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Abstract

We consider the problem of reliably broadcasting information in a multihop asyn-
chronous network that is subject to Byzantine failures. That is, some nodes of the network
can exhibit arbitrary (and potentially malicious) behavior. Existing solutions provide de-
terministic guarantees for broadcasting between all correct nodes, but require that the
communication network is highly-connected (typically, 2k + 1 connectivity is required,
where k is the total number of Byzantine nodes in the network).

In this paper, we investigate the possibility of Byzantine tolerant reliable broadcast be-
tween most correct nodes in low-connectivity networks (typically, networks with constant
connectivity). In more details, we propose a new broadcast protocol that is specifically
designed for low-connectivity networks. We provide sufficient conditions for correct nodes
using our protocol to reliably communicate despite Byzantine participants. We present
experimental results that show that our approach is especially effective in low-connectivity
networks when Byzantine nodes are randomly distributed.

1 Introduction

In this paper, we revisit the problem of reliably broadcasting information in an arbitrary
shaped network that is subject to Byzantine failures. As distributed systems and networks
grow larger, faults and attacks are more likely to appear and resiliency to those faults needs to
be adressed in the very early design stages of the protocols that target those systems. One of
the strongest fault models is Byzantine [11]: the faulty node behaves arbitrarily. This model
encompasses a rich set of fault scenarios. Moreover, Byzantine fault tolerance has security
implications, as the behavior of an intruder can be modeled as Byzantine. However, in most
studies to date, Byzantine faults are considered in completely connected networks.

One approach to deal with Byzantine faults is by enabling the nodes to use cryptographic
operations such as digital signatures or certificates. This limits the power of a Byzantine node
as a correct node can verify the validity of received information and authenticate the sender
across multiple hops. However, this option may not be available. For example, the nodes
may not have enough resources to manipulate digital signatures. Moreover, cryptographic
operations implicitly assume the presence of a trusted infrastructure: secure channels to a
key server or a public key infrastructure. Establishing and maintaining such infrastructure in
the presence of Byzantine faults may be problematic.
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Another way to limit the power of a Byzantine process is to assume synchrony: all pro-
cesses proceed in lock-step. Indeed, if a process is required to send a message with each pulse,
a Byzantine process cannot refuse to send a message without being detected. However, the
synchrony assumption may be too restrictive for practical systems.

Related works Many recent Byzantine-robust protocols make use of cryptography (see
[3, 5] and references herein) to contain the influence of Byzantine nodes. As previously
stated, this requires a trusted infrastructure that we do not assume.

Cryptography-free Byzantine failures have first been studied in completely connected net-
works [11, 1, 12, 13, 16]: a node can directly communicate with any other node. If the
underlying network is not completely connected (as are most networks), such a setting raises
the problem to reliably transmit information between nodes that are not direct neighbors.

In practice, broadcasting a message in the network requires to rely upon other nodes.
Dolev [4] considers Byzantine agreement on arbitrary graphs. He states that, for agreement
in the presence of up to k Byzantine nodes, it is necessary and sufficient that the network
is (2k + 1)-connected, and that the number of nodes in the system is at least 3k + 1. Also,
this solution assumes that the underlying graph is known to every node, and that nodes
are scheduled according to the synchronous execution model. Nesterenko and Tixeuil [19]
relax both requirements (graph is unknown and scheduling is asynchronous) yet retain 2k+1
connectivity for resilience and k + 1 connectivity for detection (that is, detecting that there
is at least one Byzantine node in the network). In a low-connectivity network such as a
torus (where nodes have degree at most four), both approaches can cope only with a single
Byzantine node, independently of the torus size.

Byzantine resilient broadcast was recently investigated in the context of radio networks:
each node is a robot or a sensor with a physical position. A node can only communicate with
nodes that are located within a certain radius, called neighbors. Broadcast protocols have
been proposed [10, 2] for nodes organized on a grid (the wireless medium typically induces
much more than four neighbors per node, otherwise the broadcast does not work). Both
approaches are based on a local voting system, and perform correctly if every node has less
than a 1/4π fraction of Byzantine neighbors. This criterion was later generalized [20] to other
topologies, assuming that each node knows the exact topology. Again, in low-connectivity
networks, the local constraint on the proportion of Byzantine nodes in any neighborhood may
be difficult to assess.

