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Abstract—It has previously been shown that the
combined use of fair queuing and admission control
would allow the Internet to provide satisfactory quality
of service for both streaming and elastic flows without
explicitly identifying traffic classes. In this paper we
discuss the design of the required measurement based
admission control (MBAC) scheme. The context is
different to that of previous work on MBAC in that
there is no prior knowledge of flow characteristics and
there is a twofold objective: to maintain adequate
throughput for elastic flows and to ensure low packet
latency for any flow whose peak rate is less than a
given threshold. In the paper we consider the second
objective assuming realistically that most elastic and
streaming flows are rate limited. We propose a MBAC
algorithm and evaluate its performance by simulation
under different stationary traffic mixes and in a flash
crowd scenario. The algorithm is shown to offer a
satisfactory compromise between flow performance and
link utilization.

I. Introduction

In this paper we return to the much studied question of
admission control and, in particular, to the design of an
effective measurement-based admission control (MBAC)
algorithm. Despite extensive research over many years it is
fair to say no entirely satisfactory algorithm has been pro-
posed for the admission of variable rate flows, even in the
favourable case of “bufferless multiplexing”. The subject
is clearly out of fashion among networking researchers but
admission control is still an essential ingredient of effective
QoS control and many significant issues remain open.

We consider MBAC in a particular context. This is
the proposal to realize service differentiation using two
flow-based router mechanisms, known as Cross-protect,
that avoid the need for flow rate estimates or explicit
class of service marking [10]. These mechanisms are a per-
flow fair queuing scheduler and an MBAC that uses load
characterizations provided by the scheduler. Fair queuing
ensures max-min fair sharing of link bandwidth. Flows of
rate less than the fair rate are not backlogged and their
packets experience low latency. In Cross-protect, delay
for such flows is minimized by sending their packets to
a priority queue. Implicit differentiation is realized on
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recognizing that streaming flows that require low latency
indeed have relatively low peak rates, and generate no
queueing. Admission control is necessary to maintain the
fair rate sufficiently high and to ensure the load on the
priority queue remains within bounds.

Admission control in Cross-protect can only be based
on the limited traffic measurements made possible by
the scheduler. These are basically byte counts of packets
emitted in the priority queue in successive time intervals
and a running estimate of the current fair rate. We have
no a priori knowledge of flow characteristics and can only
detect flow completions by the absence of new packets in
a timeout interval.

When a significant proportion of traffic is elastic and
flows can attain the fair rate, it is relatively easy to protect
the performance of flows in progress simply by rejecting
new flows when the fair rate goes below a certain threshold
(set typically to 1% of the link rate and typically only
exceeded in situations of severe overload [1]). In this paper
we consider a more problematic but typical scenario where
the vast majority of flows are limited in rate (e.g., by
user DSL access rates) and consequently, in normal load
conditions, are handled with priority by the Cross-protect
scheduler.

While the available information on traffic characteristics
is quite limited, the considered context is highly favourable
to efficient statistical multiplexing. By assumption, the
link rate is much higher than the maximum peak rate of
flows intended for priority service. The latter is necessarily
less than the 1% (or so) fair rate threshold and typically
much smaller (e.g., 4 Mbit/s video flows sharing a 2.5
Gbit/s OC48 backbone link). High efficiency is thus pos-
sible while maintaining excellent per-flow performance.

In the following sections we first discuss some existing
MBAC algorithms that are relevant to our problem. Our
approach is then presented in Section III and evaluated in
Section IV under a number of demand scenarios. Conclu-
sions are presented in Section V.

II. Related work on MBAC

Measurement-based admission control has, of course,
been widely researched over many years. However, only
a small number of proposed algorithms make the kind of



minimal assumptions about traffic characteristics that are
appropriate for the present context. We only review these
contributions in the present section.

Jamin et al [7] propose a simple MBAC algorithm called
measured sum. A new flow is admitted if the sum of its
nominal rate and the estimated rate of aggregate flows is
less than a utilization target times the link bandwidth. The
estimated rate of aggregate flows is derived using a time
window estimator. This algorithm is clearly very simple
and takes no explicit account of a performance objective or
the nature of traffic. It therefore has limited predictability.

Gibbens et al. [4] propose a decision theoretic approach,
where a new flow is admitted only if the current aggregate
load is less than a certain threshold. In the simplest variant
proposed, the flow peak rate is the only flow information
taken into account. This method thus corresponds with
present requirements and presented results provide useful
confirmation that efficient multiplexing is possible even
in this restricted framework. Unfortunately, to compute
the admission threshold requires prior knowledge about
the level of offered load and flow burstiness that is not
available in our context.

Grossglauser and Tse [5], [6] propose an algorithm based
on measured overall traffic which could be adapted to fit
Cross-Protect requirements. This is based on a Gaussian
approximation of aggregate demand considered in their
model as a fluid arrival rate. The admission condition
is designed to satisfy a target probability for this overall
demand exceeding link capacity. New flows are admitted
while:

C −At − r > αqσ̂t (1)

where C is the link capacity, At is the measured ag-
gregate load (in bits/s) at time t, r is the flow peak
rate, αq = Q−1(ε) with ε the target loss probability
and Q(.) the complementary distribution function of a
N(0, 1) Gaussian random variable, and σ̂t is the estimated
standard deviation of the aggregate load. When a flow
is admitted its peak rate is added to At. This prevents
momentary overloads under heavy traffic due to too many
flow admissions following a low estimate At.

To estimate At and σ̂t, Grossglauser and Tse introduce
the notion of critical time scale (T̃h), broadly equal to
the time scale over which the impact of an admission
decision persists. A(t) should be estimated by exponential
averaging over the critical time scale while the variance
should be measured over a much longer time scale. They
establish that T̃h = Th√

n
where Th is the average flow

holding time and n is the number of flows the link can
carry.

Despite significant differences between proposed
MBACs, it turns out that they all result in the same
trade-off between utilization and perceived per-flow
performance [3]. The algorithms differ in terms of their
predictive capability: the choice of parameter values for
the admission condition resulting in a given performance

target. Breslau et al. [3] show that all the algorithms
they tested are quite poor at predicting performance
as measured in terms of the packet loss ratio. Reasons
why it is intrinsically difficult to control performance
parameters like the packet loss rate by means of MBAC
are discussed by Bean [11]. Simply stated, the problem is
that inappropriate admission decisions leading to excess
traffic produce a loss rate that may easily be ten times
greater than the target for a certain time. The average loss
rate can only be restored by ensuring a much lower loss
rate for a period more than ten times longer. It appears
that we can, in fact, only hope to derive algorithms
that are reasonably efficient and this is the limit of our
ambition.

III. An MBAC for Cross-protect

We discuss the design of an MBAC that can ensure
streaming flows of peak rate less than a given threshold
p experience negligible packet loss.

A. Admission criteria

Flow admissibility in Cross-protect is determined from
the values of two measures of congestion, the fair rate FR
and the priority load PL. These values are determined as
running averages in successive time slots of length τ and
admissibility in slot t is determined from values calculated
in slot t− 1.

FR is the rate a flow would acquire on output if it
always had packets to send and can be estimated from
data available to the scheduling mechanism [8], [9]. It is
estimated by a long term average representing the rate
acquired over an interval commensurate with the time
scale of flow arrivals and departures. PL is an exponential
moving average of the traffic in bits arriving to the priority
queue in one slot. Packets sent to the priority queue are
those arriving to flows that are not currently backlogged.

When a significant proportion of traffic is from elastic
flows that are not limited in rate elsewhere on their path,
the most significant admission criterion is FR. Priority
load remains low and is such that packet loss and delay
for streaming flows of peak rate somewhat less than FR
are negligibly small. Admission control is rather easy in
this case since elastic flows are naturally tolerant of any
imprecision in the fair rate estimate [8], [9].

