
Real Solution Formulas of Cubic and Quartic Equations
Applied to Generate Dynamic Diagrams with Inequality

Constraints

Ting Zhao†

SKLSDE – LMIB – School of Mathematics
and Systems Science

Beihang University
Beijing 100191, China

zhaoting522@163.com

Dongming Wang
†Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie – CNRS
4 place Jussieu – BP 169

75252 Paris cedex 05, France
dongming.wang@lip6.fr

Hoon Hong
Department of Mathematics

North Carolina State University
Box 8205, Raleigh
NC 27695, USA

hong@ncsu.edu

Philippe Aubry
Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie – CNRS
4 place Jussieu – BP 169

75252 Paris cedex 05, France
philippe.aubry@lip6.fr

ABSTRACT
The approach of solving geometric constraints involving in-
equalities proposed by Hong and others uses triangular de-
composition, solution formulas, and quantifier elimination.
We show that for generating dynamic diagrams automat-
ically the performance of this approach can be enhanced,
in terms of stability of numeric computation and quality of
generated diagrams, when the used solution formulas of cu-
bic and quartic equations are replaced by newly introduced
real solution formulas with inequality constraints. Several
examples are presented to illustrate the enhanced approach
and to demonstrate the advantages and effectiveness of the
new solution formulas. An implementation of the enhanced
approach in Java with interface to Epsilon and QEPCAD
for automated generation of dynamic diagrams is outlined
and some experimental data are provided.

Keywords
Geometric constraint solving, real solution formula, quanti-
fier elimination, dynamic diagram, inequality constraint

1. INTRODUCTION
This paper presents an approach and its implementation

for automatically generating dynamic diagrams, which are
distinct from other existing approaches and implementa-
tions by their capabilities of dealing with inequality con-
straints and ensuring numeric stability in diagram anima-
tion. A static diagram is a figure of fixed geometric objects
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satisfying certain geometric constraints or properties. A dy-
namic diagram is a segment of program or a piece of software
that encodes information about movable geometric objects
involved in a family of static diagrams and about the con-
straints among these objects and that can produce sequences
of static diagrams of the family by updating the values of
some control parameters, usually under mouse action, and
show each sequence graphically on computer screen as an an-
imation. The geometric specification of a dynamic diagram
by a set of geometric objects and a set of geometric con-
straints among the geometric objects may be translated, au-
tomatically and in most cases, into a semi-algebraic system
of equalities and inequalities with parameters. The genera-
tion of a dynamic diagram amounts to producing a segment
of program that implements the process of solving the corre-
sponding parametric semi-algebraic system and visualize the
geometric configurations corresponding to the real solutions
of the system for changing values of the parameters.

A large number of software systems are available for pro-
ducing static and dynamic diagrams interactively or (semi-)
automatically. We name a few of them, Cabri,1 Cinderella,2

GCLC,3 GeoGebra,4 Geometry Expressions,5 GEOTHER,6

JGEX,7 and Geometer’s SketchPad,8 as examples. There
are different approaches for solving the involved parametric
semi-algebraic systems based, e.g., on symbolic or numeric
computation, or both combined. There are also highly effi-
cient preprocessing methods, developed mostly in the com-
puter aided design community, which transform geometric

1http://www.cabri.com/
2http://www.cinderella.de/
3http://poincare.matf.bg.ac.rs/~janicic//gclc/
4http://www.geogebra.org/cms/
5http://www.geometryexpressions.com/index.php
6http://www-salsa.lip6.fr/~wang/GEOTHER/
7http://www.cs.wichita.edu/~ye/
8http://www.dynamicgeometry.com/



specifications into easy-to-draw9 geometric constructions us-
ing graph analysis and rule-based reasoning. We refer to [7]
for an account of such methods and approaches. Note that
most of the approaches are proposed to deal with geometric
constraints involving equalities only, despite that inequality
constraints occur very frequently in real-world problems of
geometry.
The problem of solving real geometric constraints involv-

ing inequalities was addressed first by Hong and his coau-
thors in [9]. The proposed approach allows one to handle
geometric constraints involving order relations such as “in-
side,” “external,” and “between.” We follow this approach
(referred to as the HLLW approach) and place our emphasis
on dealing with inequality constraints and on automating
the entire process of dynamic diagram generation (as done
in GEOTHER [15]).
The HLLW approach is applicable for solving such geo-

