On the performance of the Rotate-and-Forward protocol in the two-hop relay channels
Ali Osmane, Sheng Yang, Jean-Claude Belfiore

To cite this version:
Ali Osmane, Sheng Yang, Jean-Claude Belfiore. On the performance of the Rotate-and-Forward protocol in the two-hop relay channels. SPAWC 2011, Jun 2011, United States. <hal-00628539>

HAL Id: hal-00628539
https://hal.sorbonne-universite.fr/hal-00628539
Submitted on 3 Oct 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ali Osmane
TELECOM ParisTech
Paris, France
Email: osmane@enst.fr

Sheng Yang
SUPELEC
Gif-Sur-Yvette, France
Email: sheng.yang@supelec.fr

Jean-Claude Belfiore
TELECOM ParisTech
Paris, France
Email: belfiore@enst.fr

Abstract—In wireless cooperative systems, the outage probability is a relevant performance measure from the information theoretic point of view. Deriving its exact value with respect to the relaying protocol parameters and for all the range of the Signal to Noise Ratio is in general a hard task. Instead, one can extract the outage gain in order to approximate the outage probability as the SNR goes to infinity at a fixed rate R. In this paper, we consider the layered two-hop relay channel, operating under the linear Rotate-and-Forward (RF) protocol, where each relay rotates its received signal and forwards it towards the destination. We consider two network configurations for which we derive exact outage gain values. We use the outage gain to compare the performance of the RF scheme to that of other schemes having the same diversity order. The derived outage gain values are verified through numerical simulations.

I. INTRODUCTION

In wireless communication, several techniques have been proposed to combat the channel’s attenuation factors such as fading, shadowing and path loss. In particular, cooperative diversity techniques, first studied in [1] and [2], have recently received a great interest as a way to improve both the throughput and the reliability in wireless networks.

In the literature, most proposed cooperative schemes have relied on one of the following three relaying strategies. In Decode-and-Forward (DF) strategy, the relay decodes some part of the transmitted signal. The decoded bits are then re-encoded and sent to the next relay or destination. In Compress-and-Forward (CF) strategy, the signal observed at the relay is quantized and forwarded to the destination without being decoded. In Amplify-and-Forward (AF) strategy, the relay transmits a scaled version of what he has received, it simply acts as a repeater. The AF scheme is widely used due to its simplicity while the DF scheme requires more signal processing on the relay side. The CF scheme requires perfect global channel state information (CSI) and is generally excluded. The AF based cooperative diversity schemes are linear relaying schemes while those DF and CF based are non-linear. The proposed protocols are compared in terms of Diversity-Multiplexing-Tradeoff (DMT), [3].

In this paper, we are interested in the multi-hop MIMO relay networks where no direct source-destination link. For these networks, several relaying strategies have been proposed in [4] - [8]. In particular, Yang and Belfiore have recently proposed a linear relaying scheme called Rotate-and-Forward (RF) protocol in [9]. The idea is to convert the spatial diversity into time diversity by creating an artificial fast fading channel using time-varying distributed rotations. They show that time-varying distributed rotations can recover spatial diversity. This scheme is shown to achieve the optimal DMT in layered two-hop relay channel, [10]. In this scheme, the relays are independent and act in a distributed fashion.

In this work, we consider the layered two-hop relay channel with a single source-destination pair and multiple full-duplex relays. We derive outage gain values for some network configurations operating under the RF protocol. The outage gain values are used to approximate the outage probability in the high signal to noise ratio, ρ, regime. The results show that those values are accurate for moderate ρ values as well. We use the outage gain values to compare the performance of the RF to that of other relaying schemes having the same diversity order. The rest of this paper is organized as follows. The system model and some basic assumptions are presented in section II. The outage gain criterion is detailed in section III. A general idea about the RF scheme is given in section IV. In section V, we include the main contribution of this work where we detailed the study of the performance of the RF scheme. We give some numerical results in section VI and conclude in section VII.

