
HAL Id: hal-00731068
https://hal.sorbonne-universite.fr/hal-00731068v1

Submitted on 12 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boosting feature selection for Neural Network based
regression

Kevin Bailly, Maurice Milgram

To cite this version:
Kevin Bailly, Maurice Milgram. Boosting feature selection for Neural Network based regression.
Neural Networks, 2009, 22 (5-6), pp.748-756. �10.1016/j.neunet.2009.06.039�. �hal-00731068�

https://hal.sorbonne-universite.fr/hal-00731068v1
https://hal.archives-ouvertes.fr

Boosting Feature Selection for Neural Network based

Regression

Abstract

Head pose estimation problem is well known to be a challenging task in computer

vision and is a useful tool for several applications involving human-computer in-

teraction. This problem can be stated as a regression one where the input is

an image and the output is pan and tilt angles. Finding the optimal regression

is a hard problem because of the high dimensionality of the input (number of

image pixels) and of the large variety of morphology and of illumination. We

propose a new method combining a boosting strategy for feature selection and

a neural network for the regression. Potential features are a very large set of

Haar like wavelets which are well known to be adapted to face image process-

ing. To achieve the feature selection, a new Fuzzy Functional Criterion (FFC)

is introduced which is able to evaluate the link between a feature and the output

without any estimation of the joint probability density function as in the Mutual

Information. The boosting strategy uses this criterion at each step: features are

evaluated by the FFC using weights on examples computed from the error pro-

duced by the neural network trained at the previous step. Tests are carried out

on the commonly used Pointing 04 database and compared with three state-of-

the-art methods. We also evaluate the accuracy of the estimation on FacePix,

a database with a high angular resolution. Our method is compared positively

to a Convolutional Neural Network, which is well known to incorporate feature

extraction in its first layers.

Key words: Input Feature Selection, Boosting, Regression, Fuzzy Functional

Criterion

1. Introduction

In a large number of regression problems, it is not easy to find relevant fea-

tures from a huge set of potential input variables. In image based regression

for instance, the number of pixels, which corresponds to the input dimension,

is very large. Moreover, pixel level is not necessarily suitable for a particular

Preprint submitted to Neural Networks June 29, 2009

problem and an huge set of potential features can be extracted from an image to

complete or to supply the necessary information. Just few of them are relevant,

while most of them are redundant. In this paper, we present a framework to learn

simultaneously relevant features and the corresponding regressor.

A large number of solutions have been proposed in feature selection litera-

ture. They can be divided into filter, wrapper and embedded approaches [5]. In

filter based method, features are first selected using a specific measure of rel-

evance such as mutual information or Pearson’s correlation. The second stage

consists of estimating parameters of the regression model on the selected subset.

This approach is computationally efficient, but presents a major drawback [7]:

the regression model is not taken into account. Thus, a suboptimal set of relevant

features tends to be selected rather than the complete set of useful features.

Wrapper approaches use the prediction performance of the model to quantify

the relevance of a feature subset. In this category, greedy forward selection al-

gorithms are frequently used: they progressively integrate new variables which

optimize the regression score. This strategy is really time consuming and in-

tractable when the regression learning algorithm is too complex.

Embedded approaches incorporate the feature selection directly into the learn-

ing algorithm. In ridge regression such as LASSO [15] or Input Decay [1], a reg-

ularization term is introduced in the cost function. The aim is to train the model

so that inputs which contribute poorly to the regression process are penalized.

These methods are well suited when the number of potential features is quite

restricted.

In section 2, we introduce BISAR (Boosted Input Selection Algorithm for

Regression) which combines a filter and a wrapper approach.

BISAR uses a kind of boosting in the feature selection process. In its simpli-

est form, boosting strategy aims to decrease the error rate of a classifier/regressor

by concentrating at each iteration on examples that are particularly difficult to

classify/regress. This is usually done by iteratively adapting the training sam-

ples weighting. At each iteration the weight of training examples depends on the

performance of the classifier/regressor in the previous iteration.

AdaBoost [3] is a popular algorithm to iteratively build a classifier as a linear

combination of so called weak classifiers. At each step, a new weak classifier

is added optimizing the classification error rate with a new weighting on train-

ing samples. AdaBoost.RT, proposed by Shresta [13] for regression problems

uses the so-called absolute relative error threshold φ to project training examples

into two classes (poorly and well predicted examples) by comparing the abso-

lute relative error with the threshold φ. The problem is that it is not obvious to

2

choose the right value for the threshold φ. Therefore we have selected another

boosting strategy, AdaBoost.R2 [2], to compare several boosting strategies in

BISAR. There are other methods like [11] and [21] that also combine these two

approaches in a different way. Algorithm described in [11] is clearly dedicated

to solve classification and not regression problems and aims to reduce the num-

ber of features used by each weak classifier. In [21], an approach which limits

the correlations of the selected feature set for gene selection in microarray data

analysis is presented. This approach seems to be specific to this kind of problem

and the boosting strategy is completely different from BISAR.

The two main contributions of this paper are:

1. The Fuzzy Functional Criterion (FFC): a new filter used to select relevant

features (section 2.1)

2. A new boosting strategy that selects incrementally new complementary

inputs for the regressor (section 2.3).

A large number of experiments (section 3) with BISAR on a classical pattern

recognition problem is covered in this article (section 4). Comparison are drawn

between BISAR and state-of-the-art methods (section 5). Finally we present

conclusions and prospects in section 6.

2. Boosted Input Selection Algorithm for Regression (BISAR)

The regression we propose is based on two modules working together:

1. A boosted feature selection algorithm based on a new fuzzy criterion

2. A neural network with growing input set according to the boosted incre-

mental choice of features

In order to select useful features to perform neural network based regres-

sion, we adapt both a filtering paradigm based on our new criterion FFC (Fuzzy

Functional Criterion) independent from the regression engine and a boosting

paradigm based on the neural network error.

We have a set of examples xi ∈ R
d. To each xi is associated a value yi ∈ R

that we want to predict. Data are divided into a training set A, a validation set

V and a test set E. A set F of features Hk (1 ≤ k ≤ N) can be computed for

each xi. F can be extremely large (typically more than 10 000 elements as in our

case). The main objective of our method is to select a subset of features FS ⊂ F
adapted to a specific regressor. We can summarize our method as follows :

1. Initialize all examples at the same weight; FS is empty.

3

2. Compute the fuzzy criterion for all features in F using the training set and

the current weights. The best feature according to this criterion is added to

FS.

3. Train a new regressor taking as input all previously selected features.

4. Compute the new weights using the error of the regressor for each example

5. Repeat from 2 to 5 until the maximum number of input is reached

6. Select the regressor with the lowest error on the validation set V during all

iterations

Hence, our method combines an iterative filtering approach for feature selec-

tion and a neural network. The selection process uses weights provided by the

network error at each step. It means that, given a set of pairs (xi, yi) of training

input-output and weights on example, we determine a new score for each feature

Hk. This score has to reflect the relevance of feature Hk for our problem, that is

the matching between xi (a pattern) and yi (the target value associated to xi that

we want to predict).

2.1. Feature selection criterion

We have to determine a criterion to select features. This criterion must mea-

sure how much the output y depends functionally on this feature Hk. Moreover,

this criterion should support a weighting function over the example set. Usual

statistical measures (correlations, covariance, etc.) do not fit to our situation

because of the linear hypothesis that we do not want to assume.

We are going to examine two criterions: the well-known Mutual Information

(MI) and our new Fuzzy Functionnal Criterion (FFC) in next sections.

2.1.1. Mutual Information

The MI between two discrete random variables x and y is defined to be :

I(x; y) = −
∑

x,y

P (x, y)log2
P (x, y)

P (x).P (y)
(1)

And:

I(x; y) = H(x) + H(y) − H(x, y) = H(x)H(x|y) = H(y)H(y|x) (2)

Where H(x) is the entropy of the random variable x and H(x, y) is the joint

entropy of these variables.

There is a continuous definition of the MI for continuous variables but it is

necessary to approximate the MI before using it practically in a program. So,
4

1. initialisation : t = 0

• Set initial values for w0 = (1
M

, . . . , 1
M

) and FS = ∅

• Compute Q used to evaluate the FFC criterion :

Q(i) =
∑

j La(|hk,i − hk,j |).(1 − Lb(|yi − yj |))

2. iteration : t = 1 . . . Tmax

• Evaluate the FFC criterion for each feature :

FFC(Hk) = −
∑

i wiQ(i)
bt = arg maxk∈{1,...,N}(FCC(Hk))

• Add the best feature Hbt
to the set of selected features. FS ← FS ∪ Hbt

and F ← F\Hbt
.

• Train Rt taking (hb1,i, . . . , hbt,i) as input and yi as output for each exam-

ple xi.

• Update the weight vector using one of the proposed boosting strategy (cf.

2.3)

3. The final regressor is the one with the lowest error on the validation set V during

the Tmax iterations

Figure 1: BISAR algorithm

the main problem is the estimation of the joint probability distribution function

P (x, y). We use the Parzen windows estimator to evaluate P (x, y) which is a

popular non-parametric approach and which is also very close to the computa-

tion performed by our FFC criterion. It is well known that the size of Parzen

windows can be critical and has to be tuned finely. Unfortunately, in our case,

we do not have any prior information about the probability distribution func-

tion P (x, y). We will present in section 4.1 a comparison between the MI and

the FFC, however, we show here some arguments against the MI, even if this

measure is still a very good and broadly used tool:

1. MI computation lays on the probability distribution function (pdf) P (x, y)
which can be difficult to estimate, particularly if the pdf has a high dynamic

2. MI is symmetric: I(x, y) = I(y, x); in our case, we want to measure the

fact that y is a function of x and not the converse

3. We shall have to deal with weights on samples (see the further section on

boosting) and the criterion has to incorporate these weights. Due to its
5

structure, we have to fully compute the MI for each feature and for each

step of our algorithm

4. To transpose our method to higher dimension feature or output, it becomes

exponentially harder to estimate the pdf due to the famous “curse of di-

mensionality”

We propose in the next paragraph a new criterion so called the Fuzzy Func-

tional Criterion (FFC):

1. FFC does not need the joint pdf of (x, y)
2. FFC is not symmetric

3. FFC can be pre-computed independently of the weights and be very quickly

computed when the weights are known

4. FFC can be easily transpose to higher dimension feature or output

2.1.2. Fuzzy Functional Criterion (FFC)

Our Fuzzy Functional Criterion is like an energy function. The basic idea is

the following: we want to evaluate the relation between two variables u and v (u
is a measure and v a target to be predicted). We call P the logical proposition

“u1 and u2 are close” and Q the logical proposition “v1 and v2 are close”. If a

functional smooth relation between u and v exists (i.e. v = F (u) and F is a

smooth function) , we can say that the logical implication P ⇒ Q is true. If

the variable v takes a value in a discrete subset of the real numbers set, we have

to adapt the criterion slightly. This is done using the truth table of the logical

implication. We find it is equivalent to “¬P or Q” and also to ¬(P and ¬Q).
We take the fuzzy logic formulation of P and Q based on classical triangular

shaped functions [22] denoted by L and defined as:

La(e) =

{

1 − |e|
a

if |e| < a
0 otherwise

(3)

To quantify the fact that “u1 and u2 are close” is true, we just take the value

La(|u1 − u2|) into account, where a is the spread of the triangular function and

its value is discussed later. We can do the same for v and write:

Z = 1 − La(|u1 − u2|)(1 − Lb(|v1 − v2|) (4)

Z is a fuzzy evaluation of our implication P ⇒ Q. To build our criterion,

we have to sum up Z over all (u1, u2, v1, v2) (the constant “1” can be dropped) :

FFC =
∑

i

∑

j

−La(|ui − uj|)(1 − Lb(|vi − vj|)) (5)

6

The sum is taken over all quadruples. In our case, we replace ui by hk,i

(for some feature Hk) and vi by the target yi. We also introduce the weighting

function on examples, wi, which is a non-negative function with
∑

wi = 1.

These weights will be useful in the boosting process. So we can reformulate our

criterion as:

FFC(Hk) = −
∑

i

wi

∑

j

La(|hk,i − hk,j|)

(1 − Lb(|yi − yj|))

(6)

The criterion FFC(Hk) has to be maximized. Two parameters (a and b)

control the spread of the L functions and are used to normalize the criterion over

all features. In many problems, the range of u and v variables are bounded and

can be determined. We shall tune a and b as a fixed proportion of these ranges.

Experiments have shown that the criterion is not too sensitive to this tuning.

Another way to cope with the normalization issue is to replace u values by their

rank. In this option, the rank can be seen as a simple normalization: if there

are N examples, the number rank(x)/N is always in the interval [0 1]. Notice

that the difference of ranks divided by the number of examples has the same

distribution for all features.

The most interesting aspect is the weighting function on the examples does

not imply to compute at each step a new FFC from scratch: it is possible to

compute an intermediary form Q(i) of FFC and to modulate it with the weighting

function on examples based on the regression error. Equation (6) can be written

as:

FFC(Hk) = −
∑

i

wiQ(i) (7)

where :

Q(i) =
∑

j

La(|hk,i − hk,j|)(1 − Lb(|yi − yj|)) (8)

and Q can be precomputed once.

2.2. Regressor

The regressor is the second important element of our system. We have tested

different regressor from the Radial Basis Function (RBF) network family. They

are known to be very efficient in function interpolation. An important feature

is that their output becomes close to zero when the input is very far from any

training sample; this can be used, for example, for a rejection purpose. RBF
7

networks have three layers but are quite different from classical Multi Layer

Perceptron (MLP): the hidden layer is made of RBF units (and not sigmoid)

learned via a specific algorithm. Output layer is fully connected to the hidden

layer and is a linear neuron (or several linear neurons). There are two parts in the

training of a RBF network: during the first one, hidden cells are chosen using

the EM algorithm (or in our case the K-means algorithm). In the second part, a

classical gradient descent algorithm finds the optimal weights for the connections

between hidden layer neurons and the output layer neuron. A hidden neuron Ni

can be viewed as a couple made of a point xi in the input space and a spread value

si. For an input x, the output y of the neuron Ni is computed by the spherical

radial function:

y = e
−‖x−xi‖

si (9)

It is also possible to replace the spherical function by the Gaussian function

which uses the full covariance matrix Si:

y = e−(x−xi)
T S−1

i
(x−xi) (10)

To learn hidden neurons values, we can use either an EM or a simple K-

means algorithm. It has been shown that the latter is a more robust procedure. In

EM approach, a covariance matrix of each cluster is computed at each step and

it happens frequently that this matrix is poorly conditioned. This fact leads to

great instabilities during the learning process. In K-means approach, covariance

matrix of each cluster is computed once at the end of the process. The Euclidean

distance is used in the clustering step. After the choice of the hidden neuron

number N , a random initialization of centers xi is done. Then, at each step, we

select for each training sample x the nearest center xi producing a cluster Ci

of all training samples close to xi. Then, for each cluster, we compute mi the

center of gravity of Ci and set xi to mi. The process runs until xi are stable or

the maximum number of iterations is reached. Once hidden neurons are learned,

we determine other weights (between hidden and output layers) via a gradient

descent to minimize the Mean Square Error between desired output and network

output.

We also used a Generalized Regression Neural Network (GRNN) which can

be considered as a simplified RBF network ([19]). Each center of the hidden unit

corresponds to an example of the training set and weights between hidden and

output layers are set to the target values. It means this network does not need

any training step but instead just keeps all prototypes (in the hidden layer) and

8

all targets (in the second layer weights). This network can be viewed as a Parzen

window procedure applied to an interpolation task.

2.3. Boosting strategy

At the beginning, the neural network starts with only one input cell which

corresponds to the best feature given by the criterion using a uniform weighting

function. In the second step, a new network is trained with 2 input cells: the

new input corresponds to the second best feature which is selected among all

features (except the feature already selected) using weights provided by the error

of the first network. It means that examples that are poorly processed by the

first network will receive higher weights than others. By doing that, we believe

that the resulting weights, when fed to the criterion computation, will lead the

criterion to choose a new feature better adapted to these examples. It is clear that

our boosting paradigm enhances the regression system. Contrary to AdaBoost

[12], iterative reweighting is only used to select the best complementary feature.

Features combination is entirely handled by the regressor and weights are taken

into account. It can be seen as a regularization to prevent overfitting.

Several strategies are possible to drive the selection process. One has to tune

the weights according to the error and this weight adaptation has to be defined

carefully.

We test three boosting mechanisms. The first one lies on a memoryless pro-

cess. Weights at iteration t + 1 are only related to the quadratic error ǫt
k at the

previous iteration. In our case, we adopted this simple relation:

wt+1(i) =
(ǫt(i))

2

∑M

i=1(ǫt(i))2
; (11)

The second boosting strategy is cumulative and the weight of each example

depends on the regression model error and the previous weights.

w̃t+1(i) =

{

wt(i) if ǫt(i) < mediani(ǫt(i))
max {αwt(i), wmax} otherwise

(12)

wt+1(i) =
w̃t+1(i)

∑M

i=1(w̃t+1(i))
(13)

Weights of half the examples with the highest prediction error are multiplied

by a constant accumulation factor α. Here wmax is a constant used to avoid

overfitting. Typically, α is set to 1.1 and wmax to 0.1.

The third reweighting procedure is the same as in AdaBoost.R2 [2]. The

performance of the regressor is measured using a loss function :
9

Lt(i) =

(

ǫt(i)

max
i=1...M

ǫt(i)

)2

(14)

This function is averaged over all the weighted examples

L̄t =
M

∑

i=1

wt(i)Lt(i) (15)

Knowing L̄t, the weight updating parameter denoted βt is computed as follows:

βt = L̄t/(1 − L̄t) (16)

Finally, new weights on examples are calculated as :

w̃t+1(i) = wt(i)β
(1−Lt(i))
t (17)

And normalized as :

wt+1(i) =
w̃t+1(i)

∑M

i=1(w̃t+1(i))
(18)

Contrary to other boosting algorithms for regression, no parameter has to be

calibrated and tests on different data sets have shown good results in [13].

In the three reweighting procedure, weights are normalized to make their

set a distribution. In the rest of this paper, the three boosting strategies will be

referred as the memoryless (11), median (12) and AdaBoost.R2 (17) boosting

strategy respectively.

3. Experimental setup

In order to test our approach, BISAR is applied to a head pose estimation

problem. Research in head pose determination is now an important topic in

pattern recognition and many face analysis applications such as face recognition

systems and human computer interaction need this information. Many solutions

have been suggested in [10]. One of them considers head pose estimation as a

non linear regression problem. These methods try to learn a functional mapping

between an image (or a set of image features) and the head direction. This section

will describe the features and the data sets used in our experiments.

10

3.1. Image features

Faces are down-sampled to a fixed size of 32 × 32 pixels. Moreover, color

images are converted to gray scale images and histograms are dynamically ad-

justed. We use four types of features. The first three descriptors correspond to

the popular Haar like features [17] as depicted in Fig. 2. We choose these fea-

tures because of their good performance obtained in related area such as face

detection [17] and alignment [20]. Moreover they are simple and very easy to

compute using the integral image [17].

� �

� � � � ��
�

�
�
�

� �

��

�

�

�������

��	��	�

A�

A�

�B� �C� �D�

Figure 2: Image features. (a) a feature example. (b) Representation of the Haar like features used

in our experiment. (c) The last type of features are the difference between the sum of the pixels

within two non connected rectangular regions

Another kind of features, we propose here, are the difference between the

sum of the pixels within two non connected rectangular regions. Features are

parameterized by four values x1, y1, dx and dy. x and y correspond respectively

to the horizontal and vertical position of the feature in the image. dx and dy are

the width and height of a rectangle. Two extra parameters x2 and y2 are needed

to describe features of the fourth category. They correspond to the position of

the second rectangle in the image.

3.2. Data set 1: Pointing 04

3.2.1. Data set description

The first database used for this evaluation is the publicly available Face Point-

ing04 database. It was used to evaluate head pose estimation systems in the

Pointing 2004 Workshop on Visual Observation of Deictic Gestures. It was also

included in the International Evaluation on Classification of Events Activities

and Relationships (CLEAR 2006). The corpus consists of 15 sets of images.

Each set contains 2 series of 93 images of the same person at 93 different poses.

The first series is used for learning. Tests are carried out on the second series.

There are 15 people in the database, male and female, wearing glasses or not

and with various skin color and facial hair. The pose is determined by 2 angles,

11

ranging from −90◦ to +90◦ for the horizontal angle (pan) and from −60◦ to

+60◦ for the vertical orientation (tilt). Fig. 3 depicts the variety of this database.

Figure 3: Pointing 04 database samples.

Ground truth was obtained by asking people to look at some specific mark-

ers in the room. In fact, this ground truth is strongly more related to the gaze

direction than to the head direction. This acquisition process leads to a very

challenging database with ambiguities and variations on pan angle result in very

similar images.

3.2.2. Face localization

Faces in Ponting 04 are just a small area of the whole image. Thus a lot of

information are not relevant and can disturb the regression process so we need

somehow to crop the face area. However, because no generic multi-pose face

localizer is available, we decided to manually crop the faces. We also proposed

an ad hoc method similar to [4] for two main reasons:

• To reduce the bias introduced by the manual cropping and test the approach

on noisy data.

• To compare results with other methods which integrate a face localization

step.

Our face localization is based on skin colour. First, frontal faces are detected

in the training database using the Viola-Jones face detector [17]. Pixels within

the detected area are used to build a histogram on H (Hue) and S (Saturation)

channels of HSV color space. Other pixels are randomly picked outside the face

area in order to build a histogram of background. Face pixels are detected in the

test image set with a Bayesian rule based on these skin and non skin histograms.

The face bounding box size is proportional to the standard deviation of skin

pixels along X and Y axis. In this method, only frontal faces of the training set

are needed and no manual labelling is required. The main drawback is the weak

12

accuracy of this method in few cases. For example, the neck can be included in

the bounding box. The lack of precision in localization can greatly degrade head

pose estimation results. In result section, results are presented for both manual

and automatic face localization.

3.3. Data set 2: FacePix

The second data set used for this evaluation is the publicly available FacePix

database [9] from the Center for Cognitive Ubiquitous Computing (CUbiC). The

FacePix database consists of three sets of face images: one set with pose angle

variations, and two sets with illumination angle variations. Each of these sets are

composed of a set of 181 face images (representing angles from −90◦to +90◦at

1◦increments) of 30 different subjects, with a total of 5430 images. All the face

images (elements) are 128 pixels wide and 128 pixels high. These images are

normalized, such that the eyes are centered on the 57th row of pixels from the

top, and the mouth is centered on the 87th row of pixels. The pose angle images

appear to rotate such that the eyes, nose, and mouth features remain centered in

each image.

In our experiment, we use the set with pose angle variation ranging from

−90◦ to +90◦ with a step of 5◦. 20 faces were randomly picked from the original

data for training, 6 for testing and 3 for cross validation. Contrary to Pointing 04,

only the pan parameter is modified. Moreover, labels on each image are reliable

since the acquisition process is more accurate.

4. Experimental Results

4.1. Feature selection criterion

In this first experiment we compare the Fuzzy Functional Criterion to the

Mutual Information. In order to restrict the impact of outer factors, a GRNN

is used and no boosting is applied, i.e. weights on example remains constant

during iterations. The optimal number of inputs is chosen using the score on the

validation set. Table 1 shows FFC has the edge over MI. Moreover FFC is faster

to use equation (7) when boosting is introduced. These two reasons led us to

give priority to FFC criterion in the next experiments.

4.2. Boosting strategy

In this section, we compare several boosting strategies. Tests are carried out

using a GRNN. Thus no parameter needs to be tuned and results do not depend

on random initialization. Results are presented for both FacePix and Pointing 04

13

Table 1: FFC vs MI : mean absolute error in degree on the test sets. Value in brackets indicates

the corresponding number of features

Pointing 04 FacePix

Manual cropping Automatic cropping

Pan error Tilt Error Pan Error Tilt error Pan error

FFC 8.1◦(580) 8.4◦(560) 12.5◦(480) 15.9◦(100) 6.2◦(191)

MI 8.4◦(600) 8.9◦(560) 12.8◦(460) 15.7◦(140) 6.4◦(180)

databases. For this latter data set, tests are performed on manually and automat-

ically cropped images (cf. 3.2.2). In this way, we can evaluate the robustness

to noise and outliers. Results on the test set for the three boosting strategies (cf.

2.3) are reported in table 2. We also present results obtained without any boost-

ing (denoted by ’none’ in the table). We investigate the performance of BISAR

with up to 600 iterations and we select the classifier with the best performance

on the validation set.

Table 2: Mean absolute error in degree on the test set for different boosting strategy. Value in

brackets indicates the corresponding number of features

Pointing 04 FacePix

Manual cropping Automatic cropping

Pan error Tilt Error Pan Error Tilt error Pan error

None 8.1◦(582) 8.4◦(573) 12.5◦(467) 15.9◦(102) 6.2◦(191)

Memoryless 7.3◦(553) 8.5◦(267) 11.6◦(389) 13.5◦(78) 5.4◦(243)

Median 7.6◦(569) 8.9◦(223) 11.9◦(464) 16.5◦(55) 4.5◦(599)

AdaBoost.R2 8.2◦(382) 7.6◦(457) 10.9◦(430) 12.3◦(120) 6.0◦(265)

The effect of boosting is evident as any reweighting method outperforms re-

sults without boosting. In addition, the AdaBoost.R2 reweighting function seems

slightly better since it gives better results for three of the five test sets. Figure

4 depicts the evolution of the mean absolute error against number of selected

features. It shows that the error decreases faster for Adaboost.R2 reweighting

method in the first few iterations. The median strategy gives better results on

FacePix but it requires up to three times the number of features as compared to

other methods. The memoryless procedure has good results and outperforms the

14

AdaBoost.R2 strategy on the pan estimation when image are manually cropped

but it tends to overfit on the noisy data (cf. figure 4(b)).

The results are better on FacePix than on Pointing 04. This is most probably

due to the differences underlined in 3.3 (only pan variation, bias on the cropping

and the greater accuracy of the ground truth).

0 100 200 300 400 500 600
10

12

14

16

18

20

22

24

26

28

30

iterations

m
ea

n
ab

so
lu

te
 e

rr
or

 (
in

 °
)

Pan error on Pointing 04 (automatic cropping)

adaboostR2
median
none
memoryless

(a)

0 100 200 300 400 500 600
10

11

12

13

14

15

16

17

18

19

20

iterations

m
ea

n
ab

so
lu

te
 e

rr
or

 (
in

 °
)

Tilt error on Pointing 04 (automatic cropping)

adaboostR2
median
none
memoryless

(b)

0 100 200 300 400 500 600
6

8

10

12

14

16

18

20

iterations

m
ea

n
ab

so
lu

te
 e

rr
or

 (
in

 °
)

Pan error on Pointing 04 (manual cropping)

adaboostR2
median
none
memoryless

(c)

0 100 200 300 400 500 600
6

8

10

12

14

16

18

20

22

iterations

m
ea

n
ab

so
lu

te
 e

rr
or

 (
in

 °
)

Tilt error on Pointing 04 (manual cropping)

adaboostR2
median
none
memoryless

(d)

Figure 4: comparison of boosting effect against iterations

4.3. Regressor architecture

In this section, we experiment other RBF networks. We performed 300 it-

erations for each regressor on both Pointing and FaceFix databases. We kept

AdaBoost.R2 weighting since it was found to be the best in the previous section.

Test are carried out on two RBF networks which differ on the number of hidden

units. RBF 1 has half the number of training example while RBF 2 has one fifth

of this number. Hidden cells are chosen using a K-means algorithm and covari-

ance matrix of each cluster is only computed at the end of the process. Table 3

shows that performance is directly related to the number of units in the hidden

layer. Although the number of units is really large especially in the GRNN, no

15

overfitting was observed. It may be partly due to the spherical radial functions.

We have chosen spherical functions because they have only d independent pa-

rameters (where d is the dimensionality of the input space) as compared with

the d(d + 3)/2 independent parameters of a full Gaussian basis function. More-

over, training process with RBF is sometimes unstable since initial centres are

randomly specified.

Table 3: Mean absolute error in degree on the test set for different regressor architecture. Value

in brackets indicates the corresponding number of features

Pointing 04 FacePix

Pan error Tilt Error Pan Error

GRNN 11.4◦(288) 12.3◦(120) 6.0◦(265)

RBF 1 14.0◦(217) 15.8◦(256) 7.2◦(120)

RBF 2 15.2◦(161) 16.0◦(284) 8.5◦(237)

4.4. Multiresponse regression

In this experiment, pan and tilt were jointly trained. To achieve this, we

slightly modified the FFC. The output is a vector and we use the L1 norm instead

of the absolute difference of the outputs in equation (6). Learning simultaneously

pan and tilt information seems, a priori, more difficult since the network has to

learn two responses instead of one. However, the two pieces of information are

interlinked. Tables 4 shows that the joint learning performed slightly better on

pointing 04. It can also be observed that the joint learning needs to extract a

smaller number of features.

Table 4: Mean absolute error in degree on the test set. Value in brackets indicates the corre-

sponding number of features

Manual cropping Automatic cropping

Pan error Tilt Error Pan Error Tilt error

joint learning 7.5◦(600) 8.0◦(600) 10.3◦(294) 12.0◦(294)

separate learning 8.2◦(382) 7.6◦(457) 10.9◦(430) 12.3◦(120)

16

5. Comparison with other methods

5.1. Convolutional Neural Networks

Convolutional Neural Networks (CNN) are bioinspired [6] multilayered neu-

ral networks and were first proposed by Le Cun et al. [8] for handwritten char-

acter recognition. The idea is to build an architecture using both local receptive

fields with share weights and subsampling. In a typical architecture, there are

convolutional layers where each unit receives input from a set of cells located

in a small rectangular neighbourhood in the previous layer. With local receptive

fields, cells can extract basic features (oriented edges for example). Layers ex-

tracting feature are called convolutional because of the weight sharing: all units

in this layer perform the same linear operation (before applying the sigmoid

function) and the process can be viewed as a simple convolution. These fea-

tures are then combined by the subsequent layers in order to detect high-order

features. Before this new extraction, the network reduces the resolution of the

feature maps (by averaging and subsampling). This reduction has two justifica-

tions: to reduce the size of the layer and to bring some robustness against small

distortions. Figure 5 describes the CNN architecture used in our experiments,

following Simard recommendations [14].

Figure 5: Architecture of the Convolutional Neural Networks

CNN can be trained with the classical backpropagation algorithm and we

have used an adaptive learning rate and a momentum regularization. Table 5

summarizes comparative results between BISAR and CNN. It is worth noting

that performance are quite the same on FacePix, but BISAR outperforms CNN

on Pointing 04.

5.2. State-of-the-art methods on Pointing04

Performance are compared with three standard methods for this database

[10]. The first one proposed by Voit et al. [18] uses a multi layer perceptron

17

Table 5: Comparison with convolutional neural networks

Pointing 04 FacePix

Pan error Tilt Error Pan Error

BISAR 7.3◦ 7.6◦ 4.5◦

CNN 8.7◦ 11.5◦ 4.2◦

(MLP) to estimate the pose. First, head is localized using a linear boundary de-

cision classifier to detect skin color. Head area corresponds to the bounding box

surrounding the biggest skin color connected component. Inputs of the MLP are

the gray levels and gradient magnitudes of resized images (64pixels). Continu-

ous outputs of the network are the estimated head angle values. In Gourier et al.

[4], head poses are computed using Auto Associative Memories (one per orien-

tation). Head pose is estimated by selecting the auto-associative network with

highest likelihood score. Face was previously located using a skin color based

method quite similar to [18]. The last method is proposed by Tu et al.[16]. The

appearance variation caused by head pose changes is characterized by a tensor

model. An image patch from the testing set is projected into the tensor subspace,

and head pose can be estimated from the tensor coefficients obtained from a High

Order Singular Value Decomposition (HOSVD).

Table 6: Results on tilt and pan estimation and comparison with state-of-the-art methods on

Pointing04

Method Tilt error Classification Pan error Classification

Manual face localization

BISAR 8.0◦ 65.4% 7.5◦ 60.6%

High-Order SVD [16] 8.6◦ 75.7% 6.2◦ 72.4%

Automatic face localization

BISAR 12.0◦ 56.0% 10.2◦ 54.8%

High-order SVD [16] 17.9◦ 54.8% 12.9◦ 49.3%

Auto associative memories [4] 12.1◦ 53.8% 7.3◦ 61.3%

Multi layer perceptron [18] 12.8◦ 53.1% 12.3◦ 41.8%

Human performance [4] 9.4◦ 59.0% 11.8◦ 40.7%

18

Table 6 summarizes results obtained by the BISAR method and the three re-

lated approaches. Score are obtained on the test set using the best regressor on

the validation set. When faces are manually localized, BISAR results are the

same on tilt estimation as the HOSVD method and less accurate on the pan es-

timation. But HOSVD results fall when the face is automatically cropped. This

method is very sensitive to the localization accuracy. Auto associative memories

outperform BISAR on pan estimation but the latter obtains a better score for tilt

prediction. Moreover auto associative memories are used as generative classi-

fier. This implies that this approach is only capable of estimating discrete pose

locations and systematic problems arise as the number of detectors is increased

[10].

In comparison with the multi layer perceptron, BISAR has better results on

both tilt and pan estimation.

Results are also compared to human capability reported in [4]; BISAR and

human performance are quite close.

6. Conclusion

In this paper, we have presented and compared a regression method by com-

bining a new feature selection scheme with a specific RBF (Radial Basis Func-

tion) network named GRNN (Generalized Regression Neural Network). It has

been shown that these tools are well adapted to problems with a very large set

of potential features which is often the case in pattern recognition. Our feature

selection is based on a new criterion called FFC (Fuzzy Functional Criterion).

The FFC is a new measure using a fuzzy approach to evaluate the nature of the

relation between two random variables x and y. If y = F (x), the FFC(y, x)
is maximum. An important point is that our measure takes into account the fact

that x and y are continuous (without sampling them) using a Parzen-window-like

approach. Moreover, the FFC can be calculated once without weighting function

over examples and then can be evaluated very quickly with any weighting pro-

vided later. We have selected a boosting strategy among three: memoryless,

median and AdaBoost.R2 strategy. In these 3 strategies, weights are computed

from the regression errors and from previous weights (except in the memoryless

strategy). This selection and other benchmarking were done on the head pose

determination problem. The strategy AdaBoost.R2 was found to be the best for

three of the five test sets and was adopted for experiments. It also appears that

GRNN is the best choice as the neural network regressor among the class of RBF

networks. A comparison with CNN (Convolutional Neural Networks) has shown

that BISAR is much better (Pointing Data Set) or quite equivalent (FacePix Data
19

Set). It is very promising since CNN are well known to be powerful regressor

in Pattern Recognition community. Performances of BISAR were evaluated and

found equivalent to three state-of-the-art methods on the Pointing Database. We

believe that our error rate can be improved in the nearest future by incorporat-

ing new features such as gradient orientation to the potential set of features. We

plan to analyze in details the relation between the boosting strategy, the cross

validation and the RBF parameters. Experiments on other kinds of regression

problems, for example with higher output dimension could help us to understand

these issues. We think that the theory of learning could be an appropriate frame-

work to develop and improve our approach.

References

[1] Chapados, N., Bengio, Y., 2001. Input decay: Simple and effective soft variable selection.

In: Proceedings of the IEEE-INNS International Joint Conference on Neural Networks.

Vol. 2. pp. 1233–1237.

[2] Drucker, H., 1997. Improving regressors using boosting techniques. In: Proceedings of

the International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., pp.

107–115.

[3] Freund, Y., Schapire, R. E., 1995. A decision-theoretic generalization of on-line learning

and an application to boosting. In: Proceedings of the Second European Conference on

Computational Learning Theory. Springer-Verlag, pp. 23–37.

[4] Gourier, N., Maisonnasse, J., Hall, D., Crowley, J. L., 2007. Head pose estimation on

low resolution images. In: Multimodal Technologies for Perception of Humans. LNCS.