In practice, however, the large majority of elastic flows
have a limited peak rate and many will be handled to-
gether with streaming flows in the Cross-protect priority
queue. FR is then not critical while the measured priority
load PL includes traffic from flows of peak rate greater
than p that we do not seek to protect. The difficulty in
designing the Cross-protect MBAC resides in differentiat-
ing the impact of flows whose peak rate is greater than or
less than the threshold p without explicitly distinguishing
them.

We assume flows of peak rate less than or equal to p will
suffer negligible packet loss and delay if the traffic in bits



Fig. 1. Sketch of possible utilization regimes compared to target PL threshold θPL

forwarded to the Cross-protect priority queue in a slot of
length τ remains less than capacity Cτ with probability
greater than 1− ε. We suppose that ε can be calibrated to
ensure sufficiently low packet loss and delay.

B. Mean and variance of priority load

Let bt be the measured load in bits/s sent to the priority
queue in slot t. The mean priority load estimate At is the
moving average:

At = (1 − α) ×At−1 + α× bt. (2)

where parameter α = 1 − τ/T̃h and T̃h is the critical time
scale defined in [6].

To apply the approach from [6], we estimate the variance
as follows:

σ̂2
t = Dt − E2

t where (3)

Dt = (1 − β)Dt−1 + β(bt −At)
2,

Et = (1 − β)Et−1 + β(bt −At).

and set the smoothing parameter β to (1 − α)/10. Es-
timates of the flow holding time would need to be estab-
lished periodically by measurement. It is also worth noting
that the distribution of flow durations is not exponential as
assumed in [6] but heavy-tailed. Fortunately, it appears as
in previous work that the choice of smoothing parameters
α and β is not highly critical.

To apply condition (1) using these estimates proves
too conservative for our purpose when some flows have
a peak rate greater than p. We assume such flows are
able to adjust their rate to the current fair rate in case
of aggregate rate overload and do not require protection.
For example, in Figure 1b), measured fair rate and priority
load are the same as in Figure 1a), but we could accept
more flows without violating the latency requirements for
flows of rate less than p. Applying measured mean and
variance in (1) would seek to maintain load below the
threshold θPL and prevent the system from entering the
favourable state represented in Figure 1c). In this state,
flows of rate greater than p become backlogged and no
longer contribute to priority load. The sketch in Figure
1d) shows an ideal situation where the admission control
perfectly discriminates flows of peak rate greater than

and less than p, and the traffic mix allows the link to be
saturated.

C. A Poisson approximation

We assume the number of inelastic flows of peak rate
less than or equal to p in progress in a given measurement
slot has a Poisson distribution. This would be the case
in the absence of blocking for a quite general traffic model
where flows occur in sessions of alternating flows and think
times and the session arrival process is Poisson. If packets
are of constant maximal length L, the number of packets
arriving in any slot not greater than L/p also has a Poisson
distribution1. This suggests we can estimate the variance
of the rate in a slot from the measured mean yielding the
following simple MBAC.

Choose a slot length τ = L/p. Given the measured
priority load At bits/s, let mt = Atτ/L be an estimate of
the number of packets and deduce the variance estimate
σ̂2
t = mtL

2/τ2 = Atp. Apply this estimate in admission
condition (1).

By ignoring flow blocking and the fact that some flows
emit packets of size less than L, the Poisson assumption
leads to conservative admission decisions. However, given
the assumption that p is a small fraction of link capacity
C, the approximation nevertheless allows reasonably high
utilization. Table I gives the link load threshold corre-
sponding to particular values of C/p and ε. Admission
control would be applied in slot t when At−1 is greater
than this threshold.

C/p 100 100 1000 1000
ε 0.001 0.01 0.001 0.01
αq 3.09 2.33 3.09 2.33

Threshold 0.73 0.79 0.91 0.93

TABLE I
Admission thresholds

Note that if flows of peak rate greater than p are
included in the priority load estimate At, the variance
estimated by (3) would be greater than the Poisson es-
timate Atp. The MBAC derived from [6] would be too

1A flow of rate r independently sends a packet in this interval with
probability r/p.



conservative, preserving states like Fig. 1b). We expect
the Poisson estimate to more readily allow transition to
states like Fig. 1c).

