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Solution Formulas for Cubic Equations Without or With Constraints

Introduction

Let f (x) = x 3 + a 2 x 2 + a 1 x + a 0 ∈ C[x], where C denotes the field of complex numbers.

Lagrange [START_REF] Lagrange | Réflexions sur la résolution algébrique des équations[END_REF][START_REF] Smith | History of Mathematics[END_REF] gave the following formula for the three solutions u 1 , u 2 , u 3 of the equation f (x) = 0:

1 u 1 = (-a 2 + ω 1 c 1 + ω 2 c 2 )/3, c 1 = 3 (p 2 + 3 s)/2, s = 2 √ -3 p 1 , u 2 = (-a 2 + ω 0 c 1 + ω 0 c 2 )/3, c 2 = 3 (p 2 -3 s)/2, u 3 = (-a 2 + ω 2 c 1 + ω 1 c 2 )/3, ω = e i 2π 3 = -1 2 + √ 3 2 i,
p 1 = a 2 2 a 2 1 + 18 a 2 a 1 a 0 -4 a 3 1 -27 a 2 0 -4 a 3 2 a 0 , p 2 = 9 a 2 a 1 -27 a 0 -2 a 3 2 . Note that the formula, as usually stated, is a bit ambiguous since there are two possible values of s, three possible values of c 1 , and three possible values of c 2 , depending which square/cubic roots one takes. Hence there are all together 2 × 3 × 3 = 18 possible interpretations of the above formula. It is well known that some interpretations are correct (yielding the solutions), but the others are not.

How to choose a correct interpretation? The usual answer, in the literature, is to choose an interpretation satisfying the condition c 1 c 2 = a 2 2 -3a 1 . Note that the above condition depends on the polynomial f. So we question whether there is a uniform condition, i.e., a condition that is independent of the polynomial f . The question essentially amounts to whether there is a convention for choosing square root and cubic root that will yield correct interpretations for all f . We ask the question because it seems to be natural and interesting on its own. We are also motivated by the need of such a convention in geometric constraint solving [START_REF] Wang | GEOTHER 1.1: Handling and Proving Geometric Theorems Automatically[END_REF][START_REF] Hong | Solving Dynamic Geometric Constraints Involving Inequalities[END_REF], where it is very desirable to have a uniform way (independent of f ) to choose a correct interpretation.

It is easy to verify that the "standard" convention

arg 2 √ x = 1 2 arg x, arg 3 √ x = 1 3 arg x
is not always correct. For example, the Lagrange formula under the standard convention on f = x 3 -2 x 2 + x = (x -1) 2 x yields the incorrect solutions:1 2 -

√ 3 6 i, 1 + √ 3 3 i, 1 2 - √ 3 6 i.
Of course there are infinitely many other (non-standard) conventions. However, we do not yet know if there exists a non-standard but correct convention. Nevertheless, in most applications the polynomials have only real coefficients . So we ask instead whether there is a convention that always yields correct solutions if we restrict the coefficients of the polynomials to real numbers. The answer is Yes. 2 In the following section (Section 2) we will present the non-standard convention (which we will call "real" convention) that yields correct solutions for all cubic polynomials with real coefficients. In Section 3, we will prove its correctness. In Section 4, using the real convention, we will present real solution formulas for the general real-coefficient cubic equation under equality and inequality constraints. We will prove its correctness in Section 5. Constraints naturally arise in applications such as geometric constraint solving [START_REF] Wang | GEOTHER 1.1: Handling and Proving Geometric Theorems Automatically[END_REF][START_REF] Hong | Solving Dynamic Geometric Constraints Involving Inequalities[END_REF].

Real convention

We discovered a correct convention for all cubic equations with real coefficients. The new convention is described in the following definition, under the name of real convention.

Definition 1 (Real Convention). The real convention (Figure 1) chooses the square root 2 √ x and cubic root 3 √ x of x so that

arg 2 √ x = 1 2 arg x, arg 3 √ x = -                                    1 3 arg x - 2 3 π if -π < arg x < - π 2 , + π 2 if - π 2 = arg x, 1 3 arg x if - π 2 < arg x < + π 2 , - π 2 if + π 2 = arg x, 1 3 arg x + 2 3 π if + π 2 < arg x ≤ +π.
Remark 2. The real convention for the square root is the same as the standard one, but for the cubic root it is quite different from the standard one.

2 One might wonder whether there is any relationship between our question and Bombelli's (O'Connor and Rovertson, 2010;[START_REF] Bortolotti | R Bombelli L'Algebra[END_REF], since both address the issue of "complex/real numbers" in the context of solving cubic equations. They are completely different questions. Bombelli asked how to deal with the cases where intermediate results involve square root of negative numbers. He developed a theory of complex numbers by analogy with known rules for real numbers and demonstrated that real roots can be obtained even though some intermediate results are non-real numbers. Our question is to find a "uniform convention" (for square/cubic roots) that does not depend on the coefficients of the polynomials and that provides correct interpretations of Lagrange's formula for all cubic polynomial equations with real coefficients. Theorem 3. The Lagrange formula under the real convention yields the correct solutions for all cubic polynomials with real coefficients, and the solution u 2 is always real.