A notable class of algorithms tolerates Byzantine faults with either space [15, 18, 21] or
time [14, 9, 8, 7, 6] locality. Yet, the emphasis of space local algorithms is on containing the
fault as close to its source as possible. This is only applicable to the problems where the
information from remote nodes is unimportant such as vertex coloring, link coloring or dining
philosophers. Also, time local algorithms presented so far can hold at most one Byzantine
node and are not able to mask the effect of Byzantine actions. Thus, the local containment
approach is not applicable to reliable broadcast.

Our contribution All aforementioned results rely on a strong connectivity of the commu-
nication graph, and on Byzantine proportions assumptions in the network. In other words,
tolerating more Byzantine nodes requires an increase of the degree of each node, which can
be a heavy constraint on large networks such as a peer-to-peer overlays.

In this paper, we introduce the idea to trade the perfectly reliable communication between
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correct nodes for the ability to support low-connectivity communication graphs with many
Byzantine nodes. Informally, we accept that a small minority of correct nodes are denied
reliable communication, provided that a large majority of correct nodes can reliably commu-
nicate. Such a loss in safety guarantees looks acceptable to us since, by hypothesis, many
Byzantine nodes (with arbitrary behavior) are already present in the system. Also, our results
demonstrate that this tradeoff permits to tolerate a high number of Byzantine nodes, even
in constant connectivity networks such as grids or torus. Yet, experimental results show that
our scheme preserves the communication capabilities of a huge majority of correct processes.

Our approach is not based on voting proportions, but on control zones and authorizations.
Intuitively, control zones act as filters in the network: they limit the diffusion of Byzantine
messages.

The sequel of the paper is organized as follows. In Section 2, we define a new broadcast
protocol based on control zones. In Section 3, we prove sufficient conditions to achieve reliable
communication in a particular subgraph of the network, using our protocol. In Section 4, we
provide an experimental evaluation of our protocol on torus and grid shaped networks, with
randomly distributed Byzantine failures. Using the sufficient conditions of Section 3, we
evaluate the probability for two randomly choosen nodes to communicate reliably.

2 Description of the protocol

In this section, we give an informal description of our protocol, set the formal background,
and describe how the protocol is locally executed.

2.1 Informal Description

The network is described by a set of processes, called nodes. Some pairs of nodes are linked
by a canal, and can send messages to each other: we call them neighbors. The network is
asynchronous: the nodes can send and receive messages at any time. Our only hypothesis is
that any message that is sent is eventually received.

A node may want to broadcast a specific information m0 to the the network. For instance,
in a sensors network, m0 can be a temperature; in a mobile robots network, m0 can be the
position of the current robot; etc. In a network where all nodes are correct, the following
would happen:

• A given node p sends a message containing the couple (p,m0) to its neighbors,

• the neighbors of p send (p,m0) to their neighbors,

• and so forth, until every node receives (p,m0). Then the entire network knows that p
broadcasted the information m0.

In our setting however, some nodes can be Byzantine and send arbitrary messages. Those
messages are potentially malicious. For instance, a Byzantine node can send (p,m1), with
m1 6= m0, to make the network believe that p broadcasted the information m1. Therefore,
one single Byzantine node can lie about the information of every node, and then deceive the
whole network.

To limit the action of Byzantine nodes, we define a set of control zones. A control zone is
defind by:
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Figure 1: Example of control zone

Figure 2: Principle of a control zone

• Its core, an arbitrary set of nodes.

• Its border, a node-cut isolating the core from the rest of the network.

An example of control zone is given in Fig. 1. The important point is that messages must
pass through the border to access the core.

Here is the main idea of the protocol:

• When a message enters the core of a control zone, an authorization is broadcasted on
its border.

• When the same message wants to exit the core, this authorization is required.

This mechanism does not disturb the broadcasting of correct messages.
Now, suppose that a Byzantine node is in the core of the control zone, and sends a lying

message (p,m1), whereas p is not in the core of the control zone. Then, this message never
gets the authorization to exit the core, as it never entered it. This is illustrated in Fig. 2.

Intuitively, this mechanism of control zones enables to limit the broadcasting of Byzantine
messages. The underlying idea is to define a lot of control zones on the network, intersecting
each other, in order to minimize the broadcasting of Byzantine messages. Then eventually,
under certain conditions, we could achieve reliable broadcast in a specific part of the network.
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2.2 Definitions and Hypothesis

2.2.1 Network Model

Let (G,E) be a non-oriented graph representing the topology of the network.

• G denotes the nodes of the network.

• E denotes the neighborhood relationships: two given nodes are or are not neighbors. A
node can only send messages to its neighbors.

Let Corr be the set of correct nodes. These nodes follow the protocol described further.
We assume that the other nodes are totally unpredictable (Byzantine).

We assume asynchronous message passing: any message sent is eventually received, but
it can be at any time. We assume that, in an infinite execution, any process is activated
inifinitely often. We make no hypothesis on the order of activation of the processes. We
assume local topology knowledge: each node knows the identifiers of its neighbors. Therefore,
its direct neighbors cannot lie on their identity when sending a message. Also, a slightly
stronger topology knowledge is required (see definition of myCtr in 2.2.4).

2.2.2 Control zones

A set of nodes S is connected if, for any nodes p and q in S, there exists a chain of neighborhood
relationships linking p and q. A node-cut is a set of nodes C such that G\C is disconnected.

Definition 1 (Control zone) A control zone is a pair (Core,Border) of disjoint, connected
node sets, such that Border is a node-cut isolating Core from the rest of the network.

We denote the core and the border of a control zone z by core(z) and border(z).
Before running the protocol, we choose an arbitrary set Ctr of control zones. These are

the control zones used in the protocol.

2.2.3 Messages formalism

In the protocol, two types of messages can be exchanged:

• Standard messages, of the form (s,m): a message claiming that the node s (source)
initially sent the information m.

• Authorization messages, of the form (s,m, z): a message authorizing the standard mes-
sage (s,m) to exit the control zone z.

2.2.4 Attributes of the correct nodes

Each correct node p posesses two static attributes:

• m0: the information that p wants to broadcast.

• myCtr: set of control zones z ∈ Ctr such that p ∈ border(z). We assume that, for each
zone z ∈ myCtr, p knows which nodes belong to core(z) and border(z).

It also possesses three dynamic attributes:
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• Wait: set of messages received, but waiting for an authorization (initially empty).
When (s,m, q) ∈ Wait, it means that p received the standard message (s,m) from a
neighbor q.

• Auth: set of authorizations received (initially empty). When (s,m, z) ∈ Auth, it means
that p has received the authorization for the standard message (s,m) on the control
zone z.

• Acc: set of accepted messages (initially empty). When (s,m) ∈ Acc, it means that
p has received (s,m) and all the corresponding authorizations, and has sent it to its
neighbors.

The attribute X of a node p is denoted by p.X.

2.3 Local Execution of the Protocol

The protocol is locally executed by each correct node.
Let p be the identifier of the current node executing the protocol. Wait, Auth, Acc,

myCtr and m0 refer to the corresponding attributes of p.
The protocol contains the following actions:

• Send a particular message to the neighbors of p.

• Add an element x to a set X (X := X ∪ {x}).

The protocol is divided in four sections, executed in specific moments: INIT, ENTER,
DIFF and EXIT.

2.3.1 INIT - Initial broadcast

Executed initially.

• Send (p,m0) to all neighbors.

• Add (p,m0) to Acc.

• ∀z ∈ myCtr, send (p,m0, z) to all neighbors.

2.3.2 ENTER - Message entering control zones

Executed when a standard message (s,m) is received from a neighbor q.

• If (s,m) ∈ Acc, ignore it.

• Else, add (s,m, q) to Wait.

2.3.3 DIFF - Diffusion of authorizations

Executed when an authorization message (s,m, z) is received from a neighbor q.

• If (s,m, z) ∈ Auth, or q /∈ border(z), ignore it.

• Else:

– Add (s,m, z) to Auth.

– Send (s,m, z) to all neighbors.
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2.3.4 EXIT - Message exiting control zones

Executed when an element (s,m, q) of Wait verifies the following condition: ∀z ∈ myCtr,
such that q ∈ core(z) and s /∈ core(z), we have (s,m, z) ∈ Auth.

• Add (s,m) to Acc.

• Send (s,m) to all neighbors.

• ∀z ∈ myCtr, send (s,m, z) to all neighbors.

3 Properties of the protocol

In this section, we adopt the point of view of an omniscient observer, knowing the topology
of the network and the position of all Byzantine nodes. The following theorems enable to
determine sets of nodes satisfying certain properties in any execution: safety, communication,
reliability (see Definitions 4, 5, 6).

• In Theorem 1, we show how to determine the safe nodes (who never accept a false
message).

• In Theorem 2, we show how to construct a communicating node set (where all correct
messages are received).

• In Theorem 3, we show that a safe and communicating node set achieves reliable com-
munication.

Notice that it does not require that any correct node knows the position of the Byzantine
nodes: this is just a global vision of the network. These theorems are used in Section 4, to
evaluate the performances of the protocol for a given placement of Byzantine nodes.

We also analyze the message complexity of the protocol.

3.1 Notations and Definitions

We say that a correct node p accepts a message (s,m), when (s,m) is added to the set p.Acc.

Definition 2 (Correct and false messages) A message (s,m) is correct if m = s.m0.
Else, it is false.

Definition 3 (Correct path) Let S be a node set. Let p and q be two nodes of S. A correct
path on S between p and q is a serie (i1, . . . , in) of correct nodes of S such that:

• i1 = p.

• in = q.

• ik and ik+1 are neighbors.

Definition 4 (Safe node set) A node is safe if it never accepts a false message. A node
set is safe if all its nodes are safe.
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Definition 5 (Communicating node set) A set S of correct nodes is communicating if,
for any nodes p and q of S, q eventually accepts (p, p.m0).

Definition 6 (Reliable node set) A set S of correct nodes is reliable if, for any nodes p
and q of S, q never accepts a false message, and eventually accepts (p, p.m0).

3.2 Determination of a safe node set

The following theorem enables, under certain conditions, to determine a safe node set in the
network. The condition is the existence of a particular set Z of control zones, such that:

• The union of the cores and the union of the borders are disjoint.

• The union of the cores contains all Byzantine nodes.

Then, all the nodes outside of Z are safe. Notice that no correct node needs to determine Z:
we just have to know that this set exists.

Theorem 1 (Determination of safe nodes) If there exists a set Z of control zones z ∈
Ctr such that:

With Cores = ∪z∈Z core(z)
With Borders = ∪z∈Z border(z)

• (1) The node sets Cores and Borders are disjoint.

• (2) All Byzantine nodes are in Cores.

Then any node v /∈ Cores is safe.

Proof: The proof is by contradiction. Suppose the opposite: let (s,m) be any false message,
that is m 6= s.m0. And let v be the first correct node such that:

• (a) v /∈ Cores.

• (b) v accepts (s,m), that is: v is not safe.

Obviously, v did not accept (s,m) in INIT, as m 6= s.m0. So it was in EXIT. Thus, there
exists (s,m, q) ∈ v.Wait verifying the condition of EXIT. And the only way for (s,m, q) to
have joined v.Wait, is that v received (s,m) from q in ENTER. Then, two possibilities:

• Either q is a correct node, and accepted (s,m) in EXIT. As v is the first node to verify
(a) and (b), it implies that q ∈ Cores.

• Either q is a Byzantine node. Then, according to (2), q ∈ Cores.

So, in any case, q ∈ Cores. Therefore, let z ∈ Z be a control zone such that q ∈ core(z).
As v /∈ Cores, v /∈ core(z). But v is neighbor of q ∈ core(z). So, by definition of a control
zone (see Definition 1), v ∈ border(z): otherwise, the border would not be a node-cut isolating
the core.

Then, by definition of myCtr (see 2.2.4), z ∈ v.myCtr. As (s,m, q) verifies the condition
of EXIT, z ∈ v.myCtr implies that (s,m, z) ∈ v.Auth.

The only way for (s,m, z) to have joined v.Auth, is that v received (s,m, z) in DIFF, from
a neighbor in border(z). Let u be the first node of border(z) to send (s,m, z). As Cores and
Borders are disjoint, according to (2), u is correct. And u did not send (s,m, z) in DIFF:
otherwise, it would not be the first to do so. So it was in EXIT, implying that u accepted
(s,m). So u verified (a) and (b) before v. This contradiction achieves the proof. ✷
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3.3 Construction of a communicating node set

The following theorem enables to construct a communicating set node by node, when it is
possible. Let S be a given communicating set, and v a given correct node: then the theorems
tells us if S ∪ {v} is communicating, and so forth. The conditions are the following:

• The node v has a neighbor in S.