On the other hand, if the aggregate traffic has many
flows of rate much smaller than p, the Poisson approxi-
mation may be too conservative. We therefore propose a
more refined MBAC where the variance estimate is the
minimum of Atp and that calculated by (3).

The Cross-protect MBAC algorithms are called Poisson
and MinVar (for minimum variance) algorithms. Their
performance is evaluated for some test scenarios in Section
IV below.

D. Limiting the number of arrivals per slot

Admission control is especially useful in exceptional
events when demand considerably exceeds capacity. This
occurs in particular when a failure somewhere in the
network leads to traffic being rerouted over a considered
link. Traffic will increase to attain in time a new stationary
load. The MBAC should be able to reject excess traffic in
this regime to maintain performance objectives. However,
the main impact of the failure is for flows in progress on
the interrupted path to appear suddenly as a burst of
apparently new flows appearing on links of the fail-over
path. A link on this path will generally be uncongested
before the failure and therefore open to accept new flows.
If, however, all “new” flows that arrive in the time slots
following the failure are accepted, the link will immediately
become heavily congested.

To alleviate this effect we limit the number of new flows
accepted in any slot, as in [6]. Given current estimates
At and σ̂2

t , we accept a maximum of n new flows where
(n+ 1)p+At + αqσ̂t > C. This may still not be sufficient
given the time lag before the traffic of the new flows
appears in the load estimates At. Note further that, as
flow durations generally have a heavy-tail distribution, the
flows that fail-over to the new link will have an expected
residual duration that is greater than the mean. The
impact of wrong positive admission decisions is therefore
more severe than for genuinely new flows.

The back-off strategy proposed in [4] where, once one
flow is blocked, no other flow is accepted until an ongoing
flow terminates is not applicable in our system since flow
terminations are not signalled. The envisaged solution is to
interrupt the protection of a sufficient number of on-going
flows to alleviate congestion noting that interrupting flows
is in all cases necessary when the combined traffic on failed
and back-up paths exceeds remaining capacity.

E. Instability of measured priority load

The measured priority load can vary suddenly as flows
with a common peak rate P become backlogged and are
therefore no longer handled with priority. If P is close to p,
this can momentarily lead to an anomalous situation where
At is below the admission threshold and the (long term)

average fair rate stays above its threshold even though
flows of rate p are backlogged.

To limit the impact of this phenomenon, we set the
priority load to C in any slot where a flow of rate p would
be backlogged. The latter condition can be easily deduced
from the parameters of the priority fair queueing algo-
rithms defined in [8], [9]. It is an instantaneous measure
of the current fair rate while FR is a long term average.

This modification also proves useful when flows have a
nominal peak rate p but in practice are subject to jitter,
becoming momentarily backlogged when the inter-packet
interval is too small (see Section IV-F).

F. Impact of the length of the sampling interval

The choice of the discretization interval will generally
be guided either by technical constraints, or by a target
peak rate for the flow we want to estimate. We envisage
intervals of length kL/p for k ≥ 1.

Lower values of k fail to take proper account of the low
variance of flows of rate less than p. On the other hand,
larger values of k tend to make the MBAC unresponsive
to sudden changes, as in envisaged flash crowd scenarios.

IV. Evaluation of the algorithms

We evaluate our Poisson and MinVar propositions using
extensive ns-2 simulations, and compare the results with
an algorithm inspired from [6] and equation 3, that we
denote GT2.

A. Simulation set-up

The topology for the simulation is the traditional dumb-
bell, illustrated by the bold part in figure 2, with a central
link capacity C = 10Mb/s. The deliberate choice of such a
low value for C is intended to keep simulation time short,
since performance results only depend on the C/p ratio
(confirmed by simulations).

