C. W. Brown and H. Hong, QEPCAD ? quantifier elimination by partial cylindrical algebraic decomposition, 2011.

G. E. Collins and H. Hong, Partial cylindrical algebraic decomposition for quantifier elimination

A. Dolzmann, T. Sturm, and V. Weispfenning, A new approach for automatic theorem proving in real geometry, Journal of Automated Reasoning, vol.21, issue.3, pp.357-380, 1998.
DOI : 10.1023/A:1006031329384

X. Gao, K. Jiang, and C. Zhu, Geometric constraint solving with conics and linkages, Computer-Aided Design, vol.34, issue.6, pp.421-433, 2002.
DOI : 10.1016/S0010-4485(01)00114-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. González and . Vega, A combinatorial algorithm solving some quantifier elimination problems, Quantifier Elimination and Cylindrical Algebraic Decomposition, pp.300-316, 1996.

C. M. Hoffmann and R. Joan-arinyo, A Brief on Constraint Solving, Computer-Aided Design and Applications, vol.4, issue.10, pp.655-663, 2005.
DOI : 10.1080/16864360.2005.10738330

URL : http://hdl.handle.net/2117/83305

H. Hong, Quantifier Elimination for Formulas Constrained by Quadratic Equations via Slope Resultants, The Computer Journal, vol.36, issue.5, pp.440-449, 1993.
DOI : 10.1093/comjnl/36.5.439

H. Hong, L. Li, T. Liang, and D. Wang, Solving Dynamic Geometric Constraints Involving Inequalities, Artificial Intelligence and Symbolic Computation, pp.181-195, 2006.
DOI : 10.1007/11856290_17

URL : https://hal.archives-ouvertes.fr/hal-01351426

H. Hong, D. Wang, and T. Zhao, Solution formulas for quartic equations without or with constraints, 2011.

D. Kim, D. S. Kim, and K. Sugihara, Apollonius tenth problem via radius adjustment and M??bius transformations, Computer-Aided Design, vol.38, issue.1, pp.14-21, 2006.
DOI : 10.1016/j.cad.2005.04.003

R. H. Lewis and S. Bridgett, Conic tangency equations and Apollonius problems in biochemistry and pharmacology, Mathematics and Computers in Simulation, vol.61, issue.2, pp.101-114, 2003.
DOI : 10.1016/S0378-4754(02)00122-2

D. Wang, Automated Generation of Diagrams with Maple and Java, Algebra, Geometry, and Software Systems, pp.277-287, 2003.
DOI : 10.1007/978-3-662-05148-1_15

URL : https://hal.archives-ouvertes.fr/inria-00099637

D. Wang, Elimination Practice: Software Tools and Applications, 2004.
DOI : 10.1142/9781848161207

URL : https://hal.archives-ouvertes.fr/hal-01503551

D. Wang, GEOTHER 1.1: Handling and proving geometric theorems automatically Automated Deduction in Geometry, volume 2930 of LNAI, pp.194-215, 2004.
DOI : 10.1007/3-540-61511-3_78

URL : https://hal.archives-ouvertes.fr/inria-00107637

V. Weispfenning, Quantifier elimination for real algebra---the cubic case, Proceedings of the international symposium on Symbolic and algebraic computation , ISSAC '94, pp.258-263, 1994.
DOI : 10.1145/190347.190425

L. Yang, X. Hou, and Z. Zeng, A complete discrimination system for polynomials, Sci. China (Ser. E), vol.39, issue.6, pp.628-646, 1996.

Z. Ye, S. Chou, and X. Gao, Visually Dynamic Presentation of Proofs in Plane Geometry, Journal of Automated Reasoning, vol.25, issue.3, pp.213-241, 2010.
DOI : 10.1007/s10817-009-9162-5

T. Zhao, D. Wang, and H. Hong, Solution formulas for cubic equations without or with constraints, Journal of Symbolic Computation, vol.46, issue.8
DOI : 10.1016/j.jsc.2011.02.001

URL : https://hal.archives-ouvertes.fr/hal-00627327