• We have enough correct paths (see Definition 3) to always receive the authorizations
required for the communication between v and S.

To initiate the construction of S: simply notice that any correct node p forms a communicating
node set {p}.

Theorem 2 (Construction of a communicating node set) Let S be a communicating
node set. Let v be a correct node verifying the following conditions:

• (1) v has a neighbor u ∈ S

• (2) Let Z be the set of control zones z ∈ Ctr, such that u ∈ core(z) and v ∈ border(z).
Then ∀z ∈ Z, there exists a correct path on border(z) between v and a node w ∈ S.

Then S ∪ {v} is also communicating.

Proof: We use Lemma 1 and Lemma 2, detailed below. According to these lemmas:

• ∀x ∈ S, v eventually accepts (x, x.m0) (Lemma 1)

• ∀x ∈ S, x eventually accepts (v, v.m0) (Lemma 2)

Then, according to Definition 5, S ∪ {v} is communicating.
✷

Lemma 1 Let there be the same hypothesis as Theorem 2. Then ∀x ∈ S, v eventually accepts
(x, x.m0).

Proof: Let x be a node of S.
As S is communicating, u eventually accepts (x, x.m0) in EXIT, and sends it to its neigh-

bors. So according to (1), v receives (x, x.m0) from u. To accept it, according to the condition
of EXIT, v only needs the authorizations (x, x.m0, z) with z ∈ Z (possibly less, if x ∈ core(z)).
Let us show that v eventually receives these authorizations.

Let z ∈ Z be. Then, according to (2), there exists a correct path on its border between v
and a node w ∈ S. As S is communicating, w eventually accepts (x, x.m0). So, according to
EXIT, w sends (x, x.m0, z) to its neighbors. So does each node of the correct path in DIFF,
until (x, x.m0, z) reaches v. Thus, the result. ✷

Lemma 2 Let there be the same hypothesis as Theorem 2. Then ∀x ∈ S, x eventually accepts
(v, v.m0).

Proof: Let x be a node of S.
First, let us establish two preliminary results:
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• (a) Initially, v sends (v, v.m0). So u receives (v, v.m0) from v. According to ENTER,
(v, v.m0, v) is added to u.Wait. As there is no zone z such that v ∈ core(z) and
v /∈ core(z), no authorization is required in EXIT. Thus, u eventually accepts (v, v.m0).

• (b) Let z ∈ Z be. Let y be any node of S in border(z).

– As z ∈ v.myCtr, v sent (v, v.m0, z) in INIT.

– According to (2), there exists a correct path on border(z) between v and w.

So w eventually receives the authorization (v, v.m0, z). S is a set of correct nodes, w ∈ S
and border(z) is connected. Thus, there also exists a correct path on border(z) between
w and y. Then y eventually receives (v, v.m0, z).

Now, let C1 be a configuration in which we have reached the states described in (a) and (b).
Then, in such a configuration, (v, v.m0) becomes indistinguishable from (u, u.m0). Indeed,
the only part of the protocol that could distinguish these messages is the condition of EXIT,
for the nodes of border(z) with z ∈ Z. But, as we have reached the state described in (b), all
these nodes have received the authorizations (v, v.m0, z), z ∈ Z. So EXIT behaves the same
way in both cases. Thus, as x eventually accepts (u, u.m0), x eventually accepts (v, v.m0).

This notion of indistinguishability is deliberately intuitive: the detailed proof is by ex-
haustion, and presents no particular interest. However, let us give the sketch of this proof.

As x eventually accepts (u, u.m0), let (A1(u), . . . ,An(u)) be the list of actions related to
(u, u.m0), by order of execution. These actions can be of the following types:

• p sends (u, u.m0) to q

• p sends (u, u.m0, z) to q, z ∈ Ctr

• p receives (u, u.m0) from q

• p receives (u, u.m0, z) from q, z ∈ Ctr

• p accepts (u, u.m0) from q

Let there be any configuration occuring after C1. Let k < n be such that:

• The actions (A1(v), . . . ,Ak(v)) have been executed.

• Ak+1(v) has not been executed yet.

Then, as Ak+1(u) eventually occurs, Ak+1(v) eventually occurs by the same mechanism.
Notice that Ak+1(v) can also occur by another mechanism: this one is by default. Thus, by
recursion, the result. ✷

3.4 Determination of a reliable node set

This theorem is the combination of the two previous theorems: we simply show that a safe
and communicating node set is reliable. In pratice, to determine a reliable node set, we just
have to:

• Determine a safe node set S1, if we manage to.
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• Construct a communicating node set S2.

• Make the intersection of S1 and S2.

Theorem 3 (Determination of a reliable node set) Let S1 be a safe node set. Let S2

be a communicating node set. Then S = S1 ∩ S2 is a reliable node set.

Proof: Let p and q be two nodes of S.

• As q also belongs to S1, q never accepts a false message.

• As p and q also belong to S2, q eventually accepts (p, p.m0).

Then, by definition 6, S is reliable. ✷

3.5 Message complexity

Let us evaluate the message complexity of this protocol when the whole network is a reliable
node set (according to Definition 6).

We define the following parameters:

• n, the number of nodes of the network.

• d, the degree of the network, that is: the maximal number of neighbors for a node.

• NCtr, the number of control zones in Ctr.

• NBorder, the maximal number of nodes in the border of a control zone.

Let u be any node. Let us evaluate the number of messages related to u:

• All nodes once accept and send (u, u.m0) to their neighbors, which makes at most dn
messages.

• All nodes on the border of a control zone z once send (u, u.m0, z) to their neighbors,
which makes at most dNBorderNCtr messages.

Thus, at most dn(n + NBorderNCtr) messages are sent in the network. Therefore, if we
assume that NBorder is o(1) and that NCtr is o(n), the message complexity is o(n2), the same
as a standard broadcast protocol (see 2.1).

4 Evaluation of the Protocol

In this section, we make an experimental evaluation of our protocol. We describe our method-
ology and our case of study, then comment on the results.
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4.1 Methodology

We want to evaluate the performances of our protocol for a given network topology and a given
choice of control zones. As we are most interested in obtaining a high proportion of correct
nodes which communicate reliably, assuming a probabilistic distribution of the Byzantine
nodes is a sensible option. It is also motivated by real constraints of actual networks that, we
believe, could be supporting our protocol: for instance, most peer-to-peer overlay networks
give newcomers a random identifier and thus a random position in the virtual topology for
the purpose of load balancing, and many virus propagation mechanisms use random epidemic
schemes to spread across networks. The main metric for evaluating the efficiency of a reliable
communication scheme is the probability for two correct nodes, selected uniformly at random,
to communicate properly.

Our evaluation scheme has the following input and output:

• Input : nB, the number of Byzantine nodes on the network, randomly distributed.

• Output : P (nB), the probability that two randomly choosen nodes communicate reliably.
That is: each node eventually receives the message of the other, and never accepts any
lying message.

To evaluate P (nB), we use simulations and a Monte Carlo method [17]. For a given
value of nB, we run a large number of simulations. The fraction of succesful simulations
converges to P (nB). It is actually impossible to simulate a distributed algorithm in the
presence of Byzantine failures. Indeed, it would imply to predict the worst possible behavior
of Byzantine nodes, which is a far too difficult problem. Also, giving a specific behavior to
faulty nodes would weaken the problem tremendously. Therefore, instead of simulating the
protocol, we use the theorems of Section 3.

Here are the main steps of a single simulation:

• Among the nodes of the network, choose nB nodes that are Byzantine, uniformly at
random. That is, all possible distributions of Byzantine nodes have the same probability
to occur.

• Use Theorem 3 to construct a reliable node set (see Definition 6). In the worst case,
this set is empty. An illustration of this step is given in 4.2.4.

• Choose two nodes uniformly at random. If both nodes are in the reliable node set, the
simulation is a success. Else, it is a failure.

Notice that we only construct one reliable node set, which may not necessarily be the best
one. Therefore, the estimated value of P (nB) is a lower bound of the real value of P (nB).
This is not a problem, as we only want to give guarantees.

4.2 Topology and Control Zones

In this subsection, we choose an particular network topology and a particular set of control
zones to perform our evaluation. Then we present an example of the construction of a reliable
node set.
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Figure 3: Toy example of safe, communicating and reliable node sets

4.2.1 Network Topology

We consider a torus network and a grid network. A torus network can be seen as a grid
network with a continuity between the left-right and up-down extremities. Our topology
choice is motivated by the fact that those are the most simple yet two-dimensional topologies
with fixed degree.

Definition 7 (Torus and grid) A N × N torus (resp. grid) network is a network such
that:

• Each node has a unique identifier (i, j) with 1 ≤ i ≤ N and 1 ≤ j ≤ N .

• Two nodes (i1, j1) and (i2, j2) are neighbors if and only if one of these two conditions
is satisfied:

– i1 = i2 and |j1 − j2| = 1 or N (resp. 1).

– j1 = j2 and |i1 − i2| = 1 or N (resp. 1).

4.2.2 Control Zones

Our protocol is given a set of square control zones. See 2.2.2 for the definition of a control
zone.

Definition 8 (Square control zone) A square control zone Sqr(i0, j0, w) is a pair (Core,Border)
such that:

• Core if the set of nodes (i, j) such that:

– i0 < i < i0 + w + 1

– j0 < j < j0 + w + 1

• Border is the set of nodes (i, j) such that:

– i = i0 or i0 + w + 1, and j0 ≤ j ≤ j0 + w + 1

13



– j = j0 or j0 + w + 1, and i0 ≤ i ≤ j0 + w + 1

The parameter w denotes the width of the control zone.

For instance, Figure 1 represents a square control zone of width 3; (i0, j0) corresponds to
the upper-left node of the border of the control zone.

The set of control zones Ctr used by the protocol (see 2.2.2) has parameter W , the order
of the protocol.

Definition 9 (Order of the protocol) A protocol of order W on a torus network is de-
fined by the following set Ctr of control zones:

• Ctr(W ) =
⋃

1≤w≤W,1≤i0≤N,1≤j0≤N Sqr(i0, j0, w)

For instance, Ctr(3) is the set of all square control zones of width 1, 2 or 3. Notice that
a node knowing its identifier (i, j) and the order W of the protocol can easily determine its
set myCtr (see 2.2.4), without any offline implementation.

4.2.3 Message complexity

Let us evaluate the exact number of messages sent, when the whole network is a reliable node
set.

Let n be the number of nodes of the network, andW the order of the protocol (according to
Definition 9). A square control zone of width w has 4(w+ 1) nodes on its border. According
to Definition 9, there are n square control zones of a given width w. Let u be any node.
Let us evaluate the number of messages related to u. First, all nodes once accept and send
(u, u.m0) to their 4 neighbors, which makes 4n messages. Second, all nodes on the border of
a control zone z once send (u, u.m0, z) to their 4 neighbors, which makes 4n

∑W
w=1

4(1+w) =
8nW (W + 3) messages. Thus, 4n2 standard messages are sent, the same as a standard
broadcast protocol (see 2.1). In addition, 8W (W + 3)n2 authorization messages are sent.
However, in practice, they can contain a hash code of the authorized message: they are
potentially way lighter.

4.2.4 Example of construction of a reliable node set

The main step of a simulation is the construction of a reliable node set, if it exists. Figure 3
represent a toy example (extracted from a supposedly larger network), for a protocol of order
3. Let us comment on this figure.

First, we determine a safe node set (see Definition 4), using Theorem 1. There actually
exists a set Z of square control zones satisfying the conditions of Theorem 1. The blank
squares correspond to the cores of the control zones of Z. These cores contain all Byzantine
nodes, and do not intersect the union of the corresponding borders. Here, having control
zones of width 3 is an advantage: with width 2, the upper-left group of Byzantine nodes
could not be neutralized.

Then, we construct a communicating node set S (see Definition 5), using Theorem 2. We
notice that the correct nodes surrounded by too many Byzantine nodes cannot be added to
S, as they do not satisfy the conditions of Theorem 2. Here, having control zones of width
3 is a drawback: the presence of these zones make the conditions of Theorem 2 harder to
satisfy, which limits the size of the communicating node set.