Traffic is composed of UDP flows of exponentially dis-
tributed duration with mean Th = 60s. They arrive as
a Poisson process. The flows are generally assumed to
generate an on/off packet arrival pattern with given peak
rate in the on-periods (from 50 to 300kb/s). Packet size
is constant and set to 1000 bytes. Simulations are run for
2000s multiple times (25), and we focus on the stationary
regime by discarding the first 200s. The target overflow ε
is set to .01. We simulate a stationary load equal to 100,
120 and 140% of link capacity. Unless specified, the arrival
rate of the flows is such that the limit on the amount of
traffic admitted in a slot is inoperative and thus has no
impact. The sampling interval is τ = kL/p with k = 1 or
a small integer, as specified.

2Source of ns2 modules and scripts used for simulation are available
online at http://jordan.auge.free.fr/research/mbac



Fig. 2. Simulation set-up

B. Performance criteria

Monitoring the performance of both streaming and
elastic flows requires selecting metrics that reflect differ-
entiation realized by our scheduler. The overflow proba-
bility (ov) represents the proportion of slots where the
instantaneous priority load is greater than link capacity. It
is representative of streaming flow performance, provided
their packets are correctly sent with priority, which is
measured by the backlog probability (bk considered for each
class).

We also measure the blocking probability (bl), which
represents the proportion of flows that are not admitted,
and the packet loss rate (lo), the proportion of packets
that are lost due to buffer overflow. The combination of
both metrics shows how the excess traffic is discarded
during moments of congestion. An effective MBAC should
make bl as low as possible while guaranteeing the quality
of service of both classes of flows. We also track the
proportion of times each admission criterion is responsible
for flow blocking (blPL and blFR). Finally, we measure link
utilization (ut) which, while it depends on the traffic mix,
gives insight into how well the resources of the link are
exploited.

C. Utilization versus overflow probability

The relation between utilization and overflow proba-
bility represents the optimal performance that can be
attained by the algorithm in stationary conditions. It is
derived for the considered MBAC algorithms by varying
the admission criterion over a range. For GT, we vary ε
and note the realized utilization and overflow probability.
For either Cross-protect algorithm (Poisson and MinVar),
denoted XP in the figure, we simply vary an admission
threshold on the observed load At, without relying on
either mean or variance. Figure 3 presents results where
flows all have the same peak rate of 100Kb/s. The figure
also plots the same relation for a load that has an exact
Poisson distribution.

Unsurprisingly given results reported in [3], the relation
is broadly the same for the two MBACs. A subtle differ-
ence occurs at high loads. As the link becomes saturated,
flows in Cross-protect are momentarily backlogged and
no longer contribute to the priority load allowing more
admissions and higher utilization. Such high threshold
values correspond to situations where flows of rate p

Fig. 3. Utilization against overflow probability for XP and GT
MBACs compared to a Poisson distributed slot load

Fig. 4. Load density for ρ = 1.20, θ = 0.78 and p = 100kb/s, with
fitted Poisson distribution

become backlogged, of course, and performance in this case
is not adequately measured by ov.

From the plot, we can deduce that the load per slot
is less variable than Poisson since achievable utilization
is higher for the same overflow objective. Figure 4 shows
the empirical histogram of the number of packets arriving
in one slot for flows of peak rate 100Kb/s under the
Poisson MBAC. A fitted Poisson distribution is shown to
correspond quite closely suggesting our approximation is
reasonable (the real traffic being less variant). Results not
presented here show the same behaviour for different peak
rates values.

D. Predictiveness of XP MBAC

While most MBAC algorithms have the same perfor-
mance frontier, they differ in their predictiveness, i.e., the
predictability of their performance for given parameter
settings. We evaluate the predictiveness of Poisson and
MinVar for homogeneous peak rate flows. The protected
rate p may be equal to, greater than or less than the actual
flow peak rate r. Results with 95% confidence interval are
presented in Table II for a sampling slot size τ = L/p.



