LCSs) [23]. As any LCS, XCSF manages a

population of rules, called classifiers. These classifiers contain

a condition part and a prediction part. In XCSF, the condition

part defines the region of validity of a local model whereas

the prediction part contains the local model itself.

A classifier defines a domain φi(z) and uses a correspond-

ing linear model βi to predict a local output vector yi relative

to an input vector xi. The linear model is updated using

the Recursive Least Squares (RLS) algorithm, the incremental

version of the Least Squares method. The classifiers in XCSF

form a population P that clusters the condition space into a

set of overlapping prediction models. XCSF uses only a subset

of the classifiers to generate an approximation. Indeed, at each

learning iteration, XCSF generates a match set M that contains

all classifiers in the population P whose condition part Z

matches the input data z i.e., for which φi(z) is above a

threshold φ0
4.

In XCSF, the output ŷ is given for a (x, z) pair as the sum

of the linear models of each matching classifier i weighted by

its fitness Fi

ŷ (x, z) =

∑nM

k=1 Fk (z) ŷk (x)
∑nM

k=1 Fk (z)
(9)

where nM is the number of classifiers in the match set M . In

all other respects, the mechanisms that drive the evolution of

the population of classifiers are directly inherited from XCS

and are described in [24].

An important process in the context of this study is com-

paction. At the end of a learning process, the final population

is composed of highly overlapping classifiers. To reduce the

size of the population, XCSF uses a Closest Classifier Matching

(CCM) rule to have a fixed size match set M [24].

III. EXPERIMENTS AND RESULTS

We use LWPR or XCSF to learn J (q), the overall FVK

expressed in the head frame of a ball handed by the robot with

a stick. More specifically, the retained control scheme requires

the access to Jξ,h(q) and Jξ,a(q) which are blocks of J (q).
As a matter of fact, we learn the FVK under a matrix form.

Learning the FVK directly with LWPR would not provide such

a matrix. Thus, instead, when using LWPR we learn fξ (q)
and use the first order derivative of the learned function (in

our case, J (q)). Using XCSF, the Jacobian matrix is learned

directly providing q as condition parameter and
(

q̇, ξ̇
)

as

prediction parameter. The capacity to separate those spaces

leads also to the possibility of predicting the learned model

with only one condition parameter.

4This threshold is named θm in [24]



A. Tuning the learning algorithms

LWPR with XCSF come with a large set of parameters

and the performance is highly dependent on the effort put

in tuning these parameters. To circumvent this difficulty, our

methodology consists in the systematic exploration of these

parameters with an equal amount of time attributed to tuning

both algorithms. All parameters are tested on random joint

positions and velocities as input. The output is computed using

an existing KDL model as a baseline which provides a good

estimation of the behavior of the system while speeding-up the

exploration process. We consider having a sufficiently accurate

prediction with 3.104 training samples for the FVK.

The parameters tested with LWPR are described in the

following table. All combinations of all values are tested.

Tested parameters values

init d 20, 25, 30, 40, 50

init alpha 0.01, 0.1, 1, 10, 100, 200, 500

w gen 0.01, 0.1, 0.2

penalty 0.0001, 0.01, 0.1, 0.5

update D true, false

useMeta true, false

The parameters used for subsequent experiments are in

bold face. They are chosen so that the NMSE converges to

the lowest asymptotic value while decreasing fast in the first

steps. The input dimension is 6 and the output dimension is

3. The norm_in parameter is set to 180. The corresponding

performance evolution is shown in Fig. 2(a).

As XCSF may use different types of prediction space

(quadratic or linear) and condition spaces (ellipsoid, rectangle,

sphere, rotating or not), we choose linear predictions and

rotating ellipsoid conditions in order to easily compare XCSF

with LWPR.

The parameters tested with XCSF are described in the

following table. As previously, the parameters which give the

best values are in bold face.

Tested parameters values

maxPopSize 500, 700, 1000, 1500, 2000

epsilon 0 0.01, 0.001

minConditionStretch 0.005, 0.001, 0.01

coverConditionRange 0.995, 0.7, 0.9

delta 0.1, 0.01, 0.05, 0.2, 0.5

startCompaction 0.2, 0.4, 0.6

doNumClosestMatch true, false

The condition and prediction input dimensions are set to 6.

