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UPDATED ORBIT OF APOPHIS WITH RECENT OBSERVATIONS

D. Bancelin1, F. Colas1 , W. Thuillot1 , D. Hestroffer1 and M. Assafin2

Abstract. Asteroid Apophis (previously designed 2004 MN4) was first discovered in June 2004. From its
first observations, Apophis was revealed to be a special study case in as much as, it reached the level 4 of
Torino scale with a high probability of collision in 2029. New observations eliminated all danger for 2029.
But, because of a deep close encounter in 2029 (∼38000 km), the asteroid will be put on a chaotic-like orbit
and some risks of collision in 2036 occur if the asteroid goes through a very small region called keyhole.
Now, its orbit is quite well known and thanks to additional observations, the risk for the short term seems
to disappear. But what about the long term? As far as the Earth-impact threat study is concerned, the
deep 2029-close encounter is an opportunity for space missions towards Apophis. With our technologies,
to deflect an asteroid, we can only act from the source. Many deflection missions were studied, from the
hardest (nuclear weapons), to the softest (shadow mission). But in order to prepare such missions, we have
to be sure that the asteroid is really on an impact trajectory. Moreover, if it is the case, we have to be sure
that it won’t be put on the trajectory of other keyholes. To this aim, we need a good knowledge of the 2029
region uncertainty and we will analyse the impact of the new observations of March 2011.
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1 Introduction

Near-Earth Asteroids (NEAs) are objects orbiting near the Earth orbit. They are transient bodies that come
from the Main Belt Asteroids (MBA). They are generally transported through an interplay of collisions, non-
gravitational forces drift and secular resonance, among other sources. NEAs are generally classified into four
dynamical families: the Apollos and Atens asteroids that cross twice the orbit of the Earth; the Amors and
Atiras which orbiting respectively above and under the Earth’s orbit. Among those four categories, some of
them can become threatening for the Earth. They are called Potentially Hazardous Asteroids (PHAs) because
they can come very close to the Earth. Those objects are characterized by a MOID<0.05 AU (Minimum Orbit
Intersection Distance (Gronchi 2005)) which acts as a warning indicator and an absolute magnitude H<22.
Objects in this category will be under surveillance and will need special monitoring.
Among the known PHAs, asteroid (99942) Apophis is the more emblematic. It belongs to the Aten family and
it is the closest approacher to the Earth in as much as it will pass at about 38000 km from the Earth’s center
in April 2029. It will pass below the position of geosynchronous orbit and will be visible to naked eye. Apophis
became a study case since its discovery in that, it remained dangerous for few days because of a possible impact
with the Earth in 2029, with an unprecedented probability estimated to 2.7%. Since, additional observations
ruled out every possibility of impact in 2029 but others remain in the future. The most popular one is the 2036-
threat, but at the epoch of October 7th 2009, chances of crashing were estimated at 1/250000 by the Sentry/JPL
website∗.
The last observation of Apophis was done in 2008. After a long period of unfavorable conditions for observations,
Apophis has been re-observed in March 2011 at Pic du Midi observatory (French Pyrenean) and Magdalena
Ridge Observatory (New Mexico). We report here the new orbit obtained from the adjustment of all data
available at MPC† and new sketch of impacts for the next century. We will also discuss on other sources of
uncertainty remaining on Apophis’s orbit.

1 Institut de Mécanique Céleste et de Calcul des Éphémérides, 77 Avenue Denfert-Rochereau 75014 Paris, France
2 Universidade Federal do Rio de Janeiro, Observatorio do Valongo, Ladeira Pedro Antonio 43, CEP 20.080 - 090 Rio De Janeiro
RJ, Brazil
∗http://neo.jpl.nasa.gov/risk/
†http://www.minorplanetcenter.net/
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2 2029-close encounter study

During the 2029-close encounter, the gravitational perturbation of the Earth will be so important that the
trajectory of Apophis will be very altered. As a matter of fact, the perturbation will be so deep that Apophis
will move from the Aten (defined by the semi-major axis a< 1.0 and aphelion Q> 0.983) to the Apollo family
(defined by a> 1.0 and perihelion q≤ 1.017) (Fig. 1).

Fig. 1. Time evolution of the semi-major axis of Apophis. The deep close encounter in 2029 will lead to a dynamical

change on Apophis’s dynamic. It will go from the Aten family (a< 1.0) to the Apollo family (a> 1.0).