II. SYSTEM MODEL AND ASSUMPTIONS

In the paper, we use boldface lower case letters \(\mathbf{v} \) to denote vectors and boldface capital letters \(M \) to denote matrices. \(\mathcal{CN}(\mu, \sigma^2) \) represents a complex Gaussian random variable with mean \(\mu \) and variance \(\sigma^2 \). \(|\cdot| \) and \(|\cdot|^\dagger \) respectively denote the matrix transposition and the matrix conjugated transposition operation. \(\mathbb{E}[\cdot] \) stands for the expectation operator. \(|\cdot| \) is the scalar norm. \(\log(\cdot) \) stands for the base-2 logarithm.

We consider a two-hop relay network composed of one source, one destination, and \(N \) full-duplex single-antenna relays. The source and the destination are equipped with \(n_t \) and \(n_r \) antennas respectively. The two-hop channel is then denoted by \((n_t, N, n_r) \). We focus on distributed relaying schemes. By this, we mean that the relays are independent and exchange no information between them on the message or channel state information (CSI). The CSI are only available at the receiver side, no transmitter CSI at all. The terminals are considered perfectly synchronized.
The faded sub-channels are flat, Rayleigh-faded, and quasi-static with a coherence time much larger than N. The channel matrices are independent, and have i.i.d. zero-mean complex Gaussian entries with variance σ^2, i.e., $h_{ij} \sim \mathcal{CN}(0, \sigma^2)$. We assume an additive white Gaussian noise (AWGN) at the relays and the destination.

III. Outage Gain Criterion

The outage probability P_o, which is the probability that the mutual information lies under a given rate, is a relevant performance measure from the information theoretic point of view. In general, the exact characterization of the outage probability P_o for every value of the signal to noise ratio (SNR), ρ, is a difficult task. However, a simpler task is to study the behavior of P_o as ρ goes to infinity, $\rho \to \infty$, at a fixed rate R. Usually, ρ^dP_o converges as $\rho \to \infty$ to a positive constant in which d is the diversity order of the scheme and the rate R is fixed independently of ρ. The constant $\xi = \lim_{\rho \to \infty} \rho^dP_o$ is called the outage gain and provides useful information on the behavior of P_o. The outage gain was used to study the performance of the N-relay network under AF and DF protocols in [11]. It is useful to optimize the power distribution among the transmitting nodes and the durations of the slots specified by the relaying protocols. In [12], it is used to study the asynchronous two-hop two-relay scheme for the AF and DF protocols. It can also be used to compare the performance of two protocols having the same diversity gain.

In [12], the definition of the outage gain is extended as follows. Assuming there exists a real function $f > 0$ such that $\lim_{\rho \to \infty} f(\rho)P_o = \xi$, then ξ is called the outage gain associated with f.

IV. The Rotate-And-Forward Protocol

The Rotate-and-Foward relaying strategy was proposed in [9]. In this scheme, the relays perform a linear processing on the received signal and forward it. A sequence of rotation vectors $\theta_1, \ldots, \theta_T$ is defined based on a distributed rotation sequence (DRS) where $\theta_i \triangleq [\theta_{1i}, \ldots, \theta_{Ni}]$. A codeword $X \in \mathbb{C}^{n_r \times T}$ is transmitted through the source over T symbol times. At instant i, each relay transmits a rotated version of what it receives at instant $i-1$. The rotation used by the relay i is θ_{ji}, the jth element of the vector θ_i. Thus, we have, by ignoring the power normalization terms,

$$y_D[i+1] = H_2F_iH_1x[i] + H_2F_iz_R[i] + z_D[i+1] \quad (1)$$

where $x \in \mathbb{C}^{n_s \times 1}$ and $y_D \in \mathbb{C}^{n_r \times 1}$ are the transmitted signal from the source and received signal at the destination, respectively; $z_R \sim \mathcal{CN}(0, I_N)$, and $z_D \sim \mathcal{CN}(0, I_{N_r})$ are the AWGN at relays and destination respectively. $H_1 \in \mathbb{C}^{N_r \times n_s}$, and $H_2 \in \mathbb{C}^{n_r \times N_r}$ are the source-relays and relays-destination channel matrix, respectively. F_i is the rotation matrix at instant i.