The output dimension is 3. The maximum learning iteration

parameter is set to 150000. Since the error is approximately

the same for startCompaction = 0.4 and 0.6, we finally

choose startCompaction = 0.5. The corresponding per-

formance evolution is shown in Fig. 2(b).

B. Performing the asterisk experiment with the iCub simulator

In this experiment, we compare the results obtained with

LWPR and XCSF in a reaching task. Results obtained with

KDL are provided as a baseline. Our approach is tested on

the ’star-like’ asterisk task (see [25]) which consists in a go

and return from a center point to eight target points that are

visited sequentially in a clockwise manner. Unlike [25] where

the whole trajectory is specified, only the target points are

given. The center of the asterisk is placed in ξ∗ = (ξ∗x =
0.13m, ξ∗y = 0.3m, ξ∗z = 0.24m)T relatively to the torso frame

(cf. Fig. 1). The radius of the asterisk is 9cm and a target is

considered to be reached under a threshold of 1cm.

The closed loop control and learning implementation are

described in Fig. 3. The learning algorithm module provides

J (q) after a learning period. The visualization module is

a display using a virtual camera. The reprojection module

computes the 3D position of the end effector with respect

to the head. The control loop module computes the joint

velocities needed to track the target with the head and the

arm independently, as described in Section II-C.

Vision

Ball trackerReprojection

Control loop

sim target

VisualizationLearning algorithm
get model update

Fig. 3: On-line learning and closed-loop control. Each box is

a YARP module

In Fig. 4, one can see the trajectory, in 2D, performed by the

end effector during the first, 17th and 34th experiments, with

the KDL model, LWPR, and XCSF, respectively. One can see

that the trajectory does not change with the KDL model, apart

from some minor variability due to control and vision noise.

Moreover, the trajectory is initially worse with LWPR and

XCSF, it improves faster with LWPR than with XCSF, but finally

the XCSF model gets even more accurate after condensation.

Those results are confirmed in Fig. 5, where one can see the

evolution of the time necessary to perform a complete asterisk

motion. Actually, the 34th asterisk is performed in 77 seconds

with KDL, 71 with LWPR and 56 with XCSF.



(a) LWPR (b) XCSF

Fig. 2: Evolution of the normalized mean square error (left blue circle) and number of receptive fields (right red plain line)

during 40000 learning steps with LWPR (a) and XCSF (b). With LWPR, the learning output is ξ whereas XCSF uses q as

condition parameter and
(

q̇, ξ̇
)

as prediction parameter.

0.10.2

0.3

0.4

0.20.10.2

0.3

0.4

0.2 0.10.2

0.3

0.4

0.2

0.10.2

0.3

0.4

0.20.10.2

0.3

0.4

0.2 0.10.2

0.3

0.4

0.2

0.10.2

0.3

0.4

0.20.10.2

0.3

0.4

0.2 0.10.2

0.3

0.4

0.2

Fig. 4: Simulation results. First line: trajectory of the end

effector using KDL. Second line: using LWPR. Third line: using

XCSF. The columns represent the evolution between the first,

the 17th and the 34th asterisk experiment respectively.

IV. DISCUSSION

First, independently from the model used for control, the

reaching results and associated Cartesian trajectories are far

from perfect. This is partly due to the fact that at the joint

torque level of ICUB, control is performed in a decentralized

manner: the whole-body dynamics is not accounted for and

torque at joint i is computed using a PID like control structure

only relying on the error in velocity at joint i.

Moreover, it is often objected to the use of machine learning

ast
eri

sk 
du

rat
ion

 [s
]

asterisk index

Fig. 5: Evolution of the time necessary to perform an entire

asterisk task with the three used algorithms: KDL in red, LWPR

in green and XCSF in blue.

methods for FVK identification that it is easy to get this model

analytically from the CAD model, which is itself generally

very accurate. Our experiments show that the controllers using

the FVK learned from both LWPR and XCSF outperform the

one relying on the KDL model. This surprising result is

explained by three factors. First, the control loop relies on

visual information that is slightly wrong mainly because of

poor calibration of the cameras of the robot. Indeed, in the

case of ICUB, the origin of the visual frame of reference is

not very precisely specified. Second, a detailed analysis of the

KDL model revealed that it is slightly erroneous due to the

evolution of the prototype over the years5. Third, in the case

of real robot experiments, the position of the stick in the hand

of the robot may not be precisely specified and may change

from an experiment to another, which may induce errors in the

estimation of the ball position relatively to the hand. The ball

5The model has been updated shortly after the realization of the research
described here.



can be considered as a generic tool which is usually difficult to

model accurately in the FVK of the robot. Learning algorithms

can compensate for to all those uncertainties.