Because of this strong deflection, Apophis 2029-post orbit will be chaotic-like. As a matter of fact, a small
change on the initial orbital elements or on the dynamical model used will lead to a certain uncertainty on
Apophis’s location after 2029. We do expect both asteroid and the Earth to meet again in the future after k

revolution of Apophis around the Sun and after h years. Those encounters are called resonant return (Valsecchi
et al. 2003) and are defined by:

k×Tap = h×T⊕

where Tap is the 2029-post period of Apophis and T⊕ the period of the Earth. Using this relation, we can find
the date of resonant return and the 2029-post period range of Apophis associated. Tab. 1 shows some resonant
returns some years after the encounter.

Table 1. Resonant returns after the 2029-close approach. The period range correspond to the 2029-post period that

Apophis should have in order to meet Earth again.

Year Resonance 2029-post period range
[days]

2034 4:5 [456.2:456.9]
2035 6:5 [437.9:438.6]
2036 7:6 [425.7:426.5]
2037 8:7 [417.1:417.8]
2038 9:8 [410.5:411.3]
2046 17:15 [413.6:414.3]
2048 19:17 [407.9:408.6]
2051 22:19 [422.5:423.3]

As observations contain errors (assumed as gaussian), the orbital elements obtained from the least-squares
method will be given with their uncertainties provided by the covariance matrix. This matrix gives the 6-
dimensions region of confidence of the orbital elements. When this region is small, this region can be approximate
to an ellipsoid. When propagating this covariance matrix, it is possible to estimate the uncertainty related to
the distance of closest approach in 2029. To better represent this uncertainty, we can study the geometry of
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the close encounter in the b-plane‡ (Valsecchi et al. 2003). This plane better represents the state of an asteroid
approaching the Earth. It passes through the Earth’s center and is perpendicular to the geocentric velocity
of the asteroid. Thus, the object will have two geocentric coordinate (ξ,ζ) and the projection of the ellipsoid
uncertainty in this plane is an ellipse centered on the nominal value of (ξ,ζ). Its semi-major and semi-minor axis
are given respectively by the 3σζ and 3σξ standard deviations. Thus, the distance of closest approach is given by
√

ξ2+ ζ2. Besides, while some resonant returns lead only to close approaches, others can lead to collision. Using
Monte Carlo technique for sampling virtual asteroids (VAs) in the region of confidence, each VAs propagated
can become virtual impactors (VIs) if they can reach a distance close or less to the Earth radius. To estimate
the risk of collision, it is thus possible to find the region in the sky where all VIs have to pass in order to collide
the Earth in the future. Those regions are called keyholes. They are narrow regions and the most famous
keyhole of Apophis is the 600 meters 2036-keyhole. Keyholes can be primary when they are the consequence
of one close encounter, and secondary when they are the consequences of two consecutive close encounters. VIs
can also impact at both ascending or descending node. Thus, it is possible to map the uncertainty region and
the location of the keyholes’ center in the 2029-b-plane. Fig. 2 shows the 3σ ellipse uncertainty which size is
(3σξ;3σζ) = (12;73) km. The distance of close approach is ∼ 38080 km and the position of keyholes are also
indicated.

Fig. 2. 2029-b-plane of Apophis. The coordinates of the ellipse’s center are indicated as well as the location of the center

of primary (⋆) and secondary keyholes leading to collision at ascending node (�) and descending node(�). The position

of the famous 2036-keyhole is also indicated.

The size of the ellipse uncertainty, its position and the location of keyholes depend on the observations avail-
able, their accuracy and the data arc length. Of course, keyhole have fixed position and when new observational
data are added, the position of the ellipse can shift and thus get closer or go away from some keyholes. The
next section will treat this case for the new optical data of March 2011. The dynamical model used for all
computations includes all planets, the Moon, relativistic perturbations and the gravitational perturbations of
Ceres, Pallas, and Vesta. The numerical integration was performed with a Lie series integrator (Bancelin et al.
2011).

‡Also called target plane
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3 Observations of March 2011

Apophis was observed at Pic du Midi Observatory located in the French Pyrenean mountain (altitude 2800
m) with a 1meter telescope. The conditions of observation were quite challenging because, the asteroid was
visible in the sky with a magnitude of 21 with a high velocity ∼ 2.7 arcsec/min and according to the IMCCE
website§, the solar elongation was around 49◦. A preliminary astrometry of the CCD images was made using
Astrometrica Tool¶ and the mostly used USNO-B1.0 catalog was chosen for the positions reduction. A new
orbital solution and covariance matrix was thus provided using OrbFit package‖ and thus, the propagation of
this new solution and the matrix will give us the new position of the asteroid and the ellipse uncertainty in
the 2029-b-plane. On Fig. 3 are represented both ellipses computed without March 2001 data (blurred ellipse)
and with March data (solid ellipse). One can see that the new ellipse is upper-shifted and there is no overlap
between those ellipses. As a matter of fact, our results show that Apophis seems to pass ≈ 600 km further
that the distance previously computed. Besides, those new observations enable to reduce the uncertainty of the
ellipse which size is (3σξ;3σζ) = (9;46.5) km.
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Fig. 3. 2029-b-plane of Apophis. The blurred ellipse was computed using data spanning 2004-2008 and the solid one

was computed using 2004-2008 data and March 2011 observations.

Because of this, Apophis seems to move away from 2036-keyhole and to get closer to 2037-keyhole. The new
relative positions of those keyholes are indicated in Tab. 2.

Table 2. Relative positions of 2036 and 2037 keyholes from the nominal ellipse center, without and without March 2011

observations.

Without March data With March data
2036 1181 km 1781 km
2037 2476 km 1875 km

This new scenario gives a new sketch for impact probabilities because of the vicinity of other keyholes. Tab. 3
gives the relative distance of the center of the closest keyholes from the center of the ellipse as well as there size

§http://www.imcce.fr
¶http://www.astrometrica.at/
‖http://adams.dm.unipi.it/orbfit/

http://www.imcce.fr
http://www.astrometrica.at/
http://adams.dm.unipi.it/orbfit/
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(when it can be determined) and the related impact probability. When the size is set to < 1 it means that only
one impact point has been found.

Table 3. Position of the closest keyholes from the center of the ellipse uncertainty. Their size are also indicated as well

as their impact probabilities. The color code is the same as on Fig. 1

Distance from Keyhole Impact
ellipse center (km) size (m) probability

2068 250 < 1 9.5e-08
2068 500 40 1.1e-06
2069 355 90 1.6e-06
2069 700 110 1.0e-06
2077 730 65 9.5e-08
2085 250 < 1 9.5e-08
2087 355 < 1 9.5e-08
2088 42 < 1 9.5e-08

4 Uncertainties

Those results can raise some questions. Because of the lack of overlap between the two ellipses, we can wonder
if strong non-gravitational forces do not act on this asteroid or if other sources of uncertainty remains on its
orbit.

4.1 Yarkovsky effect

The main non-gravitational effect acting on small bodies is Yarkovsky effect (Vokrouhlický et al. 2000). Yarkovsky
effect leads to a variation of the semi-major axis in a long timescale: Because of the difference of temperature at
the surface of the asteroid, the infrared emission, from the surface, of the absorbed solar radiation is anisotropic.
This leads to a recoil force affecting the orbital motion of the asteroid. The main effect lies on a secular drift
of the semi-major axis (increasing or decreasing depending on the value of the spin obliquity). Objects with
diameter ≤20km are sensitive to Yarkovsky effect. Its impact on Apophis’s orbit has already been studied
in Chesley (2006) and Giorgini et al. (2008). Those authors concluded on a displacement on the position of
Apophis in 2029 at about 300 km in distance. But, regarding our results, Yarkovsky alone can not explain the
shift of ∼ 600 km in distance in 2029.

4.2 Catalog biases

Chesley et al. (2010) showed that biases exist in stellar catalog, especially in the widely used USNO-B1.0 catalog
(used for our astrometric reduction) and proposed a method to remove them from astrometric measurements.
This method has been recently implemented in the OrbFit package in order to remove the biaises in (α, δ). An
exercise has to be done in order to estimate the impact of such treatment using the new observations.

5 Conclusions

The new observations of March 2011 enable to rule out the possibility of collision with the Earth in 2036. But
the important shift found allow us to think that strong non gravitational forces act on this asteroid. Besides,
some other uncertainties may participate in this moving. As mentioned in the previous section, a debiaised
treatment has to be done on the astrometric data. Other areas may also be exploited. We can consider an other
independent software for the astrometric reduction and also an improvement of the dynamical model used (i.e.
including J2 or J4 of the Earth).

The authors are grateful to F. Vachier and M. Birlan for the astrometric reduction of Apophis’s observations and also to L. Magana,
undergraduate trainee at IMCCE for her work on the observations planning.
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