metric constraint problems that may be transformed into
triangular semi-algebraic systems of equalities of degree less
than 5 and inequalities of arbitrary degree with parame-
ters. The degree restriction is posed because of its use of
solution formulas of equations by radicals. For any con-
straint problem expressed as a semi-algebraic system, the
approach works by first decomposing the set of equality con-
straints into finitely many irreducible triangular sets. Then,
for each triangular set with inequality constraints, the space
of parameters is decomposed into finitely many domains by
means of real quantifier elimination, such that associated
with each domain there is a set of explicit expressions of
the dependent variables in terms of the parameters (and
the previous dependent variables) with radicals. In this
way, the semi-algebraic system is decomposed into finitely
many (weak) solution representations by radicals (or SRRs
for short, see [9, p. 184]) such that the set of real solutions
of the system is equal to the union of the sets of real so-
lutions given by the (weak) SRRs. For any given values of
the parameters, if they satisfy the parameter constraints in
some (weak) SRRs, then the values of the dependent vari-
ables may be easily computed by direct evaluation of the
corresponding explicit expressions.
In this paper, we enhance the HLLW approach by re-

placing the Ferro-Cardano-type solution formulas of cubic
equations used there with newly introduced Lagrange-type
real solution formulas with inequality constraints and by in-
corporating new real solution formulas of quartic equations
with inequality constraints. The new formulas involving no
division by small numbers are recalled in Section 2 and the
process of dynamic diagram generation using the enhanced
HLLW approach is sketched and illustrated by an exam-
ple in Section 3. We present the results of our studies on
three geometric configurations, the configuration of Apollo-
nius circles and the dynamic diagrams for Feuerbach’s and
Thébault-Taylor’s theorems, in Section 4 to demonstrate the
advantages and effectiveness of the new solution formulas
and the enhanced approach. In Section 5, implementation of
the enhanced approach in Java with interface to Epsilon and
QEPCAD for automated generation of dynamic diagrams is
discussed and some experimental data are provided. The
paper is concluded with a few remarks in Section 6.

9e.g., with ruler and compass or other basic drawing tools
[5]

2. REAL SOLUTION FORMULAS OF
CUBIC AND QUARTIC EQUATIONS
WITH CONSTRAINTS

In this section, we recall the real convention of square and
cubic roots and the Lagrange-type real solution formulas
of cubic equations and quartic equations with constraints
introduced in [19, 10]. These formulas will be compared
with the Ferro-Cardano-type solution formulas used in [9].

Definition 1 (Real Convention [19]). The real con-
vention chooses the square root 2
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Let ∧, ∨, ⇒, and ¬ stand for the logical connectives“and”,
“or”, “imply”, and “not” respectively. Denote by R the field
of real numbers and R[x] the ring of polynomials in x with
real coefficients. The following result is proved in [19].

Theorem 1 (Real Solution Formulas: Cubic [19]).
Let

f(x) = x3 + a2x
2 + a1x+ a0 ∈ R[x]

and Γ(x) be a formula composed by ∧, ∨, ⇒, and ¬ of poly-
nomial equality and inequality relations in x, the coefficients
of f(x), and other parameters. Then for all x ∈ R,

[f(x) = 0∧Γ(x)] ⇐⇒ [x = x1∧Γ1]∨[x = x2∧Γ2]∨[x = x3∧Γ3],

where

x1 = (−a2 + ω1c1 + ω2c2)/3, c1 = 3
√

(p2 + 3 s)/2,

x2 = (−a2 + ω0c1 + ω0c2)/3, c2 = 3
√
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x3 = (−a2 + ω2c1 + ω1c2)/3, s = 2
√
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p2 = 9 a2a1 − 27 a0 − 2 a3
2.

and

Γj := (∃x ∈ R) [f(x) = 0 ∧ Γ(x) ∧ Φj(x)], j = 1, 2, 3,

Φ1(x) := [f ′ > 0 ∧ f ′′ > 0] ∨ [f ′ = 0 ∧ f ′′ ≥ 0],

Φ2(x) := [f ′ ≤ 0] ∨ [f ′′ = 0],

Φ3(x) := [f ′ > 0 ∧ f ′′ < 0] ∨ [f ′ = 0 ∧ f ′′ ≤ 0].

The reader may compare the above formulas with those in
[9, Prop. 3]. The formulas in the following theorem, parallel
to Theorem 1, are somewhat more complicated. A complete
proof of the result is quite involved. The details are given
in the paper [10] under preparation.



Theorem 2 (Real Solution Formulas: Quartic).
Let

f(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 ∈ R[x]

and Γ(x) be a formula composed by ∧, ∨, ⇒, and ¬ of poly-
nomial equality and inequality relations in x, the coefficients
of f(x), and other parameters. Then for all x ∈ R,
[f(x) = 0 ∧ Γ(x)] ⇐⇒
[x = x1 ∧ Γ1] ∨ [x = x2 ∧ Γ2] ∨ [x = x3 ∧ Γ3] ∨ [x = x4 ∧ Γ4],

where

x1 = (−a3 + k1 + k2 + σ2k3)/4,

x2 = (−a3 + k1 − k2 − σ2k3)/4,

x3 = (−a3 − k1 + k2 − σ2k3)/4,

x4 = (−a3 − k1 − k2 + σ2k3)/4,
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and

Γj := (∃x ∈ R) [f(x) = 0 ∧ Γ(x) ∧ Φj(x)], j = 1, 2, 3, 4,

Φ1(x) := [p1 ≥ 0 ∧ f ′ ≥ 0 ∧ (f ′′ ≥ 0 ∧ f ′′′ ≥ 0)]∨
[p1 < 0 ∧ p4 > ∧f ′ > 0],

Φ2(x) := [p1 ≥ 0 ∧ f ′ ≤ 0 ∧ (f ′′ ≤ 0 ∨ f ′′′ ≥ 0)]∨
[p1 < 0 ∧ p4 ≤ 0 ∧ f ′ > 0],

Φ3(x) := [p1 ≥ 0 ∧ f ′ ≥ 0 ∧ (f ′′ ≤ 0 ∨ f ′′′ ≤ 0)]∨
[p1 < 0 ∧ p4 > 0 ∧ f ′ < 0],

Φ4(x) := [p1 ≥ 0 ∧ f ′ ≤ 0 ∧ (f ′′ ≥ 0 ∧ f ′′′ ≤ 0)]∨
[p1 < 0 ∧ p4 ≤ 0 ∧ f ′ < 0].

Note that the number r of distinct real roots of f can be de-
termined by using the complete discrimination system [17],
which is a set of explicit expressions in the coefficients of f .
The real solution formulas given in the above two theo-

rems avoid division by small numbers and thus the numeri-
cally unstable case near “0/0” (i.e., both the numerator and
the denominator are close to zero). On the contrary, the
conventional solution formulas used in [9] for f(x) = x3 +
a2x

2 + a1x+ a0 involve quotients of the form (3 a1 − a2
2)/γ,

where γ is the third root of 36 a2a1−108 a0−8 a3
2+12

√
−3 p1

and p1 is the discriminant of f (as in Theorem 1). It may be

easily verified that, when a1, a2 and a3 contain a common
factor depending on the parameters, this expression leads to
the near “0/0” case for some values of the parameters.

For geometric constraint solving as well as other applica-
tions, one needs to solve polynomial equations with gradu-
ally changing coefficients, for which a solution formula with
divisions may encounter near “0/0” and thus may result in
significant numeric errors. Therefore, the solution formulas
given in Theorems 1 and 2 above are computationally bet-
ter in terms of numeric stability and geometric continuity
for dynamic diagram animation. The example of Apollonius
circles in Section 4 will illustrate the practical advantages of
using these new formulas over the previous ones.

The formulas in Theorems 1 and 2 are presented for nor-
malized f (which has leading coefficient 1). The polynomials
in triangular sets may have initials (i.e., leading coefficients
with respect to leading variables) which are not constants
but depend on the parameters. Such initials may appear
in the denominators of the solution formulas. They can-
not be zero because in the process of triangular decomposi-
tion, inequation constraints are added to rule out the case in
which the initials vanish. However, the appearance of non-
constant initials in the denominators of the formulas cannot
be avoided and may cause problems when the initials are
very close to zero. This can also be seen from the example
of Apollonius circles.

3. GENERATING DYNAMIC DIAGRAMS
WITH INEQUALITY CONSTRAINTS

Now we present the main algorithmic steps for automati-
cally generating dynamic diagrams with inequality constraints
based on the enhanced HLLW approach and give an exam-
ple to illustrate the approach used in the process of diagram
generation.

Let O be a set of geometric objects in a geometric space
(e.g., Euclidean plane or space) and C a set of geometric
constraints among the objects in O. The problem of dy-
namic diagram generation is to decide whether the objects
in O can be placed in the space such that the constraints
in C are all satisfied; if so, construct, for any given assign-
ment of allowable values to the parameters, one or several
static diagrams that satisfy the constraints. We use inequal-
ity constraints to describe order relations of the objects such
as “between,”“internal,” and “outside” and use inequality or
inequation constraints to rule out degenerate cases in which
diagrams cannot be properly constructed. For dynamic ani-
mation, parametric values are given successively with small
changes, static diagrams are constructed accordingly, and
their motion may then be shown on screen.

Denote by x1, . . . , xn the coordinates of points and other
geometric entities involved in the objects of O; then the
set C of constraints together with the conditions to exclude
some degenerate cases may be expressed as a semi-algebraic
system. The geometric constraint solving problem is then
reduced to solving this semi-algebraic system.

Using the HLLW approach enhanced with the real solution
formulas in Theorems 1 and 2 to solve parametric semi-
algebraic systems, the process for automated generation of
dynamic diagrams involving inequality constraints consists
of the following steps (see [9] and also [13]).

1. Assign coordinates to the points involved in the geo-
metric objects and introduced other variables if neces-



sary, so that the geometric constraints are expressed as
a semi-algebraic system of equalities and inequalities.

2. Decompose the semi-algebraic system into finitely many
weak SRRs using the enhanced HLLW approach.

3. Determine the free and semi-free points according to
the identification of the variables x1, . . . , xn into pa-
rameters and dependent variables.

4. Randomly choose a set of allowable real numeric values
for the parameters satisfying the constraints and com-
pute the values of the dependent variables according
to the corresponding weak SRRs.

5. Check whether all the points with the current values
of coordinates are within the given window range and
no two of them are too close. If not, then go back to
Step 4.

6. Draw the geometric objects and label the points with
the current values of variables in the window(s) to ob-
tain one or several static diagrams.

The dynamic animation of a drawn static diagram may
be implemented by the following two additional steps.

7. Update the values of the free coordinates of the free
or semi-free points being moved with mouse dragging
and recompute the values of the dependent variables
according to the corresponding weak SRRs.

8. Redraw the geometric objects and relabel the points
with the updated values of variables in the window of
the static diagram.

The following example illustrates the enhanced HLLW ap-
proach used in the process of diagram generation with our
preliminary implementation.

Example 1. Given two circles O1 and O2 and an arbi-
trary line AB, construct another circle O which is tangent
to line AB at point B and tangent to circles O1 and O2,
both externally, at points T1 and T2 respectively.
To express the order relation of external tangency, we need

to use inequalities. Without loss of generality and to give a
concise presentation of the results, let the coordinates of the
points be assigned as follows:10

A(x3, 0), B(u1, x4), O(x1, 0), O1(0, 0), T1(1, 0),

O2(0, 1), T2(u2, x2).

Then the geometric constraints may be expressed as the fol-
lowing semi-algebraic system of equalities and inequalities:

F1 = −x1x2 + x1 − u2 = 0,

F2 = −x2
2 + 2u2x1 − 2x1 − u2

2 + 1 = 0,

F3 = −x2
4 + 2u1x1 − 2x1 − u2

1 + 1 = 0,

F4 = x2
4 + x1x3 − u1x3 − u1x1 + u2

1 = 0,

G1 = x1 − 1 > 0, G2 = x2 > 0, G3 = x2 − 1 < 0.

The correspondence between the geometric constraints and
the polynomial equalities and inequalities is shown below:

F1 = 0 ⇐⇒ O,O2, T2 are collinear; F4 = 0 ⇐⇒ OB⊥AB;

F2 = 0 ⇐⇒ |OT1| = |OT2|; F3 = 0 ⇐⇒ |OT1| = |OB| ;
G1 > 0 ⇐⇒ circles O,O1 are externally tangent;

G2 > 0, G3 < 0 ⇐⇒ circles O,O2 are externally tangent.

10Note that coordinates may also be assigned automatically,
see, e.g., the function Coordinate in GEOTHER [15].

Figure 1: External Tangency

Assume that B and T2 are semi-free points, so that u1, u2

are free parameters. The set {F1, . . . , F4} of polynomials
may be decomposed over Q(u1, u2) into one irreducible tri-
angular set

−2u2x
3
1 + 2x3

1 + u2
2x

2
1 − 2u2x1 + u2

2,

x1x2 − x1 + u2,

x1x3 − u1x3 + u1x1 − 2x1 + 1,

x2
4 − 2u1x1 + 2x1 + u2

1 − 1

 .

From this triangular set, using the solution formulas and
eliminating the quantifiers, we obtain six weak SRRs. We
list two of them below:

∆1(u1, u2), x1 = X11, x2 = X2, x3 = X3, x4 = X4;

∆2(u1, u2), x1 = X12, x2 = X2, x3 = X3, x4 = X4,

where

∆1 : u1 − 1 > 0 ∧Q1 − 27 < 0 ∧Q2 < 0 ∧Q3 > 0

∧{u2 − u1 > 0 ∨ [Q1 > 0 ∧Q4 ≤ 0]

∨ [Q1 < 0 ∧Q5 < 0] ∨ [Q5 > 0 ∧Q4 ≤ 0]};
∆2 : u1 − 1 ≥ 0 ∧Q1 − 27 ≤ 0 ∧Q2 ≤ 0 ∧Q3 < 0

∧{2u2
1 + 2u2

1 + 5u1 − 11 < 0 ∨Q5 > 0

∨ [Q1 > 0 ∧Q5 = 0] ∨ [Q5 < 0 ∧Q4 ≤ 0]},

Q1 = u3
1 − u2

1 − u1 − 4, Q2 = u3
2 + 2u2

2 + 11u2 − 16,

Q3 = u4
2 + 36u2

2 − 90u2 + 54,

Q4 = u2
1u

2
2 + 2u1u

2
2 + 5u2

2 − u3
1u2 − 3u2

1u2 − 7u1u2 − 5u2

+ u3
1 + 3u2

1 + 3u1 + 1,

Q5 = u2
1u

2
2 + u2

2 − 2u3
1u2 − 2u1u2 + 2u3

1,

and

X11 =
u2
2

6 (u2 − 1)
+

ω1c1
3

+
ω2c2
3

, X2 = 1− u2

x1
,

X12 =
u2
2

6 (u2 − 1)
+

ω2c1
3

+
ω1c2
3

, X3 =
2x1 − x1u1 − 1

x1 − u1
,

X4 =
√

−2x1 + 2x1u1 − u2
1 + 1,

p1 =
16u3

2 − u6
2 − 2u5

2 − 11u4
2

4 (u2 − 1)2
, p2 =

54u4
2 − 125u3

2 + 72u2
2

4 (u2 − 1)3

with c1, c2, ω the same as in Theorem 1 of Section 2.
With these solution representations, the values of xi may

be easily computed for any given real values of u1, u2 that
satisfy the conditions and the corresponding dynamic di-
agram as shown in Figure 1 can be drawn and animated
efficiently.

4. SOME GEOMETRIC CONFIGURATIONS
In this section, we report our studies on three well-known

geometric configurations, the configuration of Apollonius cir-



cles and the dynamic diagrams for Feuerbach’s and Thébault-
Taylor’s theorems. These configurations are used as exam-
ples to show the advantages of the new real solution for-
mulas of cubic and quartic equations with inequality con-
straints and to demonstrate the effectiveness of the enhanced
HLLW approach. The configurations are formulated unam-
biguously with inequality constraints and thus cannot be
handled by other existing methods and software packages
designed for solving constraints involving equalities only.

4.1 Apollonius Circles
The problem is to construct circles that are simultane-

ously tangent to three given circles and it has applications in
geometric modeling, biochemistry, and pharmacology. The
construction and drawing of Apollonius circles have been
studied extensively (see, e.g., [5, 9, 11, 12]). However, most
of the studies of the problem are based on algebraic formula-
tions using equalities only, so internal contact and external
contact of circles cannot be clearly distinguished. For many
applications, what is of real interest is actually the case of
external contact. The use of inequality constraints allows
one to exclude the case of internal contact of circles.
The configuration of Apollonius circles has already been

studied in [9] using the HLLW approach. Here we revisit the
configuration in order to compare some of the solution repre-
sentations in the SRRs computed using the Ferro-Cardano-
type solution formulas and the new Lagrange-type solution
formulas. For this purpose, let us use the same assignment
of coordinates and the same algebraic formulation as in [9].
Following the HLLW approach as in [9] but using the new
solution formulas instead of the old ones, we can compute
six weak SRRs, of which two are listed as follows:

∆1(u1, u2, u3), x1 = X11, x2 = X2, x3 = X3, x4 = X4;

∆2(u1, u2, u3), x1 = X12, x2 = X2, x3 = X3, x4 = X4,

where ∆1 and ∆2 are formulas composed of inequality con-
straints in the parameters u1, u2 and u3 only, X2, X3,X4 are
solutions of simple linear and quadratic equations,

X11 =
u2
1

6 (u1 − 1)
+

ω1c1
3

+
ω2c2
3

,

X12 =
u2
1

6 (u1 − 1)
+

ω2c1
3

+
ω1c2
3

,

p1 =
16u3

1 − u6
1 − 2u5

1 − 11u4
1

4 (u1 − 1)2
, p2 =

54u4
1 − 125u3

1 + 72u2
1

4 (u1 − 1)3
,

and c1, c2, ω are the same as in Theorem 1 of Section 2.
The representation corresponding to X11 given in [9] is

X ′
11 =

R3
√
δ

6 (u1 − 1)
+

u4
1 − 12u2

1 + 12u1

6 (u1 − 1) R3
√
δ

+
u4
1

6 (u1 − 1)
,

where

δ = d+ 6
√
3Du1(u1 − 1), d = u6

1 + 36u4
1 − 90u3

1 + 54u2
1,

D = u6
1 + 8u4

1 − 36u3
1 + 43u2

1 − 16u1.

X ′
11 may encounter the unstable case “0/0” when u1 = 0 or

u1 ≈ 1.115749397. When the diagram is animated by grad-
ually changing values of the parameters, it will be out of
shape (e.g., some of the geometric objects disappear) if u1

is near 0 or 1.115749397. However, X11 = 0 when u1 = 0,
and X11 ≈ 1.068695857 when u1 ≈ 1.115749397, so “0/0”
does not occur. Note that the denominator u1 − 1, which is
the initial of the first polynomial in the triangular set, can-
not be avoided. Although the conditions ∆1 and ∆2 ensure

Figure 2: Apollonius Circles

that u1 − 1 does not vanish, X11 will be very large when u1

is close to 1.
We have also considered other cases of circle contacts,

such as three internal contacts, one external and two inter-
nal contacts, and one internal and two external contacts,
by changing the inequality constraints. Similar phenomena
have been observed.

