
Supplementary information

1 Prediction and observations

The candidate star for the occultation analysed in this paper was discovered during a systematic search
for candidate stars to be occulted by Pluto and other several large TNOs in 2008-15, conducted at the
2.2m telescope of the European Southern Observatory15. It revealed the star NOMAD1 0856-0015072
with V∼17.1, R∼16.9 as a potential candidate for an occultation by Eris on the night of 6 November
2010 around 02:20 UT. Initial possible zones of visibility included western Europe and Africa, as well as
north and south America (see www.lesia.obspm.fr/perso/bruno-sicardy/predic occn 10/Eris 2010).
This was the unique event predicted for 2010. Actually, stellar occultations by Eris remain rare
events as the dwarf planet moves far away from the galactic plane, in poor stellar fields in Cetus
constellation (no event involving Eris is expected in our list before 2013).

Measurements made at the 2.2m telescope of the European Southern Observatory (see ref. 15
for the method) provide the following ICRF (loosely speaking J2000) star position as given by the
UCAC2 reference frame:











α = 01h 39min 09.9421s

δ = −04◦ 21′ 12.119”
(1)

with 1σ errors of about 50 milli-arcsec (mas) in both right ascension and declination.

Astrometric updates were conducted from October 18, 2010 onward to pin down the prediction

Figure 1S | The Eris observation campaign. The locations listed in Tables 1S-2S are plotted in
green for the sites where the occultation was detected, in blue where observations were made but no
occultation was observed and in red for stations with clouds. The three parallel dotted lines show
the latest prediction (northern, central and southern limits of Eris’ shadow) made about 24 hours
before the event, assuming a radius of 1,500 km for the dwarf planet. The solid line with dots is the
actual path of Eris’ shadow centre derived from the solution shown in Fig. 2, with the dots plotted
every minute (see the reference dot plotted at 02:20 UT, November 6, 2010) and the arrow shows
the direction of motion on Earth. The other two parallel thinner solid lines are the shadow limits,
using again the solution of Fig. 2 (radius 1,163 km).
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Figure 2S | Star motion with respect to Eris and Dysnomia. Oblique lines: the trajectories of
the occulted star relative to Eris, as seen from San Pedro de Atacama, La Silla and CASLEO from
top to bottom, respectively. Corresponding start and end times are provided in Table 1S. The arrow
shows the direction of the stellar motion. Open cross: the expected Eris’ centre position from our
reference star position (Eq. 1) and the JPL28 ephemeris. Black circle: circular fit to the occultation
chords, see Fig. 2. The shift between the cross and the circle is Eris’ offset relative to JPL28, i.e.
+211±50 mas and -56±50 mas in right ascension and declination, respectively, see Table 3S. Red
(resp. blue) dots: expected position of Dysnomia at 02:20 UT (November 06, 2010) according to
the Orbit 1 (resp. Orbit 2) orientation of Dysnomia’s orbit12. The dots have been generated by
using various possible orbital solutions that match Dysnomia observations. The scatter of the points
shows the uncertainty on Dysnomia’s position at the moment of occultation. Scale and orientation
are given at lower right.

and organise the observational campaign, based on images taken at Calar Alto, Cerro Burek, Pico
dos Dias and Table Mountain. Only after November 1st, 2010, was the position of Eris relative to
the star accurate enough to clearly show that the event would be visible from south America, and
possibly northern Africa and southern Europe.

Twenty six stations were eventually involved in our campaign, most of them being clouded out
and/or outside the shadow path (Fig. 1S). The occultation was detected from two sites in Chile, one
with two telescopes separated by about 20 meters (0.5m-Harlingten and 0.4m-ASH2) at San Pedro
de Atacama (San Pedro for short), and the other one at the ESO La Silla site with the new 0.6m
TRAnsiting Planets and PlanetesImals Small Telescope27 (TRAPPIST). A third station in Argentina
(Complejo Astronomico El Leoncito, CASLEO, 2.15-m Jorge Sahade telescope) was sufficiently close
to the shadow edge (∼200 km, see Fig. 2 and 1S) and with a sufficient SNR to be used for potentially
placing an upper limit of Eris’ atmosphere. Table 1S provide details on the observations analysed
here, while Table 2S lists all our other attempts made during that campaign.

The general geometry of the event is shown in Fig. 2S. Besides the Eris events detected at San
Pedro and La Silla (see below), no secondary events were detected in the light curves that we have
analysed. Note that Dysnomia predicted position was far away from the stellar tracks that scanned
Eris’ surrounding (Fig. 2S).
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2 Data analysis

All data shown here were obtained with broadband (no filter) CCD images, in order to maximise
photon flux. The camera types used at each telescope are given in the caption of Fig. 1. After
classical dark subtraction and flat fieldings, aperture photometry was performed to derive the stellar
flux vs. time. The aperture used for Harlingten was a square with size 4×4 pixels, while circles with
diameters 4, 5 and 6 pixels were used for ASH2, TRAPPIST and Jorge Sahade, respectively. The
background flux was estimated near each star and subtracted, so that the zero flux corresponds to
the sky level. Images taken at the ASH2 and TRAPPIST telescopes the night after the event allowed
us to estimate the fluxes from Eris at the moment of the occultation, see the dotted lines in Fig. 1
and Fig. 3S. This calibration shows that the star completely disappeared during the event, down to
the noise level. A nearby reference star (NOMAD1 0856-0015078), roughly two magnitudes brighter
than the target, was used to correct the stellar flux for low frequency sky transparency variations at
La Silla and CASLEO. Due to the good conditions prevailing at San Pedro (with a target elevation of
∼68 degrees), this correction was not necessary. A further division by the unocculted stellar + Eris
flux, averaged over several minutes around the occultation, eventually provides the normalised light
curves presented in Figs. 1 and 3S. The flux statistics yields the standard deviation of the signal,
which defines the 1σ error bar on each data point, used later for fitting diffraction models to the star
disappearances and re-appearances, see below.

Supplementary Table 1S | Circumstances of observations for the data used in this paper

Site Telescope aperture longitude start disappearance(c) observers
Integration/cycle times(a) latitude end re-appearance(c)

Signal-to-noise ratio(b) altitude h:min:s h:min:s±s UT)
(6 November 2010)

San Pedro 0.5m-Harlingten 68◦ 10’ 47.6” W 02:09:17.7 02:18:41.6±0.15 A. Maury
de Atacama 3s/3.88s 22◦ 57’ 12.3” S 02:29:20.8 02:19:59.4±0.18(d) S. Saravia

19.2 2,397 m 02:20:00.6±0.18(e)

San Pedro 0.4m-ASH2 68◦ 10’ 46.9” W 02:02:24.8 02:18:39.8±1.3 remotely operated
de Atacama 15s/18.32s 22◦ 57’ 12.2” S 02:32:57.3 02:19:58.9±3.1 by N. Morales &

15.0 2,397 m I. de la Cueva

La Silla 0.6m-TRAPPIST 70◦ 44’ 21.8” W 02:16:58.8 02:19:17.1±0.11 remotely operated
3s/4.55s 29◦ 15’ 16.6” S 02:24:29.4 02:19:48.4±0.10 by E. Jehin
40.2 2,315 m

CASLEO 2.15m-Jorge Sahade 69◦ 17’ 44.9” W 02:02:38.1 no occultation R. Gil-Hutton
4s/7s 31◦ 47’ 55.6” S 02:34:41.4
56.5 2,492 m

(a)All the observations listed here were made with fast broadband visible CCD, see Fig. 1.
(b)The ratio of the star plus Eris flux to the r.m.s. noise per data point.
(c)All error bars are at 1σ level.
(d) and (e) are solution 1 and solution 2 described in the text, respectively, for the star re-appearance at San
Pedro, see text and Fig. 3S.

The UT time of each image was taken from the frame headers. However, for the three stations
where the event was detected (Harlingten, ASH2 and TRAPPIST), only the integer part of the
second is available, due to the truncated format provided by the MaximDL software used at those
three stations. To retrieve the correct timing of each image, we fitted a linear model to the set
of points (i, th,i), where i is the image number, and th,i is the corresponding time written in the
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Supplementary Table 2S | Circumstances of observations at other stations

Site Telescope longitude Result observers
aperture latitude, altitude

Meudon 0.6m 02◦ 13’ 53” E clouds F. Braga-Ribas,
48◦ 48’ 18” N, 162 m F. Roques, B. Sicardy

Puimichel 1.0m 06◦ 01’ 15” E no occ F. Colas,
43◦ 58’ 49” N, 700 m J. Lecacheux

Esteve Duran 0.6m 02◦ 15’ 32” E partly cloudy E. Garćıa-Melendo
41◦ 47’ 57” N, 720 m

València 0.6m TROBAR 01◦ 06’ 05” W partly cloudy V. Peris,
39◦ 56’ 42” N, 1,271 m J. Fabregat

La Hita 0.77m 03◦ 41’ 10” W clouds F. Organero
39◦ 34’ 07” N, 675 m

La Murta 0.4m 01◦ 12’ 10” W clouds S. Pastor,
37◦ 50’ 25” N, 404 m J. A. de los Reyes

Calar Alto 0.5m CAB 02◦ 32’ 45” W no occ remotely operated
37◦ 13’ 25” N, 2,173 m by L. Cuesta

1.2m no occ remotely operated
by S. Mottola

2.2m no occ S. Pedraz

Sierra Nevada 1.5m 03◦ 23’ 05” W no occ A. Sota
37◦ 03’ 51” N, 2,930 m

Málaga 0.6m 04◦ 02’ 33” W no occ A. Castro
Bootes-2/TELMA 36◦ 45’ 30”N, 62 m R. Sánchez-Raḿırez

Nazaret 0.3m 13◦ 33’ 22” W no occ G. Muller
29◦ 02’ 29” N, 366 m

La Palma 2m Liverpool 17◦ 52’ 45” W no occ remotely operated
28◦ 45’ 45” N, 2,321 m by I. A. Steele

Teide 0.8m IAC80 16◦ 29’ 48” W no occ M. Cebrián, A. Oscoz
28◦ 17’ 30” N, 2,112 m P. Montañés-Rodŕıguez

Fortaleza 0.3m 38◦ 30’ 27” W clouds D. Weaver
03◦ 44’ 18” S, 38 m

CEAMIG-REA 0.3m 43◦ 59’ 51” W clouds C. Jacques, E. Pimentel,
19◦ 49’ 49” S, 825 m B. Giacchini

Pico dos Dias 1.6m 45◦ 34’ 58” W clouds M. Assafin, W. Corradi,
22◦ 32’ 08” S, 1,840 m W. Reis Jr.,

F. P. Santos,
A. Ramos Gomes Jr.

São José dos Campos 0.275m 45◦ 51’ 44” W clouds A. Milone
23◦ 12’ 33” S, 617 m

Ponta Grossa 0.4m 50◦ 05’ 56” W clouds M. Emilio
25◦ 05’ 22” S, 909 m

Cerro Burek 0.45m ASH 69◦ 18’ 25” W no occ remotely operated
31◦ 47’ 12” S, 2,665 m by N. Morales

Sevilla 0.3m 06◦ 19’ 35” W no occ J. M. Madiedo
31◦ 40’ 19” N, 471 m

San Pedro Mártir 1.5m 115◦ 27’ 48” W no occ L. Gutiérrez,
31◦ 02’ 36” N, 2,825 m H. Hernández-Toledo

header. The residuals of those fits, performed over intervals of several minutes around the event,
show a regular sawtooth pattern confined between -0.5 and +0.5 seconds. This (1) confirms that
the truncation to the integer part of the second is indeed present, and (2) shows that the acquisition
cycle was regular. To obtain the mid-exposure time of each frame, we finally added to the fitted

4



times half of the total exposure time, plus a bias correction of +0.5 s to account for the truncation.
The slope of the fit also provides the cycle time, and thus, the readout overhead (or ‘dead time’)
between two frames by subtraction of the exposure time, see Table 1S. Note that this dead time
leads to a net loss of information.

The internal accuracy of those linear fits ensures that the absolute times of individual images can
be retrieved to better than 0.05 s. Furthermore, the computers used at San Pedro and La Silla
were set up against UT time every 15 minutes at least, using a time server and the ‘Dimension
4’ synchronisation software, which ensures an absolute time accuracy better than 0.05 s for all
computers. In summary, the time associated with each image has an absolute accuracy of about
0.07 s, corresponding to an accuracy of ± 2km along Eris’ shadow track, which is negligible compared
to the error associated with the model fitting described below.

3 Occultation timing

The star dis- and re-appearance times are obtained by fitting an abrupt edge shadow model to the
light curves, after convolving that shadow by Fresnel diffraction, stellar diameter28 projected at Eris,
finite bandwith of the CCD and finite integration time of the instrument29. The final synthetic light
curve is largely dominated by finite integration time, which was 3 s or more for all data sets, see
Table 1S. At La Silla (resp. San Pedro), this corresponds to a distance of about 30 km (resp. 75
km) perpendicular to Eris’ limb, while Fresnel’s scale is about 2 km, and the star diameter projected
at Eris is about 0.7 km. The free parameter of the fit is the time of star dis- or re-appearance, tocc,
i.e. the time at which the occultation would occur in the limit of a point source occulted by a sharp
edge in the geometrical optics regime. The fit procedure looks for the minimum value χ2

min of

χ2 =
N
∑

1

(Φi,obs − Φi,cal)
2/σ2

i , (2)

where Φi,obs (resp. Φi,cal) is the observed (resp. calculated) flux at point i, σi is the 1σ error bar
at that point, estimated as explained earlier, and N is the total number of points considered. The
1σ error bar on tocc is estimated by varying tocc so that to increase χ2 from the best value χ2

min to
χ2
min + 1.

The best fits are shown in Fig. 3S, and the corresponding occultation times are listed in Tables 1S
and 3S. When adjusting the star re-appearance at San Pedro/Harlingten, two equally satisfactory fits
(called solution 1 and solution 2, in chronological order) are obtained. This is because it occurred
near one of the 0.88 s gaps between consecutive exposures (Table 1S). Consequently, the χ2 residual
exhibits two local minima for two values of tocc separated by 1.2 s, corresponding to a difference of
32 km in the two chord lengths, see Fig. 3S and Table 3S.

4 Occultation geometry and Eris’ size

The occultation times given in Table 3S provide the corresponding star positions (f, g) relative to
Eris and projected in the plane of the sky, where f is the relative position in right ascension, positive
if the star is east of Eris centre, and g is the relative position in declination, positive if the star
is north of Eris centre. The quantities f and g are expressed in kilometers. For this calculation,
we use the JPL28 geocentric Eris ephemeris (ref. 30 and http://ssd.jpl.nasa.gov/), corrected for
parallax effects at each station. Note that due to the larger integration time (15 s) and lower signal
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to noise ratio obtained at the San Pedro ASH2 telescope, compared to the Harlingten telescope
(3 s integration time), the former data do not bring further constraints to the occultation length.
Although they confirm the event (Fig. 3S), they are not included in the analysis below. So, we finally
obtain four extremities of the two occultation segments (or ‘chords’), derived from the timings at
San Pedro/Harlingten and La Silla/TRAPPIST telescopes, see the red segments in Fig. 2.

The most general limb shape considered here is an ellipse projected in the plane of the sky, with

Figure 3S | Fitting diffraction models to the occultation light curves. Black bullets: the
occultation data points obtained at the station mentioned in Table 1S (where the star plus Eris
fluxes have been normalised to unity). Plots for ASH2 and TRAPPIST data have been shifted
vertically by +1.3 and -1.3, respectively, for better viewing. The horizontal bars on the ASH2 data
points show the acquisition time intervals corresponding to each point. For the Harlingten and the
TRAPPIST data points, the bars have approximately the size of the bullets, and are not visible on the
plot. Note that all data sets have ‘dead times’, i.e. intervals of time when no data are acquired, see
Table 1S. The dotted lines under the ASH2 and the TRAPPIST light curves show Eris’ contribution
to the total flux (0.216 and 0.104, respectively), determined by measuring the occulted star against
a nearby reference star the night after the occultation, with the same instrument setup and same
airmass. Red curves: the best fit square-well models to the data (corresponding to Eris’ shadow
edge in the geometrical optics regime). Two equally satisfactory fits are obtained for the star re-
appearance at San Pedro (the so-called solutions 1 and 2, from left to right, respectively, see text).
Open blue circles: expected flux derived from the red model, and corresponding to each observed
data point, once diffraction, star diameter, finite bandwith and finite acquisition time intervals have
been accounted for. The open blue circles obtained with both solutions 1 and 2 have been plotted
for the Harlingten telescope, but they are almost indistinguishable at the scale used here. The blue
curve connects the open blue circles.
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Supplementary Table 3S | Fits to the occultation chords(a)

site 6 November 2010 f (b) g (b) shadow radial residual
(h:min:s UT) (km) (km) velocity(c) (km, circular fit)

(km s−1) solution 1 solution 2
San Pedro, disappearance 02:18:41.6±0.15 +13782.9 -4575.6 26.748 +10.9 +2.4
San Pedro, re-appearance (sol1) 02:19:59.4±0.18 +15816.5 -4133.9 26.748 -16.3 –
San Pedro, re-appearance (sol2) 02:20:00.6±0.18 +15847.9 -4127.1 26.748 – -3.4
La Silla, disappearance 02:19:17.1±0.11 +14538.7 -5026.2 26.723 -2.0 -0.4
La Silla, re-appearance 02:19:48.4±0.10 +15356.0 -4848.5 26.723 +2.0 +0.4

free parameters of circular fit Best fit values

Eris’ radius RE (km) 1,141 1,163±6
Eris’ centre(d) fc (km) +14,717 +14,716±3
Eris’ centre(d) gc (km) -3,902 -3,877±10
Goodness of fit, χ2

pdf
(e) 30.7 1.38

Radial residual (km)(f) 9.88 2.11

Time of geocentric closest approach (h:min:s UT, 6 November 2010)(g) 02:18:15.7 02:18:15.9±0.1
Distance of closest approach to geocentre (km)(h) 1,246 1,223±10
Offset(i) in right ascension (mas) with respect to DE405/JPL28 +212±50 +212±50
Offset(i) in declination (mas) with respect to DE405/JPL28 -56±50 -56±50

(a)The timings from the San Pedro/0.4m-ASH2 telescope are not included in the fits, as their larger error
bars do not bring further constraints on the length of the occultation at that site (Table 1S and Fig. 3S).
(b)The timings of Table 1S provide the star position relative to Eris expected centre, using the DE405/JPL28
Eris’ ephemeris (http://ssd.jpl.nasa.gov). This position is projected in the plane of the sky, in km, where f is
the relative position in right ascension, positive if the star is east of Eris’ centre, and g is the relative position
in declination, positive if the star is north of Eris’ centre. We use the ICRF/J2000 star position given in Eq. 1.
(c)Velocity of Eris’ shadow at the considered site, perpendicular to the observer-Eris line (equivalent to Eris
velocity relative to the star, projected in the plane of the sky). The radial velocities with respect to the
shadow edge (assuming a circular shape) are 9.7 and 24.4 km s−1 at La Silla and San Pedro, respectively.
(d)This centre corresponds to the offset to be applied to Eris’ position in order to match the occultation
chords (see the cross in Fig. 2). This offset is relative to the DE405/JPL28 Eris ephemeris, but also depends
on the adopted star position given in Eq. 1.
(e)Value of minimum χ2 per degree of freedom, see text.
(f)Defined as the r.m.s. of the four radial residuals.
(g)Time at which Eris and the star are the closest in the sky plane, as seen from the geocentre.
(h)Distance between Eris’ centre and the star in the sky plane at closest approach, as seen from the
geocentre. Conversion to mas can be made using an Eris observer range of 95.738 AU during the occultation,
corresponding to a scale of 69.436 km per mas. At closest approach, Eris was at a position angle of 167.57
degrees relative to the star, in the J2000 reference frame, as seen from the geocentre.
(i)These values are derived from the values of fc and gc given above. The error bars are dominated by the
uncertainties on the star position (±50 mas), not by the error bars of the circular fit to the occultation chords.

semiaxes a′>b′ and apparent flattening ǫ′=(a′− b′)/a′. In the small angular momentum regime, this
shape results from the projection of an oblate Maclaurin spheroid with semiaxes a=b>c, where a and
c are the equatorial and polar radii, respectively. The true flattening of the body is then ǫ=(a−c)/a,
and for small values of ǫ, the latter is related to the apparent flattening through31 ǫ′∼ǫ · sin2(ζ)
where ζ is the angle between the rotation c-axis and the line of sight (ζ=0 corresponding to pole-
on geometry). In that case, we assume that the spheroid is observed equator-on (so that its true
flattening is ǫ=ǫ′), remembering that more general viewing geometries will result in true flattenings
ǫ>ǫ′. In the large angular momentum regime, the shape results from an elongated triaxial Jacobi
ellipsoid with semiaxes a>b>c. In that case, the ellipsoid has to be observed almost pole-on because
no brightness variations larger than 1% are observed for the dwarf planet13,14. We finally define Eris’
effective radius RE as the radius of a disk that has the same apparent surface area as the actual
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body, so that RE=
√
a′b′.

Our problem has M=5 free parameters: the apparent semi-major axis a′, the apparent flattening
ǫ′=(a′ − b′)/a′, the ellipse orientation in the sky (position angle P of the semi-minor axis, counted
eastward from the local celestial north), and the two coordinates of its centre fc, gc. Note that
it is sufficient to consider 0 ≤ P < 180 degrees, as other values of P yield the same solutions by
symmetry.

We fit the N=4 chord extremities by finding the minimum value χ2
min of

χ2 =
N
∑

1

[

(fi,obs − fc)
2 + (gi,obs − gc)

2
]

/σ2
i,r, (3)

where (fi,obs, gi,obs) are the coordinates of the chord extremities, and σi,r are the corresponding radial
uncertainties obtained by multiplying the 1σ uncertainties on the occultation times by the local star
velocity perpendicular to Eris’ limb. The 1σ error bar on RE is obtained by exploring values of RE

(the other parameters being free) so as to change χ2 from χ2
min to χ2

min + 1. The value of χ2 per
degree of freedom for the best fit, χ2

pdf (see Table 3S) is given by χ2
pdf=χ2

min/(N −M). With N=4

chord extremities, and M=5 free parameters, there is an infinity of possible solutions and χ2
pdf is not

defined. In order to obtain a preferred solution, we have to rely on independent observations and on
physical arguments.

4.1 Circular fit

We first note in Fig. 2 that the two chords have almost the same median lines, i.e. the lines
going through the middle of the segments, and perpendicular to them, see the blue line in Fig. 2.
More precisely, the two median lines are separated by 21 km for solution 1, and 5 km for solution 2.
Consequently, a circle can be fitted to the two chords to within our error bars, especially for solution 2.

This strongly suggests that Eris is indeed close to spherical, unless a very special geometry occurred,
as discussed later. A circular fit has M=3 free parameters (RE=a′=b′, fc and gc), so that N−M=1
and χ2

pdf=χ2
min. Table 3S gives the values of RE, fc and gc corresponding to the best fits using

solutions 1 and 2, respectively. Note that due to the high value of χ2
pdf in the case of solution 1,

we do not provide error bars, since the assumption of a circular limb is not valid in this case, see
main text. For solution 2, we obtain a radius RE=1,163±6 km for the best circular fit to the chords
extremities. The position of Eris’ centre, (fc,gc) corresponds to the offset to apply to Eris ephemeris
in order to fit the occultation chords (Fig. 2). Note that since we actually determine Eris’ position
relative to the star at a given moment, this offset depends (1) upon the adopted ephemeris (here
DE405/JPL28) and (2) upon the adopted star position (Eq. 1). Thus, if one uses an ephemeris
different from JPL28 for Eris and/or a star position different from the one mentioned here, the offset
should be corrected, taking into account both the differences between the ephemerides and star
positions.

Using the star position in Eq. 1 and the ephemeris DE405/JPL28, we obtain offsets of +212±50
and -56±50 mas for Eris, in right ascension and declination, respectively, where the error bar is
dominated by the uncertainty in the star position. Alternatively, one may use the time and distance
of geocentric closest approach (C/A) in the plane of the sky to calculate those offsets (see Table 3S),
once a star position and a reference ephemeris is given, knowing that Eris was at a position angle of
167.57 degrees relative to the star at C/A, as seen from the geocentre.
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4.2 Topographic features

Even if globally spherical, a body composed of compact ice with Eris’ size may sustain small reliefs
with maximum amplitude of typically <∼ ± 5 km (ref. 32). They may create randomly distributed
local, radial limb distortions, thus altering the occultation chord lengths, and finally, the retrieved
Eris’ radius. However, ±5km corrugations are probably too high in the case of Eris. First, Eris’
interior has a density of ∼2.5 g cm−3 (see main paper), more than twice the density of ice, resulting
in a surface gravity larger than for a pure ice body. Second, the low thermal inertia of TNOs25,26

suggests low conductivity, porous surfaces that are unlikely to support large reliefs. We also note that
other icy bodies like the Uranian satellite Titania (radius 789 km) have local topographic features of
±2 km at most (see the discussion in ref. 29). Another large icy satellite, Triton (radius 1,353 km),
has even smaller reliefs, with amplitude of less than ∼0.5 km (ref. 33)

We thus consider that an amplitude of ±3 km is a safe maximum for local topographic features
on Eris’ surface. Generating circular fits to the chords obtained with solution 2, and allowing for
residuals up to 3 km, we obtain values of RE in the range 1,163±6 km. This error bar may be
combined quadratically with the formal error bar of ±6 km found above, yielding a final error bar of
±9 km for Eris’ radius, in the circular limb assumption with (probably overestimated) reliefs of ±3
km.

4.3 Elliptical fit

As mentioned earlier, we can fit an infinity of elliptical limbs to the two occultation chords. If
Dysnomia orbits in Eris’ equatorial plane, then the limb orientation is determined and its position
angle P can be fixed, see the next subsection. If this is not the case, and since we are primarily
interested in Eris’ effective radius, we want at least to estimate a plausible range of values for RE.

To do so, we have fitted the two occultation chords with elliptical models where P and a′ have
been fixed to prescribed values. The free parameters of the fits are then ǫ′, fc and gc, each best fit
returning a value for RE and providing a radial residual which indicates the quality of that fit. We
have varied P between 0 and 180 degrees by steps of 1 degree, and a′ between 1,000 and 1,800
km by steps of 10 km, first using the chords derived from solution 1, and then, from solution 2.
Moreover, we have retained only the fits with radial residuals smaller than 4.2 km, which result from
the quadratic addition of possible timing errors (corresponding to about ±3 km in radial direction)
and/or topographic features on Eris’ surface (with amplitude of about ±3 km, see above).

The results are summarised in Fig. 4S. The histogram of derived RE’s reaches a maximum near
1,165 km, as expected because it is close to the value derived from the circular fit, 1,163 km. The
distribution rapidly drops as RE deviates from that value. This is because elongated limb shapes
require a fine tuning of P in order to go through the chord extremities, resulting in low probability
of realisation, see Fig. 2. The 68.3% probability of occurrence centered around the maximum of
the distribution (roughly corresponding to the usual 1σ level error bar for a normal distribution)
corresponds to the interval RE=1,165±90 km.

However, we note in Fig. 4S that the limb apparent flattening ǫ′ rapidly increases as RE deviates
from 1,165 km, with a strong correlation betwen RE and ǫ′. At the boundaries of the interval
RE=1,165±90 km, ǫ′ reaches about 0.08, implying that the true flattening ǫ∼ǫ/sin2(ζ) is even
larger, as mentioned at the beginning of this section.

We can relate ǫ to the body spin frequency ω, assuming hydrostatic equilibrium. In the low angular
momentum regime, the corresponding oblate Maclaurin spheroid with equatorial and polar radii a
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Figure 4S | Distribution of possible Eris’ effective radius. Shaded surface: histogram, or
probability density (arbitrary units), of Eris’ effective radius RE, derived from a wide variety of
fits using elliptic limb models, see text. The integral of that histogram, starting from the right, is the
probability Pt(RE < R) that RE is larger than a given value R (thick solid line), see scale at left.
The dotted line is the approximate correlation relation between RE and the apparent flattening ǫ′

obtained in the fits, see scale at right. The median of the distribution, Pt(RE < R)=0.5, corresponds
to RE∼1,165 km, which is close to the circular fit value for solution 2, RE=1,163 km. Approximate
values (see Eq. 5) for the rotation periods corresponding to a few values of ǫ′ are shown near the
dotted lines, see the black bullets.

and c, respectively, must satisfy34:

ω2a3

GM
=

3 {2ψ [2 + cos(2ψ)]− 3 sin(2ψ)}
4 sin3(ψ)

, (4)

where G is the gravitational constant, M is the mass of the body, and cos(ψ)=c/a=1 − ǫ. Note
that this equation assumes that the object is incompressible (uniform density). If compressible,
complications arise and the body will rotate with slightly different periods. For small flattenings ǫ,
Eq. 4 provides the approximation ω2a3/GM∼4ǫ/5, yielding a rotation period of:

T = 2π/ω ∼ 2.33/
√
ǫ hours, (5)

taking a=1,163 km and M=(1.66±0.02)×1022 kg (ref. 12).

For ǫ>ǫ′∼0.08, we obtain T<8.2 hours. In other words, values of RE outside the interval 1,165±90
km require a fast rotating Eris. Rotation periods (more precisely, their upper bounds, as ǫ>ǫ′)
corresponding to a few values of ǫ′ are shown in Fig. 4S. They show that the required rotation period
rapidly decreases as RE deviates from 1,165 km, i.e. Eris must be a faster and faster rotator.

We may consider more extreme situations. For instance in Fig. 2, we may reconcile our results with
IRAM flux11 (yielding RE=1,500 km) by considering a very elongated limb with b′/a′=0.771 (and
a′=1708 km, ǫ′=0.229). This can be achieved with a fast rotator, where Eris has a triaxial shape
(Jacobi ellipsoid) with semiaxes a>b>c, observed pole-on to avoid rotational light curve. The ratios
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β=b/a=b′/a′ and γ=c/a are related to ω and M through:

β2

∫

∞

0

du

(1 + u)(β2 + u)∆(β, γ, u)
= γ2

∫

∞

0

du

(γ2 + u)∆(β, γ, u)
(6)

ω2a3

GM
=

3

2

∫

∞

0

udu

(1 + u)(β2 + u)∆(β, γ, u)
, (7)

where ∆(β, γ, u)=[(1+u)(β2+u)(γ2+u)]1/2, see e.g. ref. 17, noting the misprint in their Eq. 2,
where the term ∆ is missing in the denominator. Once β=b/a is given, Eq. 6 yields γ, which in turn
allows to calculate ω, using Eq. 7. In the example given in Fig. 2, we have β=0.771, from which we
derive γ=0.506, and then a rotation period of 4.4 hours, i.e. a very fast rotator.

In this case, the long axis of the object should be perpendicular to the chords to within ±2 degrees
in order to keep the radial residuals of the fit under 4.2 km, as explained at the beginning of this
subsection. This has a low probability of ∼2% to occur for P randomly distributed between 0 and
180 degrees.

Moreover, Eris must be observed close to pole-on in this case, to avoid a rotational light curve.
The light curve amplitude of such an object is, in magnitude35:

∆m = −1.25 · log10
[

1 + γ2 tan2 ζ

1 + (γ/β)2 tan2 ζ

]

, (8)

where we recall that ζ is the angle between the rotation c-axis and the line of sight. With the condition
∆m <∼ 0.01 imposed by observations13, 14, and taking the case β=0.771, γ=0.506 discussed above
(see also Fig. 2), we find that ζ should be smaller than 18 degrees. This has also a low probability
of 5% to occur for a randomly oriented rotation axis.