p r ov ut bl bk lo
P

o
is

so
n

50 50 3.98e-4
±0.92e-4

84.08
±0.02

31.37
±0.38

2.82e-3
±0.52e-3

0.00
±0.00

100 100 3.11e-4
±0.64e-4

78.44
±0.06

35.20
±0.61

8.14e-3
±1.80e-3

0.00
±0.00

100 50 3.05e-3
±0.20e-3

78.79
±0.02

35.80
±0.29

1.85e-5
±2.19e-5

0.00
±0.00

100 300 2.71e-4
±0.86e-4

97.63
±0.96

3.04
±1.49

76.27
±3.32

15.60
±1.14

M
in

V
a
r

50 50 5.42e-3
±0.31e-3

88.28
±0.05

27.99
±0.33

6.30e-2
±0.44e-2

0.00
±0.00

100 100 3.24e-3
±0.15e-3

83.59
±0.08

30.98
±0.59

1.32e-1
±0.10e-1

0.00
±0.00

100 50 7.69e-3
±0.30e-3

81.25
±0.06

33.68
±0.40

6.54e-4
±5.62e-4

0.00
±0.00

100 300 2.13e-4
±0.56e-4

98.33
±0.69

1.84
±0.98

78.91
±2.56

16.21
±1.08

TABLE II
Performance of Cross-Protect MBAC for traffic with

flows of same peak rate

1) Flows of know peak rate: The results when r = p are
presented in Table II, for p = 50Kb/s and p = 100kb/s.
The overflow probability remains one or two orders of mag-
nitude less than our objective, leading to a link utilization
lower than what could have been possible (deduced from
Fig. 3). However, the loss in utilization is slight and quality
of service constraints are respected. Over-conservatism is a
common pitfall for all MBAC algorithms. Results for Min-
Var MBAC show that using measured variance improves
performance, as expected since the traffic aggregate is in
fact less variant than Poisson due to blocking. Performance
is even better in this respect with k = 2.

2) Flows with lower peak rates: Typically, the value of
p will be set sufficiently high to protect all streaming flows
including many with a much lower peak rate. Lines in
Table II for p = 100 and r = 50 show the impact of
assuming a peak rate higher than that actually present.
With the Poisson MBAC, the threshold only depends
on p so that achieved performance with r = 50kb/s is
roughly similar to r = 100kb/s. This illustrates the cost
of using the simple Poisson MBAC which nevertheless
remains slight with this link size (10Mb/s). MinVar is more
effective in this case when the sampling interval is equal
to kL/p and k ≥ 2 (results not shown here) and, in fact,
has the same performance as the GT MBAC in this case
(utilization rises from 81.25 ± 0.06 % to 88.02 ± 0.06 %).

3) Flows with higher peak rates: The last case where
r > p illustrates the major advantage of the (XP) MBAC.
When admission criteria are set for p = 100, flows with
peak rate r = 300 are backlogged and hardly contribute
to priority load. The link is fully utilized and flows lose
a high proportion of packets. Blocking ensues when their
long term rate goes below the fair rate threshold C/100
(which corresponds to high load).

E. Performance with a mixture of flow peak rates

To investigate the differentiation realized in a heteroge-
neous context, we consider two classes of flows, with peak
rate under and above p, and overall load 1 < ρ1+ρ2 < 1.40.

Figure 5 represents realized differentiation in a set of
experiments where r1 = 50kb/s and r2 = 300kb/s,

respectively with Poisson (a) and MinVar with parameter
k = 1 (b) and k = 2 (c). The x and y axes represent ρ1
and ρ2, with constant overall load in the same shade of
gray. The symbol indicates the level of differentiation: X
(full), ∼ (good, differentiation occurs after some time), ≈
(episodic differentiation), × (no differentiation).

With Poisson, differentiation occurs for ρ = 1.20 and
ρ = 1.40 as soon as the load of the low peak rate class
is not too high. MinVar improves differentiation while
maintaining QoS, especially when k is properly sized (here
k = 2). MinVar with k = 2 manages to differentiate the
traffic in all the configurations with ρ = 1.20 and ρ = 1.40.

When looking more closely at the performance metrics,
we see that differentiation is variable depending on the
traffic parameters. Discrimination is reflected in the dif-
ferent values of blocking rate bl and packet loss lo. It is
necessary in all cases to eliminate at least the extra load
(bl+ lo > (ρ− 1)/ρ). In cases without discrimination, this
is realized uniquely by blocking and utilization remains
relatively low. In others, flows with the higher rate lose
packets reducing the blocking proportion (which is the
same for both flow classes) and utilization is close to
100%. Discriminated flows are served depending on the
available bandwidth left by priority flows, and their quality
of service is ensured by the lower bound on the long term
fair rate.

Episodic discrimination occurs as follows. The start of
the simulation corresponds to a transient regime where
the priority load includes all incoming traffic. As the link
begins to saturate, the highest peak rate flows become
backlogged and cease to contribute to priority load. Note
that the MBAC allows the link to attain this regime since
the variance estimate is given by the Poisson approxima-
tion. This leads to overflow implying higher rate flows
become backlogged. Once differentiation has occurred, PL
decreases back to a value allowing for new flow arrivals.
This process continues until the MBAC no longer accepts
any more flows.

Sometimes, the traffic mix is such that the MBAC
does not allow the link to become saturated. This arises
generally when the rate variance estimate is low because
both peak rates are relatively small or demand from the
high rate flows is slight. Cases when p is small compared to
the threshold on FR will be favourable to differentiation.
In all cases, we see that flows with peak rate lower than
p are protected, since they have negligible overflow and
backlog probability, and they encounter no losses.

F. Impact of jitter

In practice, flows of some nominal peak rate r are
subject to variable packet delays and acquire jitter as
they are multiplexed in successive router queues. It is
important to understand how this impacts MBAC per-
formance. A worst case assumption, according to the so-
called negligible jitter conjecture in [2], is that flows emit
packets as a Poisson process of rate r during on periods. In



(a) (b) (c)

Fig. 5. Differentiation realized by Poisson and k = 1 (a), and MinVar with k = 1 (b) and k = 2 (c). In each figure, the target peak rate is
p = 100kb/s, and the load of flows of class 1 (r1 = 50kb/s) and 2 (r2 = 300kb/s) is represented respectively on the x- and y-axis.

practice this is likely to be much worse than realized jitter,
especially in a network with Cross-protect routers where
fair queuing tends to restore the original packet spacing of
jittered flows. However, it is of some independent interest
to evaluate the MBAC under Poisson traffic at packet
level.

We have re-evaluated the performance of both algo-
rithms in the previous scenarios when flows suffer jitter.
For lack of space, we can only highlight here our main
observations.

When the flow rate r < p, jitter is not high enough
to have an impact on performance. The difference occurs
when r is close to p. Packets of jittered flows are tem-
porarily delayed by the scheduler when their instantaneous
rate is higher than p. This enables the MBAC to saturate
the link when traffic characteristics allow. New flows are
then blocked by the FR condition, which is a sign of high
load. While GT only considers the traffic aggregate, Cross-
Protect temporarily delays packets which have a high
instantaneous rate to leave some room for admitting new
flows. In this way, it actually reduces the degree of jitter,
which is a supplementary advantage of the differentiation.

G. Performance in flash crowds

We now consider the non-stationary cases introduced in
Section III-D, limiting discussion to simple scenarios where
all traffic is UDP3. The flows have the same properties as
in the previous homogeneous case (on/off arrival pattern,
exponential size distribution). The topology simulated is
presented in Figure 2 and consists of two parallel dumb-
bells that share the same central link in case of failure.
The initial load on both is 60%. The simulation duration
is 1000s; the central link of the second dumbbell fails after
500s which causes the rerouting of all traffic on the other
link.

We set p = 100kb/s and consider flows of peak rate
ra = 100kb/s (a worst case for performance). Figure 6

3Rerouted TCP flows might fall back to slow start mode, and in-
crease their rate progressively after being accepted which, combined
with the rate adaptation, makes it less tractable

plots the evolution of the FR (left) and PL (right) es-
timators alongside their instantaneous values. After the
failure, rate ra flows are backlogged for a few seconds
until the link regains the stationary regime presented
in Section IV-D. The instantaneous fair rate becomes
less than p, which indicates that too many flows were
admitted. During the flash-crowd event, the blocking of
flows is solely due to the limiting condition introduced in
Section III-D. Adding the value of the target peak rate p to
the measured load At thus corrects the estimator which is
now updated quickly enough due to the smoothing factor.
It would otherwise be ineffective since the critical timescale
is no longer representative of the rate of flow arrivals
and departures. Simulations confirm that performance is
much more severely degraded if we remove this additional
safeguard.

