N

HAL

open science

Ontology Transformations

Laurent Wouters, Marie-Pierre Gervais

» To cite this version:

Laurent Wouters, Marie-Pierre Gervais.

10.1109/EDOC.2012.18 . hal-00738381

Ontology Transformations.
terprise Distributed Object Computing Conference, Sep 2012, Beijing, China. pp-71-80,

HAL Id: hal-00738381
https://hal.sorbonne-universite.fr /hal-00738381

Submitted on 4 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

IEEE International En-

https://hal.sorbonne-universite.fr/hal-00738381
https://hal.archives-ouvertes.fr

Ontology Transformations

Laurent Wouters
EADS Innovation Works
European Aeronautