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Abstract The integration of the equations of motion in gravitational dynamical systems—

either in our Solar System or for extra-solar planetary systems— being non integrable in the

global case, is usually performed by means of numerical integration. Among the different

numerical techniques available for solving ordinary differential equations, the numerical

integration using Lie series has shown some advantages. In its original form [Hanslmeier and

Dvorak, 1984], it was limited to the N−body problem where only gravitational interactions

are taken into account.

We present in this paper a generalisation of the method by deriving an expression of the

Lie-terms when other major forces are considered. As a matter of fact, previous studies had

been made but only for objects moving under gravitational attraction. If other perturbations

are added, the Lie integrator has to be re-built. In the present work we consider two cases

involving position and position-velocity dependent perturbations: relativistic acceleration

in the framework of General Relativity and a simplified force for the Yarkovsky effect. A

general iteration procedure is applied to derive the Lie series to any order and precision. We

then give an application to the integration of the equation of motions for typical Near-Earth

objects and planet Mercury.
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1 Introduction

The integration of the equations of motion in gravitational dynamical systems, since they are

not integrable in closed form with more than 2 massive bodies involved, is usually performed

by means of numerical integration. This can be done over times scales of a few days or a

century for establishing ephemerides, or longer periods of several million years to establish

stability properties [Pál and Süli, 2007]. It concerns bodies in our own Solar System as well

as extra-solar planetary systems. Several algorithms have been used or developed in partic-

ular in celestial mechanics to solve ordinary differential equations (hereafter ODEs) such

as Runge-Kutta method, Everhart’s integrator, Bulirsch-Stoer, Adams, Lie Series, etc. Nu-

merical integration by means of Lie series [Hanslmeier and Dvorak, 1984], which is based

on generating the Taylor expansion of an ODEs solution, has shown some interest. It is a

high speed symplectic integrator adapted to the case of the N−body problem. The construc-

tion of Lie-series integrator was first investigated by Hanslmeier and Dvorak [1984], Delva

[1985] and Lichtenegger [1984]. It has also been developed for studying the stability and

dynamical evolution of Near-Earth Objects (NEOs) in the inner Solar System [Dvorak and

Pilat-Lohinger, 1999, Pál and Süli, 2007], or the stability of extra-solar systems [Schwarz

et al., 2005]. It has been developed to also integrate the case of varying masses [Dvorak and

Lichtenegger, 1983] and the damped oscillator [Dvorak and Hanslmeier, 1983].

In the previous works, a recurrence formula for the Lie-terms has been developed but

only for masses moving under their mutual gravitational attraction. As a consequence, it

cannot be used as such for masses (e.g. asteroids and comets) for which relativistic or non-

gravitational forces are non-negligible.

When dealing with comets, NEOs, highly eccentric orbits, and extra-solar systems, other

forces and acceleration can come into play. Objects close to their star with significant ec-

centricity will show a precession of their perihelion from the relativistic acceleration. Such

perihelion precession will affect the transit time determination in extra-solar planets quests

[Pál and Kocsis, 2008]. It can also affect general studies of long-term stability as it has been

put into evidence in our Solar System [Laskar, 2009], since secular resonances can eventu-

ally be avoided or induced from this additional frequency. It will also affect the ephemerides

of comets and NEOs because these can have small perihelion distance and large eccentrici-

ties. In addition to the relativistic acceleration, NEOs can also be affected by the Yarkovsky

effect (Vokrouhlický [1998], Bottke et al. [2002]) . This effect is caused by a recoil force of

anisotropically emitted thermal radiation and is of importance for small bodies (<∼ 20km in

diameter) close to the Sun, for much smaller bodies the solar radiation pressure will have

a larger influence. The Yarkovsky effect can be divided into a seasonal and diurnal effect,

depending on the orientation of the spin axis. It is the diurnal force that will have a major ef-

fect on the orbit of an asteroid, by yielding a secular variation of the semi-major axis [Bottke

et al., 2002].

Although the use of Lie-series for integrating the N−body problem has been studied

by Gröbner [1967] it was not successfully implemented until the major breakthrough from

Hanslmeier and Dvorak [1984] who provided a recurrence formula for practical use of the

series expansion. As a matter of fact, the Lie integrator has to be redesigned when other

forces are taken into account.

After a brief introduction of the Lie operator and use of Lie series for the numerical

integration of the N−body problem (see section 2), we present in section 3 a generalised

expression of the Lie Series integration by providing the recurrence formula applicable to

the case of a relativistic acceleration and a velocity-dependent force (applicable to the case

of the Yarkovsky effect). We give some numerical tests and an application to the integration
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of the equation of motions for NEOs and planet Mercury in section 4. We then conclude and

discuss future possible developments in section 5.

2 Lie operator and Lie series

2.1 Lie derivative

A brief sum up of Lie operator will be given in this section, as it has already been studied in

Hanslmeier and Dvorak [1984], Dvorak and Lichtenegger [1983], Eggl and Dvorak [2010].

The Lie operator D over a manifold of dimension N is defined as:

D =

N
∑

k=1

θk
∂·

∂zk

(1)

where θ = (θ1(z), ..., θN(z)) is a holomorphic function over a domain D in the z-space, that

is,it can be expanded in a converging power series, and z = (z1, ..., zN).

Applying n−times this operator on a function f(z), holomorphic over the same domain

D, we have:

D f =

N
∑

k=1

θk
∂ f

∂zk

; Dn f = D(Dn−1 f ) (2)

We remind here some useful properties of linearity and Leibniz-rule of Lie operator such as:

{

Dn( f +g) = Dn f +Dn g

Dn( f ·g) =
∑n

k=0

(

n
k

)

Dk f Dn−k g
(3)

The Lie-series are then defined as:

L(z, t) ≡

∞
∑

µ=0

tµ

µ!
Dµ f (z) µ ∈ N (4)

which is converging overD [Gröbner, 1967]. And from its similarity with the expansion of

the exponential function, we can write symbolically:

L(z, t) ≡ etD f (z) (5)

This expression can be used to solve a system of ODEs such as:

żk = θk(z) (6)

The solution is zk = etD (ξk), where ξk are the initial conditions, and D =
∑N

k=1 θk(ξ) ∂·
∂ξk

.

Similarly, the approximate solution of ż = θ(z) at time t+∆t is:

z(t+∆t) = L(z,∆t) = e∆tDz(t) (7)
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2.2 The N−body problem

We can apply the Lie integration method to solve the equations of motion of the N−body

problem. Since we will generalise this problem by including additional forces, we remind

here the general steps of the procedure for the purely gravitational N−body case as given in

Hanslmeier and Dvorak [1984].

According to the law of attraction, the Newtonian acceleration resulting from the forces

acting on a particle ν is:

ẍν =G

N
∑

µ=1,µ,ν

Mµ
(xµ −xν)

‖xµ −xν‖3
(8)

where G is the gravitational constant and xν the barycentric position vector of particle ν with

mass Mν. By introducing a new variable v, the 2nd order system (8) can be transform into a

system of 1st order differential equations.

ẋν = vν (9)

v̇ν = G

N
∑

µ=1,µ,ν

Mµ
(xµ −xν)

‖xµ −xν‖3
=GM⋆

N
∑

µ=1,µ,ν

mµ xνµ ρ
−3
νµ (10)

such as ρνµ = ‖xµ −xν‖ and xνµ = xµ −xν.

Here M⋆ is a conversion factor to express the mass Mµ of the perturbing body in the unit of

star mass. Its numeric value is equal to the central star’s mass of the planetary system. Thus

mµ is the mass of the perturbing body in the unit of star mass (or Solar mass if GM⋆= k2

with k representing the Gauss constant1).

The Lie operator for the Newtonian gravitational N−body system has been given by

Eggl and Dvorak [2010] and can be expressed as :

D =

N
∑

ν=1

















vν
∂·

∂xν
+GM⋆

N
∑

µ=1,µ,ν

mµ xνµ ρ
−3
νµ

∂·

∂vν

















(11)

According to Eq. (1) and (6) the solutions of Eq. (9) and (10) are given by the series expan-

sion:

xν(τ) = eτDxν(0) =

















∞
∑

n=0

τnDn

n!

















xν(0) (12)

vν(τ) = eτDvν(0) =

















∞
∑

n=0

τnDn

n!

















vν(0) (13)

where τ is the current step-size and is defined by:

τ = t j − t j−1

For this method to be of practical use, a recurrence formula has to be given to derive

any order of the Lie operator. This was given in Eggl and Dvorak [2010] for the N−body

problem:

Dnxν =GM⋆

N
∑

µ=1,µ,ν

mµ

n−2
∑

k=0

(

n−2

k

)

DkΦνµD
n−2−kxνµ (14)

1 G has to be converted first in AU3 kg−1 day−2
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where Φνµ = ρ
−3
νµ .

The evolution of Φνµ is given by:

DnΦνµ = ρ
−2
νµ

n−1
∑

k=0

an,k+1Dn−1−kΦνµD
kΛνµ (15)

the ai, j coefficients being defined for n ≥ 1:



















an,n = −3

an,k = an−1,k−1 +an−1,k for k > 1

an,1 = an−1,1 −2

Λνµ is defined by: Λνµ = xνµ ·vνµ and its evolution is ruled by:

DnΛνµ =

n
∑

k=0

(

n

k

)

Dn−k xνµD
k vνµ (16)

where

Dn vνµ = Dn+1 xνµ (17)

Now if additionnal forces or accelerations act on the particule ν, we have to re-write the

system (9), (10), the Lie operator (11), and derive a new recurrence formula to obtain the nth

derivative Dn of the Lie operator.

3 A generalisation of the Lie operator

This section is dedicated to a generalised expression of the Lie operator for position-dependent

and velocity-dependent forces acting on a particle ν. Let Hν be the contribution of all the

accelerations derived from those forces acting on body ν.

As in the previous section, the second order ODE is split into a system of six first-order

differential equations:

ẋν = vν (18)

v̇ν = Hν (19)

The Lie operator becomes:

D =

N
∑

µ=1

[

vµ ·
∂·

∂xµ
+Hµ ·

∂·

∂vµ

]

(20)

Applying D to x , the construction of the Lie terms begins as:

D0 xν = xν

D1 xν = vν

D2 xν = Hν

D3 xν = DHν
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From which we can deduce the recurrence formula for Dnxν and Dnvν as following:

{

Dn xν = Dn−2 Hν n ≥ 2

Dn vν = Dn+1 xν
(21)

The next step is to express Eq. (21) according to the expression of the forces which means

that we have to find a recurrence formula for Dn Hν. This will be done in the follow-

ing sections for three kinds of accelerations: gravitational (γγγG), relativistic (γγγR) and non-

gravitational accelerations (γγγY). Thus H = γγγG +γγγR +γγγY .

3.1 Lie terms for the gravitational acceleration

The gravitational acceletation γγγG/ν derived from the gravitational forces of N bodies acting

on a body ν is:

γγγG/ν =GM⋆

N
∑

µ=1,µ,ν

mµΦνµ,3xνµ (22)

Here we have introduced the new variableΦνµ,p= ρ
−p
νµ as it will be useful in the other sections.

From the first applications of the Lie operator on γγγG/ν:

DγγγG/ν = GM⋆

N
∑

µ=1,µ,ν

mµ
(

Φνµ,3 Dxνµ +DΦνµ,3 xνµ
)

(23)

D2γγγG/ν = GM⋆

N
∑

µ=1,µ,ν

mµ
(

Φνµ,3 D2 xνµ +2 DΦνµ,3 xνµ +D2Φνµ,3 xνµ
)

(24)

we can deduce the evolution of DnγγγG/ν:

DnγγγG/ν =GM⋆

N
∑

µ=1,µ,ν

mµ

n
∑

k=0

(

n

k

)

DkΦνµ,3 Dn−k xνµ (25)

The evolution of the DnΦνµ,p is ruled by:

DnΦνµ,p = ρ
−2
νµ

n−1
∑

k=0

an,k+1Dn−1−kΦνµ,pDkΛνµ (26)

with



















an,n = −p

an,k = an−1,k−1 +an−1,k for k > 1

an,1 = an−1,1 −2

and the algorithms for Dn xνµ and DnΛνµ are given respectively by Eq. (21) and (16).



7

3.2 Lie terms for relativistic acceleration

Because of their complexity, the integration of the EIH (Einstein-Infeld-Hoffman) equations

is very slow even using modern computers and are not suitable for long time integration.

Following Beutler [2005], the expression of the relativistic acceleration γγγR/ν used to generate

the Lie-terms is a lighter version (provided that the mass mν of the massless body is negligle

compared to the mass of the central star expressed as:

γγγR/ν =
GM⋆

c2
Φµν,3

[(

4GM⋆Φµν,1 − ṙ2
)

r+4(r · ṙ) ṙ
]

(27)

where c represents the speed of light and µ the Sun.

Here, r and ṙ are the heliocentric position and velocity of the body ν and are related with the

barycentric coordinates by:



















r = xν −xµ = xµν
ṙ = vν −vµ = vµν
r = ρµν

Equation (27) can be written as follows:

γγγR/ν =
GM⋆

c2
Φµν,3 (γγγ1 +γγγ2) (28)

where

{

γγγ1 = xµν
(

4GM⋆Φµν,1 −v2
µν

)

γγγ2 = 4vµνΛµν
(29)

In the same way, the first derivatives of DnγγγR/ν lead to the algorithm:

DnγγγR/ν =
GM⋆

c2

n
∑

k=0

(

n

k

)

DkΦµν,3 Dn−k (γγγ1 +γγγ2) (30)

We will now express the evolution of the Dnγγγi by watching the evolution of their first

derivatives. Using the Lie properties expressed in Eq. (3) there is no difficulty to find this

evolution. This approach leads to the recurrence formulas:















Dnγγγ1 =
∑

n
k=0

(

n
k

)

Dn−k xµν
(

4GM⋆DkΦµν,1 −
∑k

k′=0

(

k
k′

)

Dk′ vµνDk−k′ vµν
)

Dnγγγ2 = 4
∑n

k=0

(

n
k

)

DkvµνDn−kΛµν
(31)

We remind that the evolution of the Dnxν and Dnvν are given by Eq. (21) and the evolu-

tion of the DnΦνµ,p and DnΛνµ are given by Eq. (26) and Eq. (16).
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3.3 Lie terms for Yarkovsky acceleration

Yarkovsky force is a non-gravitational perturbation caused by a recoil force of an anisotrop-

ically emitted thermal radiation and acting on objects close to the Sun and having diameter

smaller than ≈20km [Bottke et al., 2002]. This force depends on the physical parameters

of the asteroid (diameter, spin period, spin obliquity, surface density, thermal conductivity,

etc...), and for many asteroids most of these physical parameters can be unknown. While

the radial component only affects the orbital velocity, the transversal component causes a

change of semimajor axis. Thus the Yarkovsky effect is the strongest non-gravitational force

acting on small bodies when comparing with the intensity of Poynting-Robertson and solar

radiation pressure effect.

This force can be decomposed into two effects [Vokrouhlický et al., 2000]:

– the diurnal acceleration that depends on the rotation frequency of the body around its

spin axis, is maximum when the spin vector is perpendicular to the orbital plane (it

means that obliquity is equal to 0◦ or 180◦) and causes a drift in semimajor axis (positive

or negative depending on the value of the spin obliquity).

– the seasonal acceleration that depends on the mean motion frequency of the object

around the Sun, acts when the spin is in-plane (with obliquity equals to 90◦) and causes

a steady decrease of the semimajor axis.

Many tests have been done to see the impact of Yarkovsky effect on the orbital mo-

tion of asteroids and potentially hazardous asteroids (PHAs) (Giorgini et al. [2008], Chesley

[2006]). Those authors show that the Yarkovsky force cannot be neglected as it has an ef-

fect on the post-close encounter orbit of PHAs. Although some physical parameters can be

unknown, it is possible to take this effect into account without any assumptions regarding

physical characteristics of asteroids.

Following Marsden [1976], the non-gravitational acceleration acting on comets can be

decomposed into three components: radial, transverse and normal. For asteroids, the main

non-gravitational perturbation due to the Yarkovsky effect is caused by the transverse com-

ponent. So, we can simply express the acceleration like:

γγγY = A2 g(r)T (32)

where T = (r ṙ− (ṙ · r)r/r)/h is the transverse unit vector (in the direction of motion). Here

(r, ṙ) are the heliocentric position and velocity of the asteroid and h = ‖r∧ ṙ‖ is the norm of

the angular momentum of the asteroid. The coefficient A2 is a non gravitational parameter

depending on the body. This parameter is generally accurately determined with three appari-

tions of a comet, or with optical and radar observations for asteroids. For instance, the value

of A2 for an asteroid is ≈ 10−14 AU/day2 and ≈ 10−8 AU/day2 for comets.

Finally, g(r) is a function depending on the heliocentric distance of the object. For Near-

Earth Objects, we can simply express this function as: g(r) =
(

1 A.U.
r

)2

Using the barycentric coordinates:

{

T =
(

ρµν xµν − (vµν · xµν)xµν ρ
−1
µν

)

/h

h = ‖xµν∧vµν‖

To express the Lie terms for the Yarkovsky acceleration, it is better to write γγγY like:
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γγγY = A2Φµν,2 J (T1 −T2) (33)

with:































T1 =Φµν,−1 vµν
T2 = ΛµνΦµν,1 xµν
J = h−1

Φµν,2 = g(r)

As in the previous sections, it is easy to find the recurrence formula for the evolution of

γγγY :

DnγγγY = A2

n
∑

k=0

(

n

k

)

Dn−k (T1 −T2)

k
∑

k′=0

(

k

k′

)

Dk′ J Dk−k′Φµν,2 (34)

Let J = (h ·h)−1/2. Thus, DJ = −(h ·h)−3/2 Dh ·h. If Γ = Dh ·h then

D J = −J3Γ

The construction of Dn J goes as:

D2 J = J2 (−3ΓD J− J DΓ)

D3 J = J2
(

−5ΓD2 J−4 DΓD J− J D2Γ
)

and we can deduce that:

Dn J = J2

n−1
∑

k=0

an,k+1 Dn−1−k J DkΓ (35)

where the coefficients ai, j are defined, for n≥1, by:


















an,n = −1

an,k = an−1,k−1 +an−1,k for k > 1

an,1 = an−1,1 −2

Using the Leibniz-rule, one can easily note that:

D(x∧v) = Dx∧v+x∧ Dv

Thus














Dnh =
∑n

k=0

(

n
k

)

Dk xµν∧ Dn−k vµν

DnΓ =
∑n

k=0

(

n
k

)

Dk+1 h ·Dn−k h
(36)

Finally, the expression of DnT1 and DnT2 can readily be found:

Dn T1 =

n
∑

k=0

(

n

k

)

DkΦµν,−1 ,D
n−k vµν (37)

and

Dn T2 =

n
∑

k=0

(

n

k

)

Dn−kxµν

k
∑

k′=0

(

k

k′

)

Dk′ΛµνDk−k′Φµν,1 (38)

The evolution of Dnxν and Dnvν are again given by Eq. ( 21).
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4 Numerical tests

In this section, we provide some numerical tests of validation for the redesigned Lie series.

Previous CPU and accuracy tests have already been provided in Eggl and Dvorak [2010]

wherein the authors compared two packages of integrators among them Radau 15, Bulirsch-

Stoer and Lie. As a complement to the previous CPU tests, we tested the time computation

for those integrators when considering massless bodies simultaneously integrated. Then, we

compare the close encounter results between the Earth and asteroid (99942) Apophis with

the Radau and Bulirsh-Stoer integrators. Finally, we propose some tests for the relativis-

tic algorithm (towards computation of the precession of Mercury’s perihelion) and for the

Yarkovsky effect algorithm (towards computation of secular drift of semi-major axis for

some asteroids).

4.1 CPU tests

As a complement to the previous CPU tests already done [Eggl and Dvorak, 2010], we

propose in this part to investigate the integration time for a complete Solar System (Sun

to Neptune, including Moon) and some varying number of massless bodies . Those minor

bodies are taken from a synthetic population of NEOs moving only under gravitation. The

purpose of this test is to compare the CPU time efficiency of Lie and Radau integrators

when integrating simultaneously massless bodies. For this test, the internal accuracy for

both integrators is set to 10−13. The ODE solved for Radau is a Nclass = 1 type and the

number of terms used for Lie integrator is 11. Finally, those minor bodies are integrated

over one century.

Fig. 1 CPU time for Lie and Radau integrators. The abscissa represents the number of minor bodies simul-

taneously integrated.

We represented in Fig. 1 the CPU time for both integrators. The abscissa represents the

number of massless bodies integrated over 100 years. One can see that the time computation

for Lie increases faster than Radau as a function of the number of massless bodies simulate-

nously integrated. As a consequence, if Lie is faster for a number less than 50 minor bodies,

up to this number, Radau becomes more efficient. More investigations have to be done to

explain this behaviour e.g. requiered work-steps for both integrators, use of the L2 cache

instead of L1 cache, etc, .... So, as noted in Eggl and Dvorak [2010] the use of Lie integrator

depends on the problem to be solved.
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4.2 Integration of asteroid (99942) Apophis equation of motion

Asteroid Apophis (previously designed 2004 MN4) is a PHA discovered in 2004. This aster-

oid was reveled to be a threatening object since it has a potential impact with Earth in 2036.

Because of a deep close encounter in 2029 with Earth, this asteroid is put on a quasi-chaotic

orbit and on possible impact trajectories. We propose here to show how Lie integrator can

handle the determination of such close approaches distances with an adapted step-size. We

compare our results with Radau and Bulirsh-Stoer integrators. Here, the same dynamical

model and initial conditions were used for all three integrators.

Table 1 Date and distance of the 2029-close approach of asteroid Apophis computed with three numerical

integrators: Radau, Bulirsch and Lie.

Integrator Date of close approach Distance of close approach (AU)

Lie 2029 04 13.90716 0.000253446941

Bulirsh-Stoer 2029 04 13.90714 0.000253446071

Radau 2029 04 13.90725 0.000253444524

Table 1 shows the results for the 2029-close approach of asteroid Apophis computed

with three different integrators: Lie, Bulirsh and Radau. We can see that the value of the

distance and date of close approach computed with Lie integrator is in a good agreement

with the value computed with Radau and Burlirsh-Stoer integrator. This test shows that now

Lie integrator can handle deep close approach determination with a good precision, compa-

rable to other integrators. It could thus be used for close-approach analysis and detection of

impacts with Earth.

4.3 Validation test for General Relativity algorithm

First of all, we tested our general relativity algorithm by integrating the equation of motion

of asteroid (1566) Icarus. This asteroid is a good example for this test in as much as, its

eccentricity is ∼ 0.82 and is known to be sensitive to general relativistic effect. We calcu-

late the relativistic acceleration with Lie series and then we compare our results with Radau

integrator. For both integrators, the numerical precision is set to 10−13. Figure 2 represents

the value of this acceleration (between ∼ 10−11 and ∼ 10−9) calculated with Lie and Radau

and shows that those value are very close. The absolute difference between those values

validates the Lie algorithm as this difference lies between ∼ 10−23 and ∼ 10−17.

We also tested our algorithm by calculating the perihelion precession of Mercury and

comparing with the expected value. The General Relativity predicts a secular precession of

Mercury’s perihelion which expression is [Balogh and Giampieri, 2002]:

dω

dt
=

6πGM⊙

c2 a(1− e2)
≈ 0.103526 ′′/revolution (39)

where ω, a and e are respectively, the perihelion, semimajor axis and eccentricity of Mer-

cury, M⊙ the mass of the Sun.
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Fig. 2 relativistic acceleration calculated with Lie (+) and Radau Integrator (—) and the absolute difference

∆γγγ (- - -) between the value of γγγ calculated with Radau and Lie integrators. The y axis is on a logarithmic

scale.

Figure 3 represents the relativistic effect on orbital parameter ω for 5 Mercury orbital pe-

riods. This graphic shows that Mercury’s perihelion position shifts of about 0.1 arcsec for

each Mercury year. Moreover, we also compute the absolute difference ∆(∆ω) between ∆ω

calculated with Eq. (39) and with the Lie integrator. This difference is about 1.10−4 arc-

sec/revolution what shows the Lie value is in a good agreement with the analytical result.

4.4 Validation test for the Yarkovsky effect algorithm

In this section, we test our Yarkovsky effect algorithm by calculating the secular drift (da/dt)

of the semimajor axis caused by this effect. From the knowledge of da/dt, we can deduce a

value for the constant component A2 in Eq. (32). As a matter of fact, the expression of the

semimajor axis variations due to Yarkovsky effect along the transverse component, given by

Gauss equations, is:

da

dt
=

2
√

(1− e2)n
(1+ e cos θ)‖γγγY‖

with θ the true anomaly. Thus, we deduce that the secular drift of the semimajor axis per

revolution of the object is:

∆a =
4πa

k2 (1− e2)
A2 (40)

We propagated the motion of nine candidate asteroids for Yarkovsky perturbation over

five Keplerian revolutions (∆T ) around the Sun. The asteroids considered here are taken



13

Fig. 3 relativistic effect on Mercury’s perihelion calculated with Lie integrator in arcsec (-). ∆(∆ω) represents

the absolute difference between the theory and Lie value in arcsec (+). We also represented the perihelion

precession per revolution (•).

Table 2 Secular drift of semimajor axis per revolution calculated with Lie and Radau integrator.

Asteroids Period A2 da/dt (Chesley) da/dt (Radau) da/dt (Lie)

(day) (AU/day2) km/rev km/rev km/rev

Golevka 1442.31 -1.47×10−14 -0.3785 -0.3616 -0.3604

Apollo 651.17 -4.67×10−15 -0.0642 -0.0612 -0.0611

Ra-Shalom 277.26 -1.20×10−14 -0.0807 -0.0781 -0.0782

Bacchus 408.90 -2.22×10−14 -0.1778 -0.1675 -0.1675

YORP 368.43 -5.49×10−14 -0.3801 -0.3595 -0.3594

Hathor 283.32 -2.35×10−14 -0.1622 -0.1405 -0.1405

Cerberus 409.94 -1.46×10−14 -0.1313 -0.1324 -0.1323

Geographos 507.70 -2.68×10−15 -0.0246 -0.0242 -0.0242

Toro 583.92 -1.13×10−15 -0.0125 -0.0118 -0.0117

from Chesley et al. [2008], with the correspondent value of the da/dt given. We compared

the mean value of da/dt calculated with Lie integrator, with Radau integrator to the one

provided in Chesley et al. [2008]. The results listed in table 2 show that the value of da/dt

found with Lie integrator is in good agreement with Radau’s one. Moreover, those values

are not far from Chesley’s one (∼ 4% or 5% higher or lower). This difference can come from

the fact that the Yarkovsky model used in our simulation may be different than Chesley’s

one.
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5 Conclusion and Perspectives

We presented in this paper a redesigned Lie integrator including relativistic and a simpli-

fied Yarkovsky forces. In addition to the CPU and accuracy tests already performed, the

numerical tests presented here show the great capacities of this extended Lie integrator that

make it a useful and complete integrator. This integrator can be useful when dealing with

long-time integration and it can also handle simultaneous integration of massless bodies as

well as Radau integrator. Besides, the integration of PHAs and the study of close encounters

and impact probabilities can also be done now thanks to the relativistic acceleration and

Yarkovsky effect algorithms.

For the future, the Lie integrator can be extended to the problem of the integration of

comets’s motion. The Yarkovsky effect algorithm is already a first approach for this study in

that, the transverse vector is already implemented. Besides, one can consider to generalise

the Lie integrator for any position and velocity dependent forces.
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