14



0 100 200 300 400 500 600 700 800

Number of Byzantine failures

0.0

0.2

0.4

0.6

0.8

1.0
Probability of existence of a reliable node set (torus)

Order 1
Order 2
Order 3
Order 4
Order 5

0 100 200 300 400 500 600 700 800

Number of Byzantine failures

0.0

0.2

0.4

0.6

0.8

1.0
Probability of existence of a reliable node set (grid)

Order 1
Order 2
Order 3
Order 4
Order 5

0 100 200 300 400 500 600 700 800

Number of Byzantine failures

0.0

0.2

0.4

0.6

0.8

1.0
Mean size of the reliable node set (torus)

Order 1
Order 2
Order 3
Order 4
Order 5

0 100 200 300 400 500 600 700 800

Number of Byzantine failures

0.0

0.2

0.4

0.6

0.8

1.0
Mean size of the reliable node set (grid)

Order 1
Order 2
Order 3
Order 4
Order 5

0 100 200 300 400 500 600 700 800

Number of Byzantine failures

0.0

0.2

0.4

0.6

0.8

1.0
Probability for two nodes to communicate reliably (torus)

Order 1
Order 2
Order 3
Order 4
Order 5
Explorer

0 100 200 300 400 500 600 700 800

Number of Byzantine failures

0.0

0.2

0.4

0.6

0.8

1.0
Probability for two nodes to communicate reliably (grid)

Order 1
Order 2
Order 3
Order 4
Order 5
Explorer

Figure 4: Influence of the parameters of simulation

Finally, we determine the reliable node set (see Definition 6), using Theorem 3. According
to this theorem, we simply take the intersection of the reliable and communicating node sets,
determined previously.

4.3 Experimental results

In Figure 4, we represented the influence of the number of Byzantine nodes and of the order
of the protocol. The left column gives the results for a 100 × 100 torus network. The right
column gives the results for the corresponding grid network, obtained by an edge-cut on the
torus. This edge-cut separates some control zones in 2 or 4 new zones. We consider that
these new control zones have independent identifiers.

The first row of Figure 4 represents the probability that a reliable node set exists. As
any correct node forms a communicating node set, this corresponds to the probability of
existence of a safe node set. That is, the probability that a set Z of control zones satisfies the
conditions of Theorem 1. Figure 4 shows that this probability increases with the order. To
give an illustration: a group of 3× 3 Byzantine nodes cannot be neutralized at order 2. But
with the new zones added at order 3, it becomes possible. And so forth.

The second row of Figure 4 represents the mean size of the reliable node set, when it
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exists. That is, the fraction of correct nodes covered by the reliable node set. Figure 4 shows
that this fraction decreases with the order. Indeed, increasing the order makes the conditions
of Theorem 2 harder to satisfy, as the set Z of Theorem 2 contains more zones. Therefore,
the construction of the communicating node set is made more difficult.

The third row of Figure 4 represents the probability P (nB) for two correct nodes, choosen
uniformly at random, to communicate reliably. In the previous plots, we showed that the order
of the protol had a positive influence on the existence of a reliable node set, but a negative
influence on its size. Therefore, an compromise between these two tendancies appears for
order 3, for which the probability is optimal.

It is difficult to compare our proposal with the high-connectivity based approaches [4, 19]
since they always assume the worst possible placement of Byzantine nodes. For example,
Explorer [19] has the sender use all paths and the receiver validates the first message coming
from 2k + 1 node-disjoint paths by a majority. So an asynchronous schedule in a torus may
always choose that node-disjoint paths going through Byzantine nodes arrive first, defeating
the protocol anytime the number of Byzantine is greater than 1. In order to maximize the
efficiency of Explorer in our context (i.e. assuming random placement of the nodes), we
force the sender to use exactly 4 node-disjoint fixed paths. Then, for a particular sender and
receiver, the Explorer protocol works if and only if Byzantine nodes are located on at most
one of those four paths. We present the corresponding guarantees of the modified Explorer
protocol in Figure 4. It turns out that our protocol outperforms the modified Explorer by
a significant margin. For example, if the goal probability is P (nB) ≥ 0.99, then on the grid
(resp. torus) topology, the modified version of Explorer can tolerate at most 5 (resp. 7)
Byzantine nodes. Our approach can tolerate up to 50 (resp. 80) Byzantine nodes.

5 Conclusion

In this paper, we showed that, if we accept that a small minority of correct nodes does not
communicate reliably in the presence of Byzantine failures, we make it possible to tolerate a
large number of those failures, even in a low-connectivity network. We proposed an experi-
mental methodology to obtain probabilistic guarantees, and illustrated this on torus and grid
shaped networks, with an uniform distribution of Byzantine failures. Yet, the same princi-
ple could be applied to any network and any distribution of Byzantine failures. However, it
requires to define a proper set of control zones to limit the Byzantine influence. Defining op-
timal sets of control zones for a given communication graph and Byzantine node distribution
is a challenging open question.
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