Then, the transmitted codeword X goes through an equivalent time-varying fading channel and the equivalent channel of the RF scheme is a sequence $H_2F_iH_1, \ldots, H_2F_TH_1$ with $F_i \triangleq \text{diag}(e^{j\theta_1}, \ldots, e^{j\theta_N})$.

The DMT of the proposed protocol depends uniquely on the time-variant equivalent channel matrix $H \triangleq H_2F_iH_1$, [9]. Therefore, the mutual information for a given channel realization is

$$1 \over T \sum_{t=1}^{T} \log \det \left(I + \text{SNR}(H_2F_iH_1)(H_2F_iH_1)^\dagger \right). \quad (2)$$

With a large T, the instantaneous mutual information converges to the following term

$$I_{\text{mean}} = \mathbb{E}_\theta \left\{ \log \det \left(I + \text{SNR}HH^\dagger \right) \right\}. \quad (3)$$

The RF scheme is shown to achieve the optimal DMT tradeoff in a two-hop relay network with two antennas at the relay node in [9] and for an arbitrary number of antennas at the source, relay and destination nodes, in [10].

V. Outage Probability Behavior in RF Schemes

In this section, we consider two network configurations: the (1, N, 1) and the (N, 1, N) networks. As a beginning, and for sake of simplicity, we assume that the relays are noiseless. The input-output relation becomes

$$y_D = H_2FH_1x + z_D \quad (4)$$

we omit the time index for simplicity.

A. The Two-Hop (1, N, 1) Network

We consider the two-hop (1, N, 1) channel operating under the RF protocol. Let $H_1 = [h_{11} \ldots h_{1N}]^T$ and $H_2 = [h_{21} \ldots h_{2N}]$, the channel matrices corresponding to the first and the second hops respectively. $F = \text{diag}\{e^{j\theta_1}, \ldots, e^{j\theta_N}\}$ is the rotation matrix. $H = H_2FH_1$ is the equivalent channel matrix. The mutual information of the channel can be written as

$$I_{\text{mean}} = \mathbb{E}_\theta \left\{ \log \left(a + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} b_{ij} \cos(\theta_i - \theta_j + \theta_{ij}) \right) \right\} \quad (5)$$

with

$$a = 1 + \rho \sum_{l=1}^{N} g_{1l}g_{2l} \quad (6)$$

$$b_{ij} = 2\rho|\theta_{1i}h_{2j}/\theta_{2j}h_{1i}^*|^2 \quad (7)$$

where $g_{ji} = |h_{ji}|^2$ are the channels power gains. We have that

$$\log(a) - (N - 1) < I_{\text{mean}} < \log(a). \quad (8)$$

Hence, for $\rho \to \infty$ and for a large rate R, the mutual information of the channel depends only on the constant term a, and we have

$$\text{Prob}\left\{ \mathbb{E}_\theta \left\{ \log \det(I + \rho HH^\dagger) \right\} < R \right\} = \text{Prob}\{ \log(a) < R \} \quad (9)$$

Using an appropriate function $f(\rho)$, we need to show that $f(\rho)P_0$ converges to a positive constant representing the outage gain ξ, as $\rho \to \infty$.

Let \(g_1g_2 = g_l \). We have

\[
P_0 = \int \mathbf{1}\left\{ (g_1, \ldots, g_N) \in \mathbb{R}^N_+ : \log(a) < R \right\} \times f_{G_1}(g_1) \ldots f_{G_N}(g_N) \prod_{l=1}^{N} dg_l. \tag{10}
\]

\(f_{G}(g) \) is the probability density function (pdf) of \(g \). By making the change of variables \(x_l = \rho g_l \), the outage gain becomes

\[
\xi = \lim_{\rho \to \infty} f(\rho)\rho^{-N} \int \mathbf{1}\left\{ (x_1, \ldots, x_N) \in \mathbb{R}^N_+ : \log(a) < R \right\} \times f_{G_1}(x_1/\rho) \ldots f_{G_N}(x_N/\rho) \prod_{l=1}^{N} dx_l. \tag{11}
\]

g_l is the product of 2 independent central chi-square variates of two degrees of freedom each with respective variances \(\sigma^2_{1l} \) and \(\sigma^2_{2l} \). Its density function is right continuous at zero and admits a limit, \(c_l \), that is positive (see Appendix B). Then, the function \(f_{G}(x/\rho) \) satisfies as \(\rho \to \infty \)

\[
c_l = f_{G_1}(g_l) / \rho = \sigma^{1-2}_{1l}\sigma^{-2}_{2l} \ln \rho. \tag{12}
\]

we obtain

\[
\xi = \lim_{\rho \to \infty} f(\rho)\rho^{-N} \prod_{l=1}^{N} \sigma^{1-2}_{1l}\sigma^{-2}_{2l} \ln \rho \tag{13}
\]

\[
\times \int \mathbf{1}\left\{ (x_1, \ldots, x_N) \in \mathbb{R}^N_+ : \log(a) < R \right\} \prod_{l=1}^{N} dx_l.
\]

The integration in (14) is described by the following equation set

\[
0 < x_i < 2^R - 1 - \sum_{j=1}^{i-1} x_j, \quad i = 1, \ldots, N
\]

Thus, after simple derivations

\[
\int \mathbf{1}\left\{ (x_1, \ldots, x_N) \in \mathbb{R}^N_+ : \log(a) < R \right\} \prod_{l=1}^{N} dx_l = \frac{(2^R - 1)^N}{N!} \tag{14}
\]

We define \(f(\rho) = \frac{\rho^N}{(\ln \rho)^N} \). With this, the outage gain of a (1, N, 1) network operating under the RF protocol is given as follows

\[
\xi_{1,N,1} = \frac{(2^R - 1)^N}{N!} \prod_{l=1}^{N} \sigma^{1-2}_{1l}\sigma^{-2}_{2l}. \tag{15}
\]

\(f(\rho)^{-1} \) gives us the slope of the outage probability curve and \(\xi \) is a scaling factor. The outage gain factor \(\xi \) depends on the number of relays \(N \) and the channels variances. It decreases as \(N \) increases.

\section*{B. Orthogonal RF in the (I, N, 1) Network}

We consider the following scenario in which the relays operate individually. At each time slot, only one relay, chosen arbitrarily, relays its received signal after rotating it. All relays use the same amount of power to retransmit their received signals. In each time slot, the destination attempts to decode the received signal. This system is in outage if each two-hop source-relay-destination link is in outage. The links are independent. Therefore, the outage probability of this scheme is the product of the outage probabilities of each link. This outage probability can be written in the following way

\[
P_o(R, \sigma_1, \sigma_2, \rho) = \left[\frac{(2^R - 1)(1 - 2\gamma - \ln(2^R - 1) + \ln(\sigma_1^2\sigma_2^2) + \ln(\rho))}{\sigma_1^2\sigma_2^2\rho} \right]^N
\]

\(\sigma^2_1 \) and \(\sigma^2_2 \) are the channel variances of the first and the second hops respectively.

For this scheme, we define \(f(\rho) = \frac{\rho^N}{(\ln \rho)^N} \). The outage gain is then

\[
\xi_{1,N,1/\text{orth}} = \frac{(2^R - 1)^N}{\sigma_1^2\sigma_2^2} = (2^R - 1)^N \prod_{l=1}^{N} \sigma^{1-2}_{1l}\sigma^{-2}_{2l}. \tag{17}
\]

Both the RF and the orthogonal RF schemes achieve the same diversity order in the (1, N, 1) networks since we have defined the same function \(f(\rho) \) in the two cases. However, the RF scheme has a smaller outage gain and then it performs better.

As another settings, we can require the destination to combine the received messages via the N relays and then to attempt to decode the message. In this case, the scheme has the same diversity order as before, i.e., we define the same function \(f(\rho) \). The outage gain values are smaller than those obtained for the orthogonal RF. The RF outperforms these two schemes in the (1, N, 1) networks.