Finally, XCSF slightly outperforms LWPR on the tasks tested

in this paper. Furthermore, as Fig. 2 shows, the final model is

about ten times smaller with XCSF than with LWPR (about 100

classifiers against about 1350 receptive fields). LWPR is one of

the most used machine learning methods. It has been evaluated

on higher dimensional mechanical systems than XCSF, but

always learning the model only along specific trajectories [26],

whereas here we learn over the whole joint space of the studied

system. Recently, [27] concluded that XCSF was outperforming

LWPR on simple function approximation problems. Our work

shows that this is also true for learning the FVK of the upper

body of ICUB under realistic simulation conditions, which is a

more significant result. Nevertheless, a gap exists between the

simulated and the real robot and optimal parameters obtained

in simulation may not be optimal for real world experiments,

thus we must now perform evaluations on the real robot.

V. CONCLUSION AND PERSPECTIVES

In this paper we have evaluated the applicability of a control

framework based on visual servoing and model learning to

the problem of controlling the ICUB humanoid robot. More

precisely, we have compared the performance of LWPR and

XCSF, showing that both were able to learn a model that is

appropriate for control, with a slightly better performance and

a much smaller model for XCSF.

Preliminary trials have shown that the approach can be

transferred to the real robot, despite a greater variability due to

additional sources of noise. In our immediate research agenda,

we have to quantitatively evaluate the results on the real robot.

Then we want to show that our approach to visual servoing

with learning a separate model for the head and for the arm can

be exploited to deal with the case where the robot is seeing the

target, but not its arm. On a longer term, we will make profit

of the access to the dynamics resulting from the availability

of the IDYN library [28] to try to learn the dynamics model

of the robot in the context of interaction with objects.

REFERENCES

[1] O. Sigaud and J. Peters, “From motor learning to interaction learning
in robots,” in From Motor Learning to Interaction Learning in Robots,
O. Sigaud and J. Peters, Eds. Springer, 2010, ch. 1, pp. 1–12.

[2] S. Vijayakumar, A. D’Souza, and S. Schaal, “LWPR: A scalable method
for incremental online learning in high dimensions,” Edinburgh Univer-
sity Press, Tech. Rep., 2005.

[3] J. Peters and S. Schaal, “Learning to control in operational space,”
International Journal in Robotics Research, vol. 27, no. 2, pp. 197–
212, 2008.

[4] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Real-time local gaussian
processes model learning,” in From Motor to Interaction Learning in

Robots, O. Sigaud and J. Peters, Eds. Springer, 2010.

[5] C. Salaün, V. Padois, and O. Sigaud, “Control of redundant robots using
learned models: an operational space control approach,” in Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), oct 2009, pp. 878–885.

[6] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori, “The iCub
humanoid robot: an open platform for research in embodied cognition,”
in Permis: performance metrics for intelligent systems workshop, Wash-
ington DC, USA, Aug. 2008.

[7] L. Natale, F. Nori, G. Metta, and G. Sandini, “Learning precise 3d
reaching in a humanoid robot,” in Proceedings of the IEEE International

Conference of Development and Learning (ICDL), London, UK, July
2007, pp. 1–6.

[8] M. V. Butz, D. Goldberg, and P. Lanzi, “Computational Complexity of
the XCS Classifier System,” Foundations of Learning Classifier Systems,
vol. 51, pp. 91–125, 2005.

[9] V. Tikhanoff, P. Fitzpatrick, F. Nori, L. Natale, G. Metta, and A. Can-
gelosi, “The icub humanoid robot simulator,” in IROS Workshop on

Robot Simulators, 2008.
[10] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot genes,”

Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29–45, 2008.
[11] R. Smits, T. De Laet, K. Claes, P. Soetens, J. De Schutter, and H. Bruyn-

inckx, “Orocos: A software framework for complex sensordriven robot
tasks,” IEEE Robotics and Automation Magazine, 2008.