Proof. Will be given in the next section. 2

Example 4. We use the example

f = x 3 -2 x 2 + x = (x -1) 2 x
from the introduction to verify the correctness of the real convention. Direct calculations, following the real convention, yield

p 1 = a 2 2 a 2 1 + 18 a 2 a 1 a 0 -4 a 3 1 -27 a 2 0 -4 a 3 2 a 0 = 0, p 2 = 9 a 2 a 1 -27 a 0 -2 a 3 2 = -2, s = 2 √ -3 p 1 = 2 √ 0 = 0, c 1 = 3 (p 2 + 3 s)/2 = 3 √ -1 = 3 √ e iπ = e iπ = -1, c 2 = 3 (p 2 -3 s)/2 = 3 √ -1 = 3 √ e iπ = e iπ = -1, u 1 = (-a 2 + ω 1 c 1 + ω 2 c 2 )/3 = 1, u 2 = (-a 2 + ω 0 c 1 + ω 0 c 2 )/3 = 0, u 3 = (-a 2 + ω 2 c 1 + ω 1 c 2 )/3 = 1.
Clearly, u 1 , u 2 , u 3 are the three solutions of f = 0.

Example 5. Consider another polynomial

f = x 3 + x = x(x + i)(x -i).
Direct calculations, following the real convention, yield

p 1 = -4, p 2 = 0, s = 2 2 √ 3, c 1 = 2 √ 3, c 2 = -2 √ 3, u 1 = (-a 2 + ω 1 c 1 + ω 2 c 2 )/3 = i, u 2 = (-a 2 + ω 0 c 1 + ω 0 c 2 )/3 = 0, u 3 = (-a 2 + ω 2 c 1 + ω 1 c 2 )/3 = -i.
Clearly, u 1 , u 2 , u 3 are the three solutions of f = 0 and u 2 is real.

Proof of the correctness of the real convention

In this section, we prove Theorem 3 stated in the previous section. Let f be an arbitrary (monic) cubic polynomial. Let r 1 , r 2 , r 3 be the three (complex) solutions of f = 0. Using the well-known relations

a 2 = -r 1 -r 2 -r 3 , a 1 = r 1 r 2 + r 1 r 3 + r 2 r 3 , a 0 = -r 1 r 2 r 3 ,
we can rewrite p 1 and p 2 as

p 1 = (r 1 -r 2 ) 2 (r 1 -r 3 ) 2 (r 2 -r 3 ) 2 , p 2 = (2r 1 -r 2 -r 3 ) (2r 2 -r 1 -r 3 ) (2r 3 -r 1 -r 2 ) .
It is easy to verify that the signs of p 1 and p 2 determine the "configuration" of the solutions r 1 , r 2 and r 3 , as shown in Figure 2. We have also indexed the solutions so that we can refer to them later on. Note that the indexing for the bottom-middle configuration is peculiar (causing solutions jump discontinuously) but it is essential.

The proof proceeds by rewriting, in terms of the solutions, the expressions for s, c 1 , c 2 and u 1 , u 2 , u 3 in Lagrange's formula, taking radicals according to the real convention. It is split into the following several lemmas.

Lemma 6. s = i √ 3 (r 1 -r 2 )(r 1 -r 3 )(r 2 -r 3 ).
Proof. Let q = -3 p 1 . Then we obviously have

q = i √ 3 (r 1 -r 2 )(r 1 -r 3 )(r 2 -r 3 ) 2 .
Hence √ q is one of the following:

q 1 = +i √ 3 (r 1 -r 2 )(r 1 -r 3 )(r 2 -r 3 ), q 2 = -i √ 3 (r 1 -r 2 )(r 1 -r 3 )(r 2 -r 3 ).
We proceed to show that s = q 1 in every configuration of the solutions. (1) p 1 > 0. In this case, f = 0 has three real solutions indexed as

r 3 < r 2 < r 1 . Note that arg q 1 = + π 2 , arg q 2 = - π 2 .
Hence √ q = q 1 . Thus s = q 1 .

(2) p 1 = 0. In this case, f = 0 has a multiple solution. It follows that q 1 = q 2 = 0 and arg q 1 = 0, arg q 2 = 0.

Hence √ q = q 1 . Thus s = q 1 .

(3) p 1 < 0 and p 2 > 0. In this case, f = 0 has a real solution r 1 and a pair of complex conjugates r 3 = α + iβ and r 2 = α -iβ such that r 1 > α and β > 0. Simple calculation shows that

q 1 = +2 √ 3 β (r 1 -α) 2 + β 2 > 0, q 2 = -2 √ 3 β (r 1 -α) 2 + β 2 < 0.
Then arg q 1 = 0, arg q 2 = π. Hence √ q = q 1 . Thus s = q 1 .

(4) p 1 < 0 and p 2 = 0. In this case, f = 0 has a real solution r 2 and a pair of complex conjugates r 1 = α + iβ and r 3 = α -iβ such that r 2 = α and β > 0. Simple calculation shows that

q 1 = +2 √ 3 β 3 > 0, q 2 = -2 √ 3 β 3 < 0.
Then arg q 1 = 0, arg q 2 = π. Hence √ q = q 1 . Thus s = q 1 .