To further highlight the role of inequality constraints, let
us look at the two diagrams, one with three external con-
tacts and the other with two external contacts and one in-
ternal contact of circles, shown in Figure 2. With inequality
constraints, we can generate any of the two diagrams with
the specified numbers of external and internal circle contacts
and during dynamic animation of the generated diagram the
numbers of circle contacts will remain unchanged. Without
inequality constraints, one does not know a priori which of
the two diagrams will be generated and during dynamic ani-
mation two externally tangent circles may become internally
tangent, and vice versa.

4.2 Feuerbach Theorem
The circle passing through the feet of the three altitudes

of an arbitrary triangle also passes through other six mean-
ingful points and thus is called the nine-point circle of the
triangle. Feuerbach’s theorem [3] states that the nine-point
circle of any triangle is tangent internally to the inscribed
circle and externally to the three escribed circles. We want
to draw part of this configuration: a dynamic diagram for
the nine-point circle (with center N) to be tangent to the
inscribed circle (with center I). To specify the incenter I as
an intersection point of angular bisectors, we need to ensure
that the bisectors are all internal, which cannot be done by
using polynomial equalities only. We can do so by using
inequalities.

Let the coordinates of the points as shown in Figure 3 be
assigned as follows:

A(0, 0), B(1, 0), C(u1, 1), I(x1, x2), D(x1, 0),

A1(x3, x4), A2(x5, x6), A3(x7, 0), N(x8, x9).

The geometric constraints for the configuration may be spec-
ified by

tan∠CBI = tan∠IBA, tan∠CAI = tan∠IAB,

A1 is the midpoint of BC, A2 is the midpoint of AC,

A3 is the midpoint of AB, |NA3| = |NA2|,
|NA3| = |NA1|, I is inside △ABC.

This specification may be translated into a semi-algebraic
system of 9 polynomial equalities and 3 inequalities. The
semi-algebraic system may then be decomposed by using
the enhanced HLLW approach into the following two weak
SRRs:

∆i(u1), x1 = X1i, x2 = X2, . . . , x9 = X9, i = 1, 2,



Figure 3: Feuerbach Configuration

where ∆i are composed of inequality constraints in u1 only,
X2, . . . , X9 are simple rational expressions,

X11 = (2 + k1 − k2 − σ2k3)/4,

X12 = (2− k1 + k2 − σ2k3)/4,

σ2 =

{
+1 if r ≤ 1,

−1 if r > 1,

r = number of distinct real roots of T ∈ {0, 1, 2, 3, 4},
p1 = 4u10

1 − 20u9
1 + 57u8

1 − 108u7
1 + 158u6

1 − 180u5
1

+ 165u4
1 − 116u3

1 + 64u2
1 − 24u1 + 4,

p2 = 2u6
1 − 6u5

1 − 3u4
1 + 16u3

1 − 27u2
1 + 18u1,

p3 = 8u2
1 − 8u1 + 12,

k1, k2, k3 are the same as in Theorem 2 of Section 2, and T
(the first polynomial in the only triangular set) is quartic in
x1 with u1 as parameter.11

The dynamic diagram generated automatically using the
above weak SRRs is shown in Figure 3, on the left-hand side;
the diagram shown on the right-hand side is generated by
changing the order relation to “I is outside △ABC”.

4.3 Thébault-Taylor Theorem
The Thébault conjecture of 1938, confirmed by K.B. Tay-

lor in 1983, has an interesting history itself and in the re-
cent evolvement of automated theorem proving in geometry
(see, e.g., [14, pp. 130–131], [18], and references therein). Its
configurations, if specified unambiguously with order rela-
tions, present a challenge for dynamic diagram generation.
Given a triangle ABC and any point D on BC, one ver-
sion of the problem is to draw the inscribed circle and the
circumcircle of the triangle and two additional circles, each
tangent to AD, BC, and the circumcircle, such that their
centers and the incenter of the triangular are collinear. The
Thébault-Taylor theorem implies that this configuration is
always drawable.
An unambiguous algebraic formulation of the problem re-

quires polynomial inequalities and computing the SRRs of
the semi-algebraic system is non-trivial. We have tried the
enhanced HLLW approach in a brute-force way without suc-

11The number r of distinct real roots of T can be determined
by using the discrimination system: first produce the dis-
crimination sequence [D1, . . . , D4] = [1, p3, p5, p1] of T with
parametric coefficients, where p5 = 2u6

1 − 6u5
1 + 13u4

1 −
16u3

1 +17u2
1 − 10u1 +6, and then for any given value of u1,

construct the sign list and the revised sign list of sequence.
If the number of sign changes of the revised sign list is v and
the number of non-vanishing members in the revised sign
list is l, then r = l − 2 v [17].

cess. Here we consider a special case of the problem by as-
suming that D is the perpendicular foot of the line AD to
BC. The coordinates of points are assigned as follows:

A(1, 1), B(0, 0), C(u1, 0), D(1, 0), O(x1, x2),

O1(x3, x4), E(x3, 0), F (1, x4), G(x5, x6), O2(x7, x8),

M(x7, 0), H(1, x8), J(x9, x10), I(x11, x12), K(x11, 0).

Even though the problem is considerably simplified in the
special case, the computations involved in the HLLW ap-
proach still cannot be completed within one hour. The cor-
responding quantified formulas contain large polynomials in
several variables, which makes quantifier elimination diffi-
cult. Therefore, we try to split the problem into subproblems
of construction, following the basic idea of the graph-analysis
approach. For our special problem, it is easy to observe that
the constructions of the three circles I, O1, and O2 are com-
pletely separate, so we can divide the problem into three
subproblems. For each subproblem, it is not very difficult
to compute the SRRs of the corresponding semi-algebraic
system using the enhanced HLLW approach.

Figure 4: Thébault-Taylor Configuration

Subproblem 1. Construct circle O1 with the following
specification of geometric constraints:

O is the circumcenter of △ABC,

O,O1, and G are collinear,

|O1E| = |O1F |, |O1E| = |O1G|, |OB| = |OG|,
O1 is inside the rectangle with AC as diagonal.

The corresponding semi-algebraic system may be decom-
posed into one weak SRR

∆1(u1), x1 = X11, . . . , x6 = X16

with ∆1(u1) holding for infinitely many values of u1 and
five other weak SRRs holding for only finitely many values
of u1.

Subproblem 2. Construct circle O2 with the following
specification:

O is the circumcenter of △ABC,

O,O2, and J are collinear,

|O2M | = |O2H|, |O2M | = |O2J |, |OB| = |OJ |,
O2 is inside the rectangle with AB as diagonal.

The corresponding semi-algebraic system may be decom-
posed into three weak SRRs

Θj(u1), x7 = Xj7, . . . , x10 = Xj10, j = 1, 2, 3,

with Θj(u1) holding for infinitely many values of u1 and four
other weak SRRs holding for only finitely many values of u1.

Subproblem 3. Construct circle I with the following bspec-
ification:



tan∠CBI = tan∠IBA, tan∠ACI = tan∠ICB,

I is inside △ABC.

The corresponding semi-algebraic system may be decom-
posed into two weak SRRs:

Λk(u1), x11 = Xk11, x12 = Xk12, k = 1, 2.

For all the three subproblems, solutions formulas of quar-
tic equations with inequality constraints need be used for
computing the weak SRRs. Combining these weak SRRs,
we obtain 1 × 3 × 2 = 6 weak SRRs for the original prob-
lem in the special case (see Table 1 for the computing time).
The dynamic diagram shown in Figure 4 has been generated
automatically, making use of the computed SRRs.

5. IMPLEMENTATION AND EMPIRICAL
DATA

In this section, we discuss our implementation of the pro-
cess of dynamic diagram generation using both the original
and the enhanced HLLW approach, point out the function-
alities of the current version of our implemented program,
and present some empirical data in table form to show the
performance of the program for generating the diagrams of
10 theorems in plane Euclidean geometry.
We have implemented the process of diagram generation

sketched in Section 3 in Java with interface to the Epsilon
library [14] in Maple and the QEPCAD program [1] in C.
The main part of the program is written in Java, one of the
most convenient programming languages for graphics, ani-
mation, web, and interface implementation. It provides a
graphic user interface (see Figure 5) which allows the user
to input the predicate specification of the geometric con-
straints of a diagram and to animate and fine-tune the gen-
erated diagram by mouse click and dragging. This diagram
generation program is independent of GEOTHER and the
previous implementation of the HLLW approach therein. It
is still under development and will be made available at
http://geo.cc4cm.org.
The input specification of the geometric constraints is

parsed and translated in Java into a semi-algebraic system
of equalities and inequalities. The decomposition of the
set of (equality) polynomials into irreducible triangular sets
requires extensive polynomial operations, including factor-
ization over successive algebraic extension fields, and thus
cannot be easily implemented from scratch in Java. There-
fore, we decided to use an external computer algebra system
in which basic polynomial operations are well implemented.
Our choice of Maple is mainly due to the fact that the Ep-
silon library [14] containing an implementation of several
efficient triangular decomposition methods has been devel-
oped in the system. In our Java program, a piece of Maple
code is generated and Maple is invoked to execute the code.
In Maple, the set of (equality) polynomials is decomposed by
using one of the Epsilon functions into irreducible triangular
sets and QEPCAD is then invoked to eliminate quantifiers
from the real solution formulas of equations of the polyno-
mials in the triangular sets with inequality constraints. The
computed SRRs are written into a file for the Java program
to read in.
QEPCAD [1] is a powerful C program for quantifier elim-

ination based on partial cylindrical algebraic decomposi-
tion [2]. It has been widely used to deal with decision and
computation problems involving inequalities over the reals.
We have also considered other programs for real quantifier

Figure 5: Graphic User Interface

elimination, including REDLOG [16, 4], QEQUAD [8], and
SturmHabicht [6]. From some example tests, we have ob-
served that QEPCAD takes less computing time and out-
puts simpler formulas in general. For the Apollonius cir-
cles problem, REDLOG cannot finish the required quantifier
elimination within one hour, while QEPCAD can do it in 83
seconds on the same computer.