\section*{C. The Two-Hop (N, I, N) Network}

In this part, we consider the two-hop (N, I, N) channel operating under the RF protocol. Let \(H_1 = [h_{11}, \ldots, h_{1N}]^T \) and \(H_2 = [h_{21}, h_{2N}]^T \) denote the channel matrices of the first and the second hops respectively. \(F = e^{ad} \) is a scalar. \(H = H_2FH_1 \) is the equivalent channel matrix. The mutual information of the channel can be written as

\[
I = \log \det (I + \rho HH^T) = \log(1 + \rho x_1x_2) \tag{18}
\]

where \(x_1 = g_{11} + \ldots + g_{1N} \) and \(x_2 = g_{21} + \ldots + g_{2N} \), \(g_{ij} = |h_{ij}|^2 \). \(x_1 \) and \(x_2 \) are two central chi-square variates with \(k_1 = k_2 = 2N \) degrees of freedom, i.e. \(x_1 \sim \chi^2_2N \) and \(x_2 \sim \chi^2_2N \). Consider \(w = x_1x_2 \) and its probability density function \(f_W(w) \), the outage gain becomes

\[
\xi = \lim_{\rho \to \infty} f(\rho) \int \mathbf{1}\{ w \in \mathbb{R}_+ : I(w) < R \} f_W(w) dw
\]

\[
= \lim_{\rho \to \infty} f(\rho) \int \mathbf{1}\{ w < \frac{\sigma^2_2 - 1}{\rho} \} f_W(w) dw. \tag{19}
\]
Resolving the integral, we get a general expression for the outage probability in a \((N, 1, N)\) network operating under the RF protocol

\[
P_o(R, \sigma_1, \sigma_2, \rho) = \frac{N(2R - 1)^N}{(N!)^2 \sigma_1^2 \sigma_2^2 \rho^N} (1 - 2N\gamma + N \ln(2R - 1) + N \ln(\sigma_1^2 \sigma_2^2) + N \ln(\rho))
\]

\(\gamma\) is the Euler’s constant, \(\sigma_1^2\) and \(\sigma_2^2\) are the channel variances of the first and the second hops respectively (see Appendix A for more details).

We define \(f(\rho) = \frac{\rho^N}{\ln \rho}\). With this, the outage gain of a \((N, 1, N)\) network operating under the RF protocol is

\[
\xi_{N,1,N} = \frac{N(2R - 1)^N}{(N!)^2 \sigma_1^2 \sigma_2^2 \rho^N}
\]

\(D. \text{The Two-Hop (I, N, 1) Network with Noise at the Relays}\)

In this section, \(z_R \sim CN(0, I_N)\) and \(z_D \sim CN(0, I)\) are the AWGN at the relays and the destination, respectively.

\(H = H_2 F H_1\) is the equivalent channel matrix, and \(z_t = H_2 F z_R + z_D\) is the equivalent additive noise at the destination. Let \(H_n = H_2 F\). The mutual information can be written as

\[
I_{\text{mean}} = \log \left(1 + \rho \left(\sum_{i=1}^{N} g_{2i} \right)^{-1} \sum_{i=1}^{N} g_{1i} g_{2i} \right)
\]

\(g_{ij} = |h_{ij}|^2\) are the channels power gains. Let \(x_1 = \rho g_{11} g_{21}\). The outage gain becomes

\[
\xi = \lim_{\rho \to \infty} f(\rho) \rho^{-N} \int_{\{x_1, g_{2i} \in \mathbb{R}_+ : I_{\text{mean}} < R\}} \prod_{i=1}^{N} f_{g_i}(x_1 / \rho) f(g_{2i}) \prod_{i=1}^{N} d x_1 d g_{2i}
\]

\(f_G(x/\rho)\) satisfy (12). We obtain

\[
\xi = \lim_{\rho \to \infty} f(\rho) \rho^{-N} \prod_{i=1}^{N} \sigma_{1i}^{-2} \sigma_{2i}^{-2} \ln \rho \times I_c
\]

\(I_c\) is the following integration

\[
I_c = \int_{\{x_1, g_{2i} \in \mathbb{R}_+ : I_{\text{mean}} < R\}} \prod_{i=1}^{N} f(g_{2i}) \prod_{i=1}^{N} d x_1 d g_{2i}
\]