In conclusion, elongated limbs cannot be excluded by our observation, but they require a fast
rotating body (period less than ∼8 hours) outside the interval RE=1,165±90 km (Fig. 4S). Moreover,
very elongated bodies, for instance with RE∼1,500 km, require a simultaneous fine tuning on the
limb and the rotation axis orientations, and thus does not appear as plausible. We finally note that
if a rotational light curve is eventually detected for Eris, then ǫ would then be determined from Eq. 4
or Eqs. 6-7, and Fig. 4S can be used to pin down the value of RE.

4.4 Constraints from Dysnomia

The satellite is about 60 times fainter than Eris in K’ band36, and 480 times fainter in V band12.
The satellite spectrum is thus very different from Eris’ (and quite redder), suggesting a significantly
darker surface.

We may assess an upper limit for Dysnomia’s mass by considering a very dark satellite with a visible
albedo of ∼0.05. Then its radius would be RD ∼240 km (using an estimation of RE∼1,150 km for
Eris’ radius), its projected surface area would be ∼4% of Eris’, and its mass ratio to the primary would
reach ∼0.01 (assuming the same densities for the two bodies). Let us first assume that Dysnomia
was formed during a giant impact on Eris and tidally migrated in the primary equatorial plane, from
the Roche limit (∼2RE) to its present orbit (semi-major axis ∼37,400 km, eccentricity lower than
0.01 and period 15.77 days12) by extracting orbital angular momentum from the primary rotation.
With the maximum mass estimated above, Dysnomia could have decreased Eris’ spin rate from a
primordial rotation period of ∼7.5 hours (typical of rotation periods observed among TNOs37) to a
present period of ∼11.5 hours.
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At this rate, Eris’ flattening would be ǫ′∼0.041 (Eq. 5). However, as the angle between Dysnomia
orbital pole (which coincides with Eris’ pole in the present scenario) and the line of sight is close to
50 degrees12, the apparent flattening of Eris’ limb in the plane of the sky would be reduced to about
0.024. Also, Eris’ rotation axis position angle would then be P∼10 degrees12. Using these values,
we can fit the occultation chords with an effective radius of RE=1,143 km, smaller than the value
derived from the circular fit (RE=1,163 km).

If we now assume that Dysnomia is much smaller than considered in the extreme case above,
but still revolving in Eris’ equatorial plane, we still have to fix P∼10 degrees, but we can relax
the condition on ǫ′. Using solutions 1 and 2, we then obtain an effective radii RE in the range
1,105–1,155 km, smaller again than the circular fit value.

Finally, if Dysnomia has been captured and migrated inward to its present orbit38, then no con-
straints on Eris’ rotational period and pole orientation can be derived, and we have to turn back to
the discussion developed in the previous subsection.

4.5 Comparison with Pluto’s size

Pluto’s radius has been estimated using various techniques, ranging from direct imaging to speckle
interferometry, mutual Pluto-Charon events (occultations and eclipses), and stellar occultations8.

Each of those methods is model-dependent and relies on assumptions on physical parameters that
must be independently inferred. Pluto’s radius cannot be accurately measured using direct imaging,
owing to its small angular diameter, about 0.1 arcsec. Pluto’s radius was first pinned down using
mutual events observed in the late 1980’s, with values ranging from 1,151±4 km (ref. 6) to 1,178±23
km (ref. 7), depending on assumed Charon’s orbital radius and Pluto photometric properties8.

Pluto stellar occultations cannot reach the usual kilometer accuracy level achieved with airless
bodies, as Pluto’s atmosphere refracts stellar rays. Actually, during occultations, the stellar image
is dimmed but always visible, and in particular, is never blocked by Pluto’s opaque limb. However,
combining stellar occultation results with Pluto atmospheric models, it is possible to estimate a
radius value of 1,152±32 km (ref. 3), recently improved to 1,180+20

−10 km (ref. 5).

Independent results are obtained with high resolution spectroscopy, which provides constraints
on the atmospheric CH4 integrated column density and temperature, yielding an allowed range of
1,159-1,203 km for Pluto’s radius, when combined with stellar occultation results4.

As those values are obtained with different techniques and assumptions, it is not possible to average
them in order to reduce error bars. At the present time, we can only say that Pluto’s radius safely
lies between ∼1,150 and 1,200 km. Therefore, it cannot be concluded whether Eris is smaller or
bigger than Pluto, until the latter is more precisely measured.

5 Albedo

Eris’ geometric albedo p is related to its reflectivity I/F and its radius RE (now assuming a circular
limb with RE=1,163±6 km) through the equations:

(I/F )(α) = Φ(α) · p = Φ(α) · (AUkm/RE)
2 · 100.4(H⊙−HE). (9)

Here, (I/F )(α) is the ratio of Eris’ surface brightness I observed at phase angle α, to F , the surface
brightness of a Lambert surface, where πF is the solar flux density at Eris for the relevant wavelength,
Φ(α) is the phase function (with the convention Φ(0)=1), AUkm=1.49598×108 is 1 AU expressed in
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km, H⊙ is the Sun apparent magnitude (at 1 AU), and HE is Eris’ absolute magnitude, that would
be observed if the object were at 1 AU from the Sun and observed at 1 AU from Earth at exact
opposition (α=0). In the visible band, ref. 39 provides HE,V=-1.116±0.009. We will use here the
more recent values HE,V=-1.15+0.05

−0.1 and HE,R=-1.56+0.05
−0.1 in V and R bands, respectively, where the

asymmetric error bars come from the analysis of a possible opposition effect (ref. 40 and I. Belskaya
2011, private communication). Finally, using H⊙,V=-26.74 and H⊙,R=-27.10, we obtain:











pV = 0.96+0.09
−0.04

pR = 1.01+0.10
−0.05

(10)

Note that the error bars are dominated by the photometric uncertainties attached to HE,V and
HE,R, not by the uncertainty on RE. Note also that Eris’ phase angle α varies between ∼0.15 and
0.6 degrees as seen from Earth, and that the values of HE,V and HE,R given above assume ordinary
opposition effect40. If Eris has a strongly peaked opposition surge below 0.15 degrees (which is not
known), then we would obtain higher geometric albedos than given in Eqs. 10. More generally, a
review of TNO and Centaur photometric properties41 actually shows that the largest TNOs (Eris,
Haumea, Makemake and Pluto) have shallower phase slope when compared with smaller TNOs,
possibly associated with active (sublimating atmosphere) surfaces and/or collisional history. However,
the lack of data at very small (<∼0.1 degrees) phase angles prevents conclusions to be drawn about
the existence of opposition surges for TNOs. An exception is Varuna, for which a surge has clearly
been observed at α∼0.06-0.1 degrees (ref. 41).