(5) p 1 < 0 and p 2 < 0. In this case, f = 0 has a real solution r 3 and a pair of complex conjugates r 2 = α + iβ and r 1 = α -iβ such that r 3 < α and β > 0. Simple calculation shows that

q 1 = +2 √ 3 β (r 3 -α) 2 + β 2 > 0, q 2 = -2 √ 3 β (r 3 -α) 2 + β 2 < 0.
Then arg q 1 = 0, arg q 2 = π. Hence √ q = q 1 . Thus s = q 1 . 2 Lemma 7. At least one of the followings is true.

c 1 = ω 0 r 1 + ω 1 r 2 + ω 2 r 3 ∧ c 2 = ω 0 r 1 + ω 2 r 2 + ω 1 r c 1 = ω 2 r 1 + ω 0 r 2 + ω 1 r 3 ∧ c 2 = ω 1 r 1 + ω 0 r 2 + ω 2 r c 1 = ω 1 r 1 + ω 2 r 2 + ω 0 r 3 ∧ c 2 = ω 2 r 1 + ω 1 r 2 + ω 0 r
Proof. Let q = (p 2 + 3 s)/2 and q = (p 2 -3 s)/2. Recalling Lemma 6, substitution and factorization yield

q = (ω 0 r 1 + ω 1 r 2 + ω 2 r 3 ) 3 , q = (ω 0 r 1 + ω 2 r 2 + ω 1 r 3 ) .
Hence 3 √ q is one of the following:

q 1 = ω 0 r 1 + ω 1 r 2 + ω 2 r 3 , q 2 = ω 2 r 1 + ω 0 r 2 + ω 1 r 3 , q 3 = ω 1 r 1 + ω 2 r 2 + ω 0 r 3 .
Likewise 3 √ q is one of the following:

q 1 = ω 0 r 1 + ω 2 r 2 + ω 1 r 3 , q 2 = ω 1 r 1 + ω 0 r 2 + ω 2 r 3 , q 3 = ω 2 r 1 + ω 1 r 2 + ω 0 r 3 .
We can rewrite q 1 , q 2 , q 3 and q 1 , q 2 , q 3 as

q 1 = ω 0 (r 1 -r 2 ) -ω 2 (r 2 -r 3 ) = e i +0 6 π (r 1 -r 2 ) + e i +2 6 π (r 2 -r 3 ), q 2 = ω 2 (r 1 -r 2 ) -ω 1 (r 2 -r 3 ) = e i -4 6 π (r 1 -r 2 ) + e i -2 6 π (r 2 -r 3 ), q 3 = ω 1 (r 1 -r 2 ) -ω 0 (r 2 -r 3 ) = e i +4 6 π (r 1 -r 2 ) + e i +6 6 π (r 2 -r 3 ); q 1 = ω 0 (r 1 -r 2 ) -ω 1 (r 2 -r 3 ) = e i +0 6 π (r 1 -r 2 ) + e i -2 6 π (r 2 -r 3 ), q 2 = ω 1 (r 1 -r 2 ) -ω 2 (r 2 -r 3 ) = e i +4 6 π (r 1 -r 2 ) + e i +2 6 π (r 2 -r 3 ), q 3 = ω 2 (r 1 -r 2 ) -ω 0 (r 2 -r 3 ) = e i -4
6 π (r 1 -r 2 ) + e i +6 6 π (r 2 -r 3 ). Now we prove the lemma for every configuration of the solutions.

(1) p > 0 and p 2 > 0. In this case, f = 0 has three real solutions r 3 < r 2 < r 1 and r -r 3 < r 1 -r 2 . Thus

0 6 π < arg q 1 < + 0 6 π + 2 6 π 2 = + 1 6 π, - 4 6 π < arg q 2 < -4 6 π -2 6 π 2 = - 3 6 π, + 4 6 π < arg q 3 < + 4 6 π + 6 6 π 2 = + 5 6 π; - 1 6 π = -2 6 π + 0 6 π 2 < arg q 1 < + 0 6 π, + 3 6 π = + 4 6 π + 2 6 π 2 < arg q 2 < + 4 6 π, - 5 6 π = -4 6 π -6 6 π 2 < arg q 3 < - 4 6 π.
Since Re q = Re q = p 2 /2 (where Re q denotes the real part of q), we have

| arg q | < π/2, | arg q | < π/2. Therefore 0 ≤ | arg 3 √ q | < π/6, 0 ≤ | arg 3 √ q | < π/6. Hence 3 √ q = q 1 , 3 √ q = q 1 . So we have c 1 = q 1 , c 2 = q 1 .
(2) p > 0 and p 2 = 0. In this case, f = 0 has three real solutions r 3 < r 2 < r 1 and r -r 3 = r 1 -r 2 . Thus

arg q 1 = + 0 6 π + 2 6 π 2 = + 1 6 π, arg q 2 = -4 6 π -2 6 π 2 = - 3 6 π, arg q 3 = + 4 6 π + 6 6 π 2 = + 5 6 π; arg q 1 = + 0 6 π -2 6 π 2 = - 1 6 π, arg q 2 = + 2 6 π + 4 6 π 2 = + 3 6 π, arg q 3 = -4 6 π -6 6 π 2 = - 5 6 π.
Since Re q = Re q = p 2 /2 = 0, we have

| arg q | = π/2, | arg q | = π/2. Therefore | arg 3 √ q | = π/2, | arg 3 √ q | = π/2. Hence 3 √ q = q 2 , 3 √ q = q 2 . So we have c 1 = q , c 2 = q 2 .
(3) p > 0 and p 2 < 0. In this case, f = 0 has three real solutions r 3 < r 2 < r 1 and r -r 2 < r 2 -r 3 . Thus