[12] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[13] K. Doty, C. Melchiorri, and C. Bonivento, “A theory of generalized

inverses applied to Robotics,” The International Journal of Robotics

Research, vol. 12, no. 1, pp. 1–19, Feb. 1993.
[14] S. Chiaverini, O. Egeland, and R. K. Kanestrom, “Achieving user-

defined accuracy with damped least-squares inverse kinematics,” in
Proc. Fifth International Conference on Advanced Robotics ’Robots in

Unstructured Environments’, 91 ICAR, June 1991, pp. 672–677.
[15] E. Marchand, F. Chaumette, and A. Rizzo, “Using the task function

approach to avoid robot joint limits and kinematic singularities in
visual servoing,” in Intelligent Robots and Systems, 1996 IEEE/RSJ

International Conference on, 1996.
[16] Statistical Machine Learning and Motor Control Group, “Locally

Weighted Projection Regression,”
http://www.ipab.informatics.ed.ac.uk/slmc/software/lwpr, 2009.

[17] H. Wold, “Soft modelling by latent variables: the non-linear iterative
partial least squares (NIPALS) approach,” Perspectives in Probability

and Statistics (papers in honour of MS Bartlett on the occasion of his

65th birthday), pp. 117–142, 1975.
[18] L. Elden, “Partial least-squares vs. Lanczos bidiagonalization-I: analysis

of a projection method for multiple regression,” Computational Statistics

and Data Analysis, vol. 46, no. 1, pp. 11–31, 2004.
[19] M. Tenenhaus, La régression PLS: théorie et pratique. Editions

Technip, 1998.
[20] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques

from nonparametric statistics for real time robot learning,” Applied

Intelligence, vol. 17, no. 1, pp. 49–60, 2002.
[21] S. Vijayakumar and S. Schaal, “Locally weighted projection regression:

An o (n) algorithm for incremental real time learning in high dimensional
space,” in Proceedings of the Seventeenth International Conference on

Machine Learning (ICML 2000), Stanford, CA, 2000, pp. 1079–1086.
[22] S. W. Wilson, “Classifiers that Approximate Functions,” Natural Com-

puting, vol. 1, no. 2-3, pp. 211–234, 2002.
[23] O. Sigaud and S. W. Wilson, “Learning classifier systems: A survey,”

Journal of Soft Computing, vol. 11, no. 11, pp. 1065–1078, 2007.
[24] M. V. Butz and O. Herbort, “Context-dependent predictions and cog-

nitive arm control with XCSF,” in Proceedings of the 10th annual

conference on Genetic and evolutionary computation. ACM New York,
NY, USA, 2008, pp. 1357–1364.

[25] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational
space control: A theoretical and empirical comparison,” The Interna-

tional Journal of Robotics Research, vol. 27, no. 6, pp. 737–757, 2008.
[26] O. Sigaud, , C. Salaün, and V. Padois, “On-line regression algorithms

for learning mechanical models of robots: a survey,” Robotics and

Autonomous Systems, 2011, in press, doi:10.1016/j.robot.2011.07.006.
[27] P. Stalph, J. Rubinsztajn, O. Sigaud, and M. Butz, “A Comparative

Study: Function Approximation with LWPR and XCSF,” in Proceedings

of the 13th International Workshop on Advances in Learning Classifier

Systems, 2010.
[28] S. Ivaldi, M. Fumagalli, M. Randazzo, F. Nori, G. Metta, and G. Sandini,

“Computing robot internal/external wrenches by means of inertial, tactile
and f/t sensors: theory and implementation on the icub,” in Proc. of the

11th IEEE-RAS International Conference on Humanoid Robots, Bled,
Slovenia, 2011.


	Introduction
	Methods
	Robotics set-up and objectives
	Visual servoing problem formulation
	Inverse Velocity kinematics
	lwpr in a nutshell
	xcsf in another nutshell

	Experiments and Results
	Tuning the learning algorithms
	Performing the asterisk experiment with the iCub simulator

	Discussion
	Conclusion and Perspectives
	References