In order to understand the impact of the peak rate on
the performance of streaming flows, we now also consider
flows of rate rb = 50kb/s. Figure 7 plots the streaming
backlog probability with flows of rate ra (left) and rb
(right), with both algorithms and a number of different
parameter settings. During a few seconds after the rerout-
ing, a large fraction of streaming flows are backlogged.
With flows of rate rb, the backlog probability is much
smaller, which is encouraging since the peak rate p would
in practice be set considerably higher than the actual rate
of the flows to be protected.

While encouraging, these preliminary results clearly
illustrate the difficulty of controlling traffic through ad-
mission control in the considered fail-over scenario. The
condition that limits the number of incoming flows per slot
might prove to be over conservative when flows actually
have a peak rate much less than p or, as observed in real
traces, if there are many flows consisting of a single packet.
Blocking new arrivals after detecting congestion as we do
here might not be sufficient for non-stationary regimes.
This remark is especially true if we consider more realistic
scenarios with TCP flows and heavy-tailed distributions.
Future work will consider adjusting smoothing factors



Fig. 6. Evolution of fair rate (left) and priority load (right) during
a flashcrowd with MinVar, k = 2, p = 100kb/s et r = 100kb/s

Fig. 7. Streaming backlog probability in two scenarios: p = 100kb/s,
r = 100kb/s (left) and p = 100kb/s, r = 50kb/s (right), with Poisson,
k = 1 (top), MinVar, k = 1 (middle), and k = 2 (bottom).

depending on the change in variance characteristic of such
situations, or using change detection algorithms (as in sig-
nal theory), provided that those solutions remain simple.
However, it is likely that more radical measures are needed
to prevent a general performance degradation, including
pre-emptive interruption of some flows in progress.

V. Conclusions

Flow-aware networking based on the Cross-protect
mechanisms allows performance guarantees for streaming
and elastic traffic without the significant complication of
having to mark packets for class of service discrimination.
It remains, however, to design and calibrate the necessary
measurement-based admission control algorithms. Previ-
ous work suggests a simple algorithm based on the esti-
mated fair rate is sufficient when a significant proportion
of traffic is composed of elastic flows that are bottlenecked
at the link in question. However, in a backbone network
the majority of flows are bottlenecked elsewhere, notably

by the user access links whose rate is usually much smaller
than link capacity. Traffic is then typically composed of a
mixture of flows with limited peak rate. For some the rate
is less than the target rate p (for which flows are intended
to be handled with priority) while for others it is greater
than p. The challenge is to design an MBAC that allows
the latter to become backlogged (they are supposed to be
able to adjust their rate) while always preserving priority
handling for the former. The challenge is compounded by
the fact that the MBAC cannot rely on any knowledge of
flow characteristics.

In the paper we have proposed a simple MBAC based on
measured mean and variance of load offered to the Cross-
protect priority queue. This differs from the algorithm
proposed by Grossglauser and Tse [6] in that the variance
is used only if it is less than the variance estimated on
assuming all flows have the target rate p. This algorithm
is shown in our simulation results to enable the required
discrimination when flow rates are not too close.

Evaluations in a flash-crowd scenario are less encourag-
ing. Several factors combine to make it difficult to find
an adequate compromise between accepting too many
new flows, leading a significant period of performance
degradation, and being over conservative and rejecting
many more flows than is strictly required. Further analysis
of this scenario is necessary given its practical importance.
Our preliminary results suggest simple admission control
may not be sufficient. It is likely that interruption of a
subset of flows in progress is additionally necessary in
order to restore an acceptable load level.
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