The main Java program parses the SRRs read from the
file, chooses a set of real values satisfying the conditions in
the SRRs for the parameters, computes the corresponding
values of the dependent variables according to the SRRs,
draw a static diagram according to the values of the vari-
ables, and update the diagram with new values of the vari-
ables, when the values of the parameters are changed (e.g.,
by mouse dragging), by recomputing the values of the de-
pendent variables according to the SRRs.

Table 1 shows the number of parameters, the number of
dependent variables, the highest degree of equalities, and the
number of inequality constraints for 10 semi-algebraic sys-
tems expressing the hypotheses of 10 well-known geometric
theorems and the times for triangular decomposition, quan-
tifier elimination, and the whole process of computing the
SRRs of each semi-algebraic system. All the computations
were performed on an x86 64 under Linux 2.6.18 and the
times are given in CPU seconds. The quantifier elimination
time includes not only the time of computation with QEP-
CAD, but also the time for invoking QEPCAD and trans-
lating the formulas into the QEPCAD input format. The
latter depends on how many times QEPCAD is called in
the problem and each call costs less than one second. From
Table 1, one sees that quantifier elimination using QEPCAD
is the most time-consuming step of the (enhanced) HLLW
approach. This is not a surprise because it is known that
inequality constraints are difficult to handle.

With the interfaces between Java, Maple, and QEPCAD,
the entire process of dynamic diagram generation is fully au-
tomated. For the involved symbolic and numeric computa-
tion, there are two main stages: preprocessing and updating.
The preprocessing stage, carried out only once for each prob-
lem, computes symbolically the SRRs of the semi-algebraic
system. Usually, it involves heavy algebraic computations
and is time-consuming. The updating stage, which may be
carried out repeatedly, evaluates numerically the values of
the dependant variables for changing values of the param-
eters according to the (same) SRRs. Updating can be re-
peated reliably and efficiently for real-time dynamic anima-
tion because the involved numeric evaluations of the SRRs
are computationally fast.



Table 1: Data and Timings for 10 Examples

Theorem Par No Dep No Max Deg Ineq No TD Time QE Time Time
Apollonius 4 4 3 3 0.228 82.761 84.927
Butterfly 4 7 2 1 0.085 42.530 44.100
Feuerbach 1 9 4 3 0.100 12.580 14.780
Morley 2 6 2 9 0.711 >20000 >20000

Napoleon 2 12 2 3 0.154 57.657 58.613
Pappus 6 2 1 6 0.081 1.516 2.397

M. Paterson 3 7 1 3 0.133 5.252 6.185
Steiner 2 6 2 3 0.132 27.863 28.701

Steiner Square 3 5 1 3 0.126 39.763 40.690
Thébault-Taylor 1 12 4 11 0.988 61.997 67.943

Par: Parameter; Dep: Dependant Variable; Ineq: Inequality; TD: Triangular Decomposition;
QE: Quantifier Elimination

6. CONCLUSION AND DISCUSSIONS
We have shown that the HLLW approach [9] used in dy-

namic diagram generation for computing SRRs of semi-alge-
braic systems can be enhanced by incorporating the Lagrange-
type real solution formulas of cubic and quartic equations
with inequality constraints introduced recently in [19, 10].
The enhanced approach has been illustrated and the advan-
tages and effectiveness of the new solution formulas have
been demonstrated by several examples with experimental
data. The process of automated generation of dynamic di-
agrams based on the enhanced HLLW approach has been
sketched and implemented in Java with interface to Epsilon
and QEPCAD. Our Java program allows the user to input
the geometric constraints of a dynamic diagram with pred-
icate specification and generates the diagram automatically
for the user to animate and fine-tune using mouse click and
dragging.
Problems that remain for further investigation include (1)

improving the efficiency of quantifier elimination by taking
into account the structure of the quantified subformulas in
the real solution formulas with inequality constraints, (2)
simplifying the real solution formulas of quartic equations
with or without constraints, (3) studying the numeric stabil-
ity of solution formulas and the geometric continuity of dy-
namic diagrams when some denominators are close to zero,
and (4) solving more difficult parametric systems of geomet-
ric constraints to generate dynamic diagrams specified with
order relations, e.g., for Morley’s and Thébaut-Taylor’s the-
orems without ambiguity.
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