The geometric albedos derived here for Eris can be compared to the visual geometric albedos of
Enceladus, pV∼1.4 and Tethys, pV∼1.2 (ref. 20). However, because those satellites exhibits strong
opposition surge of more than 30% for α<∼0.2 degrees, and because Eris’ photometric behavior is
not known in this domain, we may instead compare their reflectivity (I/F )(α) in the same range of
phase angle. For instance, Eris has I/F∼0.91 near α=0.15 degrees in visual band40, while Enceladus
has I/F∼1.2 in the same conditions42, about 30% larger than for Eris.

6 Surface temperature

We now use the radius RE and the geometric albedo pV derived above, in combination with thermal
fluxes at 70 and 1,200 µm (measured by Spitzer22 and IRAM11, respectively), to constrain Eris’
surface temperature and global photometric properties. We consider two limiting cases: (1) slow
rotation (or equivalently, pole-on orientation, or equivalently, zero thermal inertia), referred to as the
‘Standard Thermal Model’ (STM) and (2) fast rotation with equator-on geometry and Isothermal
Latitude Model (ILM). The first model provides the ‘warm’ equilibrium situation, where only the
illuminated side of Eris is heated by the Sun, while the second model yields the ‘cool’ situation,
where the temperature is constant along a given latitude (on both the lit and unlit sides). Actual
models should lie between these extreme cases.

In each model, we use the formulae in Table 4S to calculate the sub-solar temperature Tss for the
STM and the equatorial temperature Teq for the ILM. In that table, the angle θ is the local solar
zenith angle (STM) and φ is the local latitude (ILM). The local temperature T given in the first line
is introduced in the integral of the second line in Table 4S. This yields Tss (STM) and Teq (ILM),
introducing the emissivity ε (not to be confused with the flattening ǫ defined earlier) and using
Planck’s law Bν , once Eris’ flux density Sν at frequency ν and geocentric distance ∆ is measured
(note that ∆=96.28 UA for the IRAM data and ∆=96.41 UA during the Spitzer observations).
In the calculations, we neglect Dysnomia’s contribution to the total thermal flux, as its projected
surface area is probably more than 25 times smaller than Eris’, see above.
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Figure 5S | Eris thermal models. The observed Eris’ thermal fluxes near 70 and 1,200 µm (see
Table 5S and refs. 11,22) in millijansky are compared to various models discussed in the text, assuming
a radius RE=1,163 km and a standard emissivity22 ε=0.9 for the dwarf planet. Note that only an
upper limit is available at 24 µm (arrow). Green: expected flux from a black body with uniform
brightness temperature Tb=31 K. Red: expected flux using a Standard Thermal Model (STM), or
slow rotator, with a sub-solar temperature Tss=35 K. Blue: expected flux using a Isothermal Latitude
Model (ILM), or fast rotator, with an equatorial temperature Teq=31.7 K. All models agree to within
1.5σ or better with the 70 and 1,200 µm measurements, and thus describe satisfactorily the data.

Supplementary Table 4S | Formulae to calculate temperatures

slow rotator (STM) equator-on fast rotator (ILM)

T = Tss · cos1/4(θ) T = Teq · cos1/4(φ)

Sν = πε
(

RE

∆

)2 ·
∫ π/2

0
sin(2θ)Bν [T (θ)] dθ Sν = 2ε

(

RE

∆

)2 ·
∫ π/2

−π/2
cos(φ)2Bν [T (φ)] dφ

Tss = T0 · [(1− pVq)/(εη)]
1/4

Teq = T0 · [(1− pVq)/(πεη)]
1/4

Sν = π
(

RE

∆

)2 ·Bν (Tb)

The third line of Table 4S provides the thermal equilibrium equations that relate Tss and Teq to
Bond’s albedoA=pVq, where pV is the geometric albedo in visible band (where most of the solar flux is
emitted), q is the phase integral and η is the beaming factor describing the effects of surface roughness
(which enhance the thermal radiation at low phase angles), following the NEATM43 and Hybrid
STM/ILM formalisms22. The quantity T0 is the equilibrium sub-solar temperature of a perfectly

diffusing and completely absorbing surface with unit emissivity at Eris distance, T0=[F⊙(r)/σSB]
1/4,

where F⊙(r) is the solar flux integrated over all wavelengths at distance r from the Sun, and
σSB=5.670×10−8 W m−2 K−4 is the Stefan-Boltzmann constant. Using F⊙(1 AU)=1367 W m−2,
and r=96.9 AU, we obtain T0=40.0 K. Solutions in terms of Tss and Teq are found in Table 5S.

Finally, the fourth line of Table 4S relates the flux density Sν to the disk-averaged brightness
temperature Tb of the dwarf planet, i.e. the temperature of a perfect black body with Eris’ size that
would emit the flux density Sν toward the observer.
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Supplementary Table 5S | Thermal fluxes and temperature constraints for a 1,163 km radius

Wavelength Flux Tb Slow rotator Tss Fast rotator Teq

(µm) (mJy) (K)a (K)a (K)a

23.68 < 0.005 (Spitzer)b < 37.2 < 40.2 < 38.6

71.42 2.7±0.7 (Spitzer)b 30.0±1.2 33.5±1.4 31.7±1.3

1,199 1.27±0.26 (IRAM)c 38.0±7.5 46.8±9.3 43.6±8.7

a The error bars on temperature are dominated by errors on the fluxes, not on our radius determination.
b From ref. 22.
c From ref. 11.

In the slow rotation model, the 70 µm flux is fit with a sub-solar temperature Tss=33.5±1.4 K,
while the 1,200 µm flux gives Tss=46.8±9.3 K. A satisfactory compromise, matching both the Spitzer
and IRAM measurements close to their respective 1σ error bars, is achieved for Tss∼35 K (Fig. 5S).
In the fast rotation model, the 70 µm flux implies Teq=31.7±1.3 K, that satisfactorily fits the 70
and 1,200 µm data (Fig. 5S).