+ 1 6 π = + 0 6 π + 2 6 π 2 < arg q 1 < + 2 6 π, - 3 6 π = -4 6 π -2 6 π 2 < arg q 2 < - 2 6 π, + 5 6 π = + 4 6 π + 6 6 π 2 < arg q 3 < + 6 6 π; - 2 6 π < arg q 1 < + 0 6 π -2 6 π 2 = - 1 6 π, + 2 6 π < arg q 2 < + 2 6 π + 4 6 π 2 = + 3 6 π, - 6 6 π < arg q 3 < -4 6 π -6 6 π 2 = - 5 6 π.
Since Re q = Re q = p 2 /2 < 0, we have

| arg q | > π/2, | arg q | > π/2. Therefore 5 π/6 < | arg 3 √ q | < π, 5 π/6 < | arg 3 √ q | < π.
Hence 3 √ q = q 3 , 3 √ q = q 3 . So we have c 1 = q 3 , c 2 = q 3 . (4) p 1 = 0 and p 2 > 0. In this case, f = 0 has a simple real solution r 1 and a double real solution r 2 = r 3 such that r 3 = r 2 < r 1 . Thus arg q 1 = + 0 6 π, arg q 2 = -4 6 π, arg q 3 = + 4 6 π;

arg q 1 = + 0 6 π, arg q 2 = + 4 6 π, arg q 3 = -4 6 π.

Since q = q = p 2 /2 > 0, we have arg q = 0, arg q = 0. Therefore arg 3 √ q = 0, arg 3 √ q = 0. Hence 3 √ q = q 1 , 3 √ q = q 1 . So we have c 1 = q 1 , c 2 = q 1 .

(5) p 1 = 0 and p 2 = 0. In this case, f = 0 has a triple real solution r 3 = r 2 = r 1 . It follows that q 1 = q 2 = q 3 = 0, q 1 = q 2 = q 3 = 0. Since q = q = p 2 /2 = 0, we have arg q = 0, arg q = 0. Therefore arg 3 √ q = 0, arg 3 √ q = 0. Hence we can choose 3 √ q = q 2 , 3 √ q = q 2 . So we have c 1 = q 2 , c 2 = q 2 . ( 6) p 1 = 0 and p 2 < 0. In this case, f = 0 has a simple real solution r 3 and a double real solution r 1 = r 2 such that r 3 < r 2 = r 1 . Thus

arg q 1 = + 2 6 π, arg q 2 = - 2 6 π, arg q 3 = + 6 6 π;
arg q 1 = -2 6 π, arg q 2 = + 2 6 π, arg q 3 = + 6 6 π.

Since q = q = p 2 /2 < 0, we have arg q = π, arg q = π. Therefore arg 3 √ q = π, arg 3 √ q = π. Hence 3 √ q = q 3 , 3 √ q = q 3 . So we have c 1 = q 3 , c 2 = q 3 . (7) p 1 < 0 and p 2 > 0. In this case, f = 0 has a real solution r 1 and a pair of complex conjugates r 3 = α + iβ and r 2 = α -iβ such that r 1 > α and β > 0. Simple calculation gives

q 1 = ω 0 (r 1 -α + √ 3 β), q 2 = ω 2 (r 1 -α + √ 3 β), q 3 = ω 1 (r 1 -α + √ 3 β); q 1 = ω 0 (r 1 -α - √ 3 β), q 2 = ω 2 (r 1 -α - √ 3 β), q 3 = ω 1 (r 1 -α - √ 3 β).
Note that

q = (r 1 -α + √ 3 β) 3 > 0, q = (r 1 -α - √ 3 β) 3 .
We consider the three subcases.

(a) r 1 -α -√ 3 β > 0. In this case,

arg q 1 = + 0 3 π, arg q 2 = - 2 3 π, arg q 3 = + 2 3 π; arg q 1 = + 0 3 π, arg q 2 = + 2 3 π, arg q 3 = - 2 3 π.
Since q > 0, q > 0, we have arg q = 0, arg q = 0. Therefore arg 3 √ q = 0,

arg 3 √ q = 0. Hence 3 √ q = q 1 , 3 √ q = q 1 . (b) r 1 -α - √ 3 β = 0.
In this case, q 1 = q 2 = q 3 = 0, q 1 = q 2 = q 3 = 0 and thus arg q 1 = 0, arg q 2 = 0, arg q 3 = 0;

arg q 1 = 0, arg q 2 = 0, arg q 3 = 0.

Since q = q = 0, we have arg q = 0, arg q = 0. Therefore arg 3 √ q = 0,

arg 3 √ q = 0. Hence we can choose 3 √ q = q 1 , 3 √ q = q 1 . (c) r 1 -α - √ 3 β < 0. In this case, arg q 1 = + 0 3 π, arg q 2 = - 2 3 π, arg q 3 = + 2 3 π; arg q 1 = + 3 3 π, arg q 2 = - 1 3 π, arg q 3 = + 1 3 π.
Since q > 0, q < 0, we have arg q = 0, arg q = π. Therefore arg 3 √ q = 0,

arg 3 √ q = π. Hence 3 √ q = q 1 , 3 √ q = q 1 .
So we have c 1 = q 1 , c 2 = q 1 . ( 8) p 1 < 0 and p 2 = 0. In this case, f = 0 has a real solution r 2 and a pair of complex conjugates r 1 = α + iβ and r 3 = α -iβ such that r 2 = α and β > 0. Simple calculation gives

q 1 = ω 1 √ 3 β, q 2 = ω 0 √ 3 β, q 3 = ω 2 √ 3 β; q 1 = -ω 2 √ 3 β, q 2 = -ω 0 √ 3 β, q 3 = -ω 1 √ 3 β.
Thus arg q 1 = + 2 3 π, arg q 2 = + 0 3 π, arg q 3 = -2 3 π;

arg q 1 = + 1 3 π, arg q 2 = + 3 3 π, arg q 3 = - 1 3 π.
Since q = 3s/2 > 0, q = -3s/2 < 0, we have arg q = 0, arg q = π. Therefore arg 3 √ q = 0, arg 3 √ q = π. Hence 3 √ q = q 2 , 3 √ q = q 2 . So we have c 1 = q 2 , c 2 = q 2 . (9) p 1 < 0 and p 2 < 0. In this case, f = 0 has a real solution r 3 and a pair of complex conjugates r 2 = α + iβ and r 1 = α -iβ such that r 3 < α and β > 0. Simple calculation gives

q 1 = ω 2 (r 3 -α + √ 3 β), q 2 = ω 1 (r 3 -α + √ 3 β), q 3 = ω 0 (r 3 -α + √ 3 β); q 1 = ω 2 (r 3 -α - √ 3 β), q 2 = ω 1 (r 3 -α - √ 3 β), q 3 = ω 0 (r 3 -α - √ 3 β). Note that q = (r 3 -α + √ 3 β) 3 , q = (r 3 -α - √ 3 β) 3 < 0. We consider the three subcases. (a) r 3 -α + √ 3 β > 0. In this case, arg q 1 = - 2 3 π, arg q 2 = + 2 3 π, arg q 3 = + 0 3 π; arg q 1 = - 1 3 π, arg q 2 = + 1 3 π, arg q 3 = + 3 3 π.
Since q > 0, q < 0, we have arg q = 0, arg q = π. Therefore arg 3 √ q = 0,

arg 3 √ q = π. Hence 3 √ q = q 3 , 3 √ q = q 3 . (b) r 3 -α + √ 3 β = 0.
In this case, q 1 = q 2 = q 3 = 0, q 1 = q 2 = q 3 = 0 and thus arg q 1 = 0, arg q 2 = 0, arg q 3 = 0;

arg

q 1 = - 1 3 π, arg q 2 = + 1 3 π, arg q 3 = + 3 3 π.
Since q = 0, q < 0, we have arg q = 0, arg q = π. Therefore arg 3 √ q = 0,

arg 3 √ q = π. Hence we can choose 3 √ q = q 3 , 3 √ q = q 3 . (c) r 3 -α + √ 3 β < 0. In this case, arg q 1 = + 1 3 π, arg q 2 = - 1 3 π, arg q 3 = + 3 3 π; arg q 1 = - 1 3 π, arg q 2 = + 1 3 π, arg q 3 = + 3 3 π.
Since q < 0, q < 0, we have arg q = π, arg q = π. Therefore arg 3 √ q = π,

arg 3 √ q = π. Hence 3 √ q = q 3 , 3 √ q = q 3 .
So we have c 1 = q 3 , c 2 = q 3 . 2 Lemma 8. The solution u 2 is always real.

Proof. We use the results and the notations in the proof of Lemma 7.

(1) p 1 > 0 and p 2 > 0. In this case, we have c 1 = q 1 , c 2 = q 1 . Substituting c 1 and c 2 into u 2 in Lagrange's formula and simplifying the resulting expressions using ω 3 = 1 and ω 0 + ω 1 + ω 2 = 0, we see that

u 2 = 3 r 1 + (ω 0 + ω 1 + ω 2 ) r 2 + (ω 0 + ω 1 + ω 2 ) r 3 3 = r 1 .
(2) p 1 > 0 and p 2 = 0. In this case c 1 = q 2 , c 2 = q 2 . Similar calculation yields u 2 = r 2 .

(3) p 1 > 0 and p 2 < 0. In this case c 1 = q 3 , c 2 = q 3 . Similar calculation yields u 2 = r 3 .

(4) p 1 = 0 and p 2 > 0. In this case c 1 = q 1 , c 2 = q 1 . Similar calculation yields u 2 = r 1 .

(5) p 1 = 0 and p 2 = 0. In this case c 1 = q 2 , c 2 = q 2 . Similar calculation yields u 2 = r 2 . (6) p 1 = 0 and p 2 < 0. In this case c 1 = q 3 , c 2 = q 3 . Similar calculation yields u 2 = r 3 . (7) p 1 < 0 and p 2 > 0. In this case c 1 = q 1 , c 2 = q 1 . Similar calculation yields u 2 = r 1 . (8) p 1 < 0 and p 2 = 0. In this case c 1 = q 2 , c 2 = q 2 . Similar calculation yields u 2 = r 2 . (9) p 1 < 0 and p 2 < 0. In this case c 1 = q 3 , c 2 = q 3 . Similar calculation yields u 2 = r 3 .

It is clear that u 2 = r 1 when p 2 > 0; u 2 = r 2 when p 2 = 0; u 2 = r 3 when p 2 < 0.

According to the configurations in Figure 2, we see immediately that u 2 is always real. 2

Proof of Theorem 3. Recalling Lemma 7, we consider the following three cases.

(1)

c 1 = ω 0 r 1 + ω 1 r 2 + ω 2 r 3 ∧ c 2 = ω 0 r 1 + ω 2 r 2 + ω 1 r 3 .
Substituting c 1 and c 2 into u k and simplifying the resulting expressions using ω 3 = 1 and ω 0 + ω 1 + ω 2 = 0, we see that

u 1 = 3 r 3 + (ω 0 + ω 1 + ω 2 ) r 1 + (ω 0 + ω 1 + ω 2 ) r 2 3 = r 3 , u 2 = 3 r 1 + (ω 0 + ω 1 + ω 2 ) r 2 + (ω 0 + ω 1 + ω 2 ) r 3 3 = r 1 , u 3 = 3 r 2 + (ω 0 + ω 1 + ω 2 ) r 1 + (ω 0 + ω 1 + ω 2 ) r 2 3 = r 2 .
(2)

c 1 = ω 2 r 1 + ω 0 r 2 + ω 1 r 3 ∧ c 2 = ω 1 r 1 + ω 0 r 2 + ω 2 r 3 . Similar calculation yields u 1 = r 1 , u 2 = r 2 , u 3 = r 3 . (3) c 1 = ω 1 r 1 + ω 2 r 2 + ω 0 r 3 ∧ c 2 = ω 2 r 1 + ω 1 r 2 + ω 0 r 3 .
Similar calculation yields u 1 = r 2 , u 2 = r 3 , u 3 = r 1 . From Lemma 8, u 2 is always real. 2

Cubic formula with constraints

In Section 2, we have introduced a correct convention for choosing the square and cubic roots. Using this convention and Lagrange's formula, we present real solution formulas for the general real-coefficient cubic equation under equality and inequality constraints. Constraints naturally arise in applications such as geometric constraint solving [START_REF] Wang | GEOTHER 1.1: Handling and Proving Geometric Theorems Automatically[END_REF][START_REF] Hong | Solving Dynamic Geometric Constraints Involving Inequalities[END_REF]. The representations of the real solutions coupled with real constraints are achieved by combining Thom's lemma (Basu et al., 2006, p. 50) and the complex-solution formulas.

Let ∧, ∨, ⇒, and ¬ stand for the logical connectives "and," "or," "imply," and "not" respectively. Denote by R the field of real numbers and R[x] the ring of polynomials in x with real coefficients. We have the following result.

Theorem 9. Let f (x) = x 3 + a 2 x 2 + a 1 x + a 0 ∈ R[x] and Γ(x) be a formula composed by ∧, ∨, ⇒, and ¬ of polynomial equality and inequality relations in x, the coefficients of f (x), and other parameters. Then for all x ∈ R,

[f (x) = 0 ∧ Γ(x)] ⇐⇒ [x = u 1 ∧ Γ 1 ] ∨ [x = u 2 ∧ Γ 2 ] ∨ [x = u 3 ∧ Γ 3 ],
where

u 1 = (-a 2 + ω (1-σ) c 1 + ω (2+σ) c 2 )/3, u 2 = (-a 2 + ω (0-σ) c 1 + ω (0+σ) c 2 )/3, u 3 = (-a 2 + ω (2-σ) c 1 + ω (1+σ) c 2 )/3, σ = sign(p 2 ), and 
Γ j := (∃ x ∈ R) [f (x) = 0 ∧ Γ(x) ∧ Φ j (x)], j = 1, 2, 3, Φ 1 (x) := [f (x) > 0 ∧ f (x) > 0] ∨ [f (x) = 0 ∧ f (x) ≥ 0], Φ 2 (x) := [f (x) ≤ 0] ∨ [f (x) = 0], Φ 3 (x) := [f (x) > 0 ∧ f (x) < 0] ∨ [f (x) = 0 ∧ f (x) ≤ 0].
Here c 1 , c 2 , p 2 , ω are the same as in Lagrange's formula given in the introduction.

Proof. Will be given in the next section. 2

Remark 10. Note that the above formula is slightly different from the Lagrange formula (in the introduction), in that the exponents for ω are adjusted depending on the sign of p 2 . This adjustment is essential for the correctness of the theorem.

Remark 11. It turns out (and will be shown in the proof of the theorem) that the three complex solutions of f satisfy Re u 3 ≤ Re u 2 ≤ Re u 1 .

Remark 12. The real constraints in the formula are given as three existentially quantified subformulas Γ j . If needed, one could eliminate the existential quantifier using, e.g., the method based on partial cylindrical algebraic decomposition [START_REF] Collins | Partial Cylindrical Algebraic Decomposition for Quantifier Elimination[END_REF]. However, if Γ(x) is restricted to a combination of polynomial equalities and inequalities of degree ≤ 3 in x, one could use the alternative approach of Weispfenning (1994) that provides explicit symbolic real solutions of cubic equations. Such solutions can be efficiently substituted in real side conditions at practically low price of the linear and quadratic real quantifier elimination [START_REF] Weispfenning | The Complexicity of Linear Problems in Fields[END_REF][START_REF] Weispfenning | Quantifier Elimination for Real Algebra -the Quadratic Case and Beyond[END_REF] in REDLOG (Dolzmann and Sturm, 1997).

Example 13. We illustrate Theorem 9 using a simple example. Let

f (x) := x 3 -ax + 1 Γ(x) := -1/2 ≤ x ≤ 1/2
where a is a parameter. Direct calculations, using the formula in Theorem 9, yield p 1 = a 2 2 a 2 1 + 18 a 2 a 1 a 0 -4 a 3 1 -27 a 2 0 -4 a 3 2 a 0 = 4 a 3 -27, p 2 = 9 a 2 a 1 -27 a 0 -2 a 3 2 = -27, s = 2 √ -3 p 1 = 2 √ 81 -12 a 3 , c 1 = 3 (p 2 + 3 s)/2 = 3 (-27 + 3 2 √ 81 -12 a 3 )/2, c 2 = 3 (p 2 -3 s)/2 = 3 (-27 -3 2 √ 81 -12 a 3 )/2, σ = sign(p 2 ) = -1, u 1 = (-a 2 + ω (1-σ) c 1 + ω (2+σ) c 2 )/3 = (ω 2 c 1 + ω 1 c 2 )/3, u 2 = (-a 2 + ω (0-σ) c 1 + ω (0+σ) c 2 )/3 = (ω 1 c 1 + ω 2 c 2 )/3, u 3 = (-a 2 + ω (2-σ) c 1 + ω (1+σ) c 2 )/3 = (ω 0 c 1 + ω 0 c 2 )/3, and

Γ j := (∃ x ∈ R) [x 3 -ax + 1 = 0 ∧ -1/2 ≤ x ≤ 1/2 ∧ Φ j (x)], j = 1, 2, 3, Φ 1 (x) := [ 3 x 2 -a > 0 ∧ 6 x > 0 ] ∨ [ 3 x 2 -a = 0 ∧ 6 x ≥ 0 ], Φ 2 (x) := [ 3 x 2 -a ≤ 0 ] ∨ [ 6 x = 0 ],
We need to determine Φ j (r k ). For this, observe that f (r 1 ) = (r 1 -r 2 )(r 1 -r 3 ), f (r 1 ) = 2 (r 1 -r 2 ) + 2 (r 1 -r 3 ), f (r 2 ) = (r 2 -r 1 )(r 2 -r 3 ), f (r 2 ) = 2 (r 2 -r 1 ) + 2 (r 2 -r 3 ), f (r 3 ) = (r 1 -r 3 )(r 2 -r 3 ), f (r 3 ) = 2 (r 3 -r 1 ) + 2 (r 3 -r 2 ).

For each configuration of the solutions, we can determine the signs of the derivatives of f at r k , as in Table 1 (where the blanks are non-real). From the signs of the derivatives, it is easy to obtain the truth values of Φ j as in Table 2 (where the blanks are false). From Table 2, we see immediately that

Γ j ⇐⇒ 3 k=1 r k ∈ R ∧ Γ(r k ) ∧ Φ j (r k ) ⇐⇒ r j ∈ R ∧ Γ(r j ).
2

Fig. 1 .

 1 Fig. 1. Real Convention for the Square and Cubic Root

Fig. 2 .

 2 Fig.2. Solution Indexing. Each rectangle denotes a complex plane, in which the horizontal line is the real axis with left-to-right direction. A small disk stands for a simple solution, a bigger disk for a double solution, and the biggest disk for a triple solution.

  r 3 ) true true true true true true true

Table 1 :

 1 Signs of derivatives of f

The given formula (usually attributed to Lagrange and based on his idea of resolvent) is inspired by but different from the well known formula due to Ferro (communicated by Cardano)[START_REF] Guilbeau | The History of the Solution of the Cubic Equation[END_REF] Gardano, 1993). Ferro-Cardano's formula involves division. Thus it may encounter a numerically unstable case (i.e., near "0/0" case), when both the numerator and the denominator are close to zero. Lagrange's formula does not require division and thus avoids the "0/0" case. In various applications, such as geometric constraint solving, one needs to solve equations with gradually changing coefficients, for which Ferro-Cardano's formula can encounter near "0/0", resulting in significant numerical errors. Therefore, Lagrange's formula is better for such applications.

Φ 3 (x) := [ 3 x 2 -a > 0 ∧ 6 x < 0 ] ∨ [ 3 x 2 -a = 0 ∧ 6 x ≤ 0 ].Using the real quantifier elimination procedure QEPCAD[START_REF] Collins | Partial Cylindrical Algebraic Decomposition for Quantifier Elimination[END_REF][START_REF] Brown | QEPCAD -Quantifier Elimination by Partial Cylindrical Algebraic Decomposition[END_REF] to eliminate the existential quantifiers in the above formula, we obtain the following quantifier-free formulas equivalent to Γ j :Γ 1 ⇐⇒ f alse, Γ 2 ⇐⇒ 4 a -9 ≥ 0, Γ 3 ⇐⇒ 4 a + 7 ≤ 0.Hence we finally obtain[x 3 -ax + 1 = 0 ∧ -1/2 ≤ x ≤ 1/2] ⇐⇒ [x = u 2 ∧ 4 a -9 ≥ 0] ∨ [x = u 3 ∧ 4 a + 7 ≤ 0].We can also use the real quantifier elimination function in REDLOG(Dolzmann and Sturm, 1997) to obtain the following quantifier-free formulas equivalent to Γ j :Γ 1 ⇐⇒ f alse, Γ 2 ⇐⇒ 4 a 3 -27 > 0 ∧ 4 a -9 ≥ 0, Γ 3 ⇐⇒ 4 a 3 -27 < 0 ∧ 4 a + 7 ≤ 0.
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Simplifying the above formulas, we get the same result as using QEPCAD. 2

Proof of the correctness of the cubic formula with constraints

In this section, we prove Theorem 9 stated in the previous section. The proof will be divided into the following two lemmas. The proof of each lemma will be further divided into cases depending on the solution indexing in Figure 2. Lemma 14. u 1 = r 1 , u 2 = r 2 , and u 3 = r 3 .

Proof. We use the results and the same q i , q i from Lemma 7.

(1) p 1 > 0 and p 2 > 0. In this case, we have c 1 = q 1 , c 2 = q 1 , σ = +1. Substituting c 1 and c 2 into u k in Theorem 9 and simplifying the resulting expressions using ω 3 = 1 and ω 0 + ω 1 + ω 2 = 0, we see that

(2) p 1 > 0 and p 2 = 0. In this case c 1 = q 2 , c 2 = q 2 , σ = 0. Similar calculation yields

) p 1 < 0 and p 2 > 0. In this case c 1 = q 1 , c 2 = q 1 , σ = +1. Similar calculation yields u 1 = r 1 , u 2 = r 2 , u 3 = r 3 . (8) p 1 < 0 and p 2 = 0. In this case c 1 = q 2 , c 2 = q 2 , σ = 0. Similar calculation yields u 1 = r 1 , u 2 = r 2 , u 3 = r 3 . (9) p 1 < 0 and p 2 < 0. In this case c 1 = q 3 , c 2 = q 3 , σ = -1. Similar calculation yields

The indexing of solutions in Figure 2 also permits us to establish the following lemma using the idea underlying Thom's lemma (Basu et al., 2006, p. 50): each real r k is uniquely determined by the signs of the derivatives of f at r k .

Lemma 15. Γ j ⇐⇒ r j ∈ R ∧ Γ(r j ).

Proof. Note that

Proof of Theorem 9. Let x ∈ R. By Lemmas 14 and 15, we have

The theorem is proved. 2

Concluding remarks

We have presented the following: • A real convention which provides correct interpretations of Lagrange's formula for all cubic polynomial equations with real coefficients; • Real solution formulas for the general cubic equation f = 0 under equality and inequality constraints, in which the three real solutions are separated by using the signs of the first-and the second-order derivatives of f .

Yet the following questions still remain for future investigation.

• Whether there is a convention that yields correct solutions for all cubic polynomial equations with complex coefficients. • Whether Theorem 9 and the result in [START_REF] Weispfenning | Quantifier Elimination for Real Algebra -the Cubic Case[END_REF] can be combined to obtain a more efficient formulation. This insightful question was raised by an anonymous referee who also suggested that there should be a strong connection between the solutions u i in the second part of the present paper and the symbolic solutions γ i and real types of polynomials in [START_REF] Weispfenning | Quantifier Elimination for Real Algebra -the Cubic Case[END_REF]. We have investigated the issues and indeed there is a strong connection. However, we are not yet able to combine them into a better formulation due to various technical subtleties. We agree that it is worthwhile to pursue this as future work. • How to generalize the solution formulas from the cubic to the quartic case. For this, one might need to carefully examine the theories underlying Sturm-Habicht sequences and discriminant systems [START_REF] Gonzalez | Sturm-Habicht Sequence[END_REF][START_REF] Yang | A Complete Discrimination System for Polynomials[END_REF][START_REF] Yang | Explicit Criterion to Determine the Number of Positive Roots of a Polynomial[END_REF][START_REF] Liang | A Complete Discrimination System for Polynomials with Complex Coefficients and Its Automatic Generation[END_REF]. • How effective these formulas are for applications, in particular to dynamic geometric constraint solving [START_REF] Hong | Solving Dynamic Geometric Constraints Involving Inequalities[END_REF].