Springer, pp. 270–280.

[5] Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. Journal of

Machine Learning Research 3, 1157–1182.

[6] Hubel, D., Wiesel, T., 1962. Receptive fields, binocular interaction, and functional archi-

tecture in the cat’s visual cortex. J Physiol 160, 106–154.

[7] Kohavi, R., John, G. H., 1997. Wrappers for feature subset selection. Artificial Intelligence

97 (1-2), 273–324.

[8] Le Cun, Y., Boser, B., Denker, J. S., Howard, R. E., Habbard, W., Jackel, L. D., Henderson,

D., 1990. Handwritten digit recognition with a back-propagation network, 396–404.

[9] Little, G., Krishna, S., Black, John Arthur, J., Panchanathan, S., 2005. A methodology

for evaluating robustness of face recognition algorithms with respect to variations in pose

angle and illumination angle. In: Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing.

[10] Murphy-Chutorian, E., Trivedi, M., 2008. Head pose estimation in computer vision: A

survey. IEEE Trans. on PAMI 99.

[11] Redpath, D. B., Lebart, K., 2005. Boosting feature selection. In: Proceedings of the Inter-

national Conference on Advances in Pattern Recognition. pp. 305–314.

[12] Schapire, R. E., 2003. The boosting approach to machine learning: An overview. In: Deni-

son, D. D., Hansen, M. H., Holmes, C., Mallick, B., Yu, B. (Eds.), Nonlinear Estimation

and Classification. Springer.

20

[13] Shrestha, D. L., Solomatine, D. P., 2006. Experiments with adaboost.rt, an improved boost-

ing scheme for regression. Neural Computation 18 (7), 1678–1710.

[14] Simard, P. Y., Steinkraus, D., Platt, J. C., 2003. Best practices for convolutional neural net-

works applied to visual document analysis. In: Proceedings of the International Conference

on Document Analysis and Recogntion. pp. 958–962.

[15] Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society, Series B 58, 267–288.

[16] Tu, J., Fu, Y., Hu, Y., Huang, T. S., 2006. Evaluation of head pose estimation for studio

data. In: Multimodal Technologies for Perception of Humans. LNCS. pp. 281–290.

[17] Viola, P., Jones, M., 2002. Robust real-time object detection. International Journal of Com-

puter Vision.

[18] Voit, M., Nickel, K., Stiefelhagen, R., 2007. Neural network-based head pose estimation

and multi-view fusion. In: Multimodal Technologies for Perception of Humans. LNCS.

Springer, pp. 291–298.

[19] Wasserman, P. D., 1993. Advanced Methods in Neural Computing. John Wiley & Sons,

Inc., New York, NY, USA.

[20] Wu, H., Liu, X., Doretto, G., 2008. Face alignment via boosted ranking model. In: Com-

puter Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. pp. 1–8.

[21] Xu, X., Zhang, A., 2006. Boost feature subset selection: A new gene selection algorithm

for microarray dataset. In: International Conference on Computational Science (2). pp.

670–677.

[22] Zadeh, L. A., 1994. Soft computing and fuzzy logic. IEEE Softw. 11 (6), 48–56.

Appendix

21

1 ≤ k ≤ N Number of features.

1 ≤ i ≤ M Number of examples.

1 ≤ t ≤ T Number of iterations.

bt Index of the tth best feature.

A Training set of labelled examples,

A = {(xi, yi)|i = 1 . . . M}.

V Validation set.

E Test set.

F Set of potential features,

F = {Hk|k = 1 . . . N} .

FS Set of selected features.

xi ith example.

yi Target associated to xi.

Hk kth feature of F

hk,i Value of the kth feature

for the ith example,

hk,i = Hk(xi).
wt weighting vector at the tth iteration,

wt = {wt(i)|i = 1, . . . , M}.

Rt Regressor with t inputs.

ǫt(i) Absolute error of Rt on the ith example.

Figure 6: Glossary of terms

22

Kevin Bailly is a PhD student at the Institute of Intelligent Systems and

Robotics (ISIR), and a temporary assistant professor at Pierre and Marie Curie

University (UPMC Paris 6), Paris, France. He holds an engineering degree from

the IMAC’s engineering school and a MSc in computer science from the Univer-

sity of Paris-Est. His main areas of research are pattern recognition, computer

vision and machine learning.

Maurice Milgram is born in 1948 in Paris and obtained the Agrgation of

Mathematic in 1971 and a PhD from UTC on Probabilistic Automata Networks

in 1981. He starts as Assistant Professor at Technology University of Compigne

(1973) then he becomes full Professor (1983) at ENSEA and joined the Robotic

Laboratory of the Pierre and Marie Curie University in Paris in 1986. He founded

the PARC Laboratory which is now part of the LISIF in 1992. He has supervised

about 30 PhD thesis and 20 industrial contracts. His research interests concern

Pattern Recognition and Image Processing.

Current work: Face localization , gaze tracking, person tracking in image se-

quences, gesture recognition.

Recent contracts: Person localization for a smart airbag (Faurecia), automatic

directional control of the vehicles headlamp beams (Valeo), vehicle type recog-

nition (LPR), biometry (Sagem), on-vehicle obstacle detection (PSA), baby gaze

tracking (Necker Hospital).

23