Finally, our occultation measurement provides the geometric albedo pV=0.96+0.09
−0.04. Adopting a

standard value ε=0.9 (ref. 22), the only two free model parameters are η and q in the third line
of Table 4S. Using the STM, i.e. Tss∼35 K and a plausible range from η=1 (no roughness) to
0.7 (large surface roughness), leads to q=0.49-0.66, which is fully consistent with Saturn’s brightest
icy satellites Mimas, Enceladus, Tethys, Dione and Rhea (q = 0.51-0.63), as inferred from their
geometric and bolometric albedos20, 23, see main text.

The ILM in contrast leads to extreme conditions for q. Even at the lower possible value Teq=31.7 K
and with 0.9>η>0.7, we obtain 0<q<0.24, an implausible range as bright objects also have large
phase integrals24. The situation is even worse if we note that the lower bound of 0.7 for η is actually
unrealistic in the absence of diurnal temperature variations44.

7 Limit on atmosphere

Eris’ atmosphere, if any, should be composed mainly of nitrogen N2 (or possibly argon Ar), plus traces
of methane CH4 (ref. 1). However, the atmospheric thermal structure is unknown. If the abundance
of methane in Eris’ atmosphere is similar to that of Pluto (∼0.5 %, ref. 4), then absorption of near-IR
solar radiation by CH4 may raise the upper atmosphere temperature. In this case, a rough estimate of
Eris’ upper atmosphere temperature can be simply obtained from the methane ‘thermostat-model’,
in which near-IR heating is balanced through emission in the 7.7 µm methane band45. With an
incoming solar flux at Eris ten times weaker than at Pluto, this model predicts an Eris’ upper
atmosphere temperature of 94 K (vs 106 K for Pluto). Then, a ‘Pluto-like’ thermal profile would
start near 30 K at the surface, and ramp up in a few kilometers-thick stratosphere to an isothermal
branch at 94 K in the upper atmosphere. Note that the Pluto thermostat-model45 assumes an
optically thin atmosphere. Although more detailed models46 show this not to be the case, the
optically thin approach still provides the correct upper atmosphere temperature, validating the above
scaling approach.

However, a 0.5% CH4 atmospheric abundance is unlikely for Eris. At Pluto, the elevated abundance
(compared to expectations based on vapor pressure equilibrium in an ideal N2-CH4 mixture) is best
interpreted as resulting from the presence of patches of pure, ‘warm’, methane ice. Those patches
are thought to be warmer than nitrogen ice by up to 10-15 K because the N2 temperature is largely
controlled by latent heat flux of a ∼10-µbar atmosphere, large enough to buffer an isothermal N2 frost
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and a spatially uniform atmospheric pressure. This is not the case for Eris, where the atmosphere
is presently at least 3 orders of magnitudes more tenuous than on Pluto, so that the local N2

ice temperature should be driven by local insolation conditions, not by sublimation/condensation
processes.

The dominant role of the latent heat flux over thermal flux in establishing the temperature of N2

can be expressed through the dimensionless parameter I=Lṁ/σSBT
4=LfrP/(csσSBT

4) where L is
the sublimation latent heat, ṁ the sublimation mass flux, P the atmospheric pressure, cs the speed
of sound, and fr is the fractional pressure difference between the saturated and actual atmospheric
pressure47. For large values of I, sublimation processes dominate the local energy flux from the
Sun (insolation) and the ice is forced to be isothermal. With the conditions prevailing at Pluto, one
obtains I=5,200, using a typical fr∼0.1 (ref. 47). At Eris, using a maximum pressure of ∼5 nbar,
and T=30 K, we obtain I <∼ 2, showing that the latent heat flux is at most comparable to the
thermal radiation flux from the surface.

Hence, the surface temperature of a N2 ice is likely to be primarily driven by local insolation
conditions. In particular, our predicted sub-solar temperature is at least 32 K (Table 5S), which
corresponds to a N2 equilibrium vapor pressure48 larger than 260 nbar, much higher than the upper
limit derived here. Consequently, a local N2 atmosphere might exist at Eris’ sub-solar point, and
that atmosphere could freeze out to undetectable levels (less than a few nbars) at the limb and on
the night side, as it is the case for Io49. Detailed models will be required to confirm this point.

Note that if there are regions covered by pure methane ice on Eris, they should not be significantly
warmer than N2. The bulk methane abundance on Eris’ surface1, 10%, is similar to the solubility
limit of CH4 in N2 (ref. 50), suggesting the formation of pure ice grains. Assuming that such pure
CH4 ice grains exist but are at the same temperature as N2, the atmospheric CH4/N2 is given by
the ratio of their vapor pressures at ∼30 K, i.e. a few times 10−5 at most. If pure methane grains
are not present and the CH4/N2 surface ratio is 10 %, the atmospheric CH4/N2 is further decreased
by a factor 10.

We conclude that the probable range of methane abundance in Eris’ atmosphere is 10−5–10−6.
Although detailed models would be needed, this is likely unsufficient to lead to a significant strato-
sphere, and we favor the case where any Eris’ atmosphere is isothermal near ∼30 K. More precisely,
when considering such atmospheres, we have assumed that the pressure at the surface corresponds
to the saturation value at a given temperature48. We have generated synthetic light curves (see
Fig. 3) caused by a tenuous atmosphere using a ray tracing code, as detailed in ref. 29. Assuming a
N2 isothermal atmosphere near 30 K, we derive an upper limit of about 1 nbar (1σ limit), see Fig. 3.
Assuming a Pluto-like atmosphere (30 K near the surface and 94 K in the upper atmosphere), we
would obtain upper limits larger by a factor of 3-4 compared to the isothermal model.

We can also place upper limits of about 1 nbar for isothermal pure methane or pure argon atmo-
spheres. In order to sublimate at that pressure48, the methane ice should be at about 37 K. As our
surface temperature estimates are comparable to or smaller than those values, it is normal that a
CH4 atmosphere escaped detection.

Finally, we note that Eris, if indeed covered by N2 ice, might develop an atmosphere as it approaches
perihelion, at 37.8 AU. In that case, the N2 ice temperature will be buffered by the nitrogen atmo-
sphere, implying a constant temperature on night and day sides. Assuming a maximum Bond albedo
of 0.7 (typical of bright objects like Enceladus23), we expect a surface equilibrium temperature of at
least ∼35 K, large enough to maintain a 2 µbar or more Pluto-like atmosphere. This atmosphere
might collapse when Eris recedes from perihelion, thus explaining its current bright surface caused
by a thin nitrogen-ice coating.
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