We define \(f(\rho) = \frac{\rho^N}{(\ln \rho)^N}\). The outage gain is given as follows

\[
\xi_{1,1,1/\text{noise}} = I_c \times \prod_{i=1}^{N} \sigma_{1i}^{-2} \sigma_{2i}^{-2}
\]

\(\xi_{1,1,1/\text{noise}}\) being the same, the noise at the relays does not affect the diversity order of the RF scheme. \(I_c\) is complicated to solve, we have to delineate the domain of variation of all the variables. Intuitively

\[
\xi_{1,1,1/\text{noise}} > \xi_{1,1,1}
\]

\(VI. \text{Numerical Results}\)

We proceeded to verify the outage gain expression given in (15) and (21). We plot the simulation results and the theoretical expressions. We can notice a very good fit between the outage probability approximation \(P_o \approx \xi(\rho)\) and the numerical results. The expression in (15) is verified in the (1, 2, 1) and (1, 1, 4) networks (Fig.1, Fig.2). The expression in (21) is also verified for \(N = 2, 3, 4\) (Fig.3). Notice that the outage gain expressions, found for a signal to noise ratio \(\rho \to \infty\), hold for moderate values of \(\rho\). In Fig.4, with noise on the relays, we have 2dB and 3dB loss at \(10^{-3}\) for \(N = 2, 3\) respectively.

\(VII. \text{Conclusion}\)

The rotate-and-forward protocol performance is studied in terms of outage gain in some network configurations in the high SNR regime. We extract the expressions of the outage gain factors for these networks and verify them using simulation results. The numerical results show the accuracy of this criterion at moderate SNR as well. Some future work directions are to extract exact outage gain values for noisy relays.

\(\text{Appendix}\)

\(A. \text{Distribution of the product of two central independent chi-square variates}\)

Let \(x_1 = \sum_{i=1}^{N} x_{1i}^2\) and \(x_2 = \sum_{i=1}^{N} x_{2i}^2\) be two central independent chi-square variates of \(k_1\) and \(k_2\) degrees of freedom respectively. \(x_{1i}^2\) and \(x_{2i}^2\) are independent normal variates with zero means and deviations \(\sigma_{1i}^2\) and \(\sigma_{2i}^2\) respectively.

\(\text{Theorem 1:}\) Consider the product of two independent variates \(w = x_1 x_2\), where \(x_1\) is a central chi-square variate with \(k_1\) degrees of freedom and \(x_2\) is a central chi-square variate with \(k_2\) degrees of freedom, then the density function of \(w\) is

\[
f_W(w) = \frac{4w}{\sigma_1^4 \sigma_2^4} \frac{k_1 + \frac{1}{2} k_2 - 1}{k_1 k_2} \frac{K_{\frac{1}{2} k_1 - 1} \left(\frac{4w}{\sigma_1^2 \sigma_2^2} \right)}{K_{\frac{1}{2} k_2} \left(\frac{4w}{\sigma_1^2 \sigma_2^2} \right)}
\]

\(K_{\nu}(w)\) is the modified Bessel function of the second kind. Using (30) in (19) and making the development in Taylor series as \(\rho \to \infty\), we get the expression (20) of the outage probability of the (N, I, N) network operating under the RF protocol.

\(B. \text{The value of } c_i\)

\(g_{i}\) is the product of two independent central \(X^2\)-variates of 2 degrees of freedom each with variances \(\sigma_{1i}^2\) and \(\sigma_{2i}^2\). Using (30) with \(k_1 = k_2 = 2\), the density function of \(g_i\) is

\[
f_{G_i}(g_i) = \frac{2}{\sigma_{1i} \sigma_{2i}} K_0 \left(\sqrt{\frac{4g_i}{\sigma_{1i}^2 \sigma_{2i}^2}} \right)
\]
K_0 is the zeroth order Bessel function of the second kind.

Using the development of the function K_0 in [14], page 909, we obtain the value of (31) as $\rho \to \infty$:

$$f_{G_1} \left(g_1 \propto \frac{1}{\rho} \right) = \frac{1}{\sigma_1^2 \sigma_2^2} \ln \rho$$ \hspace{1cm} (32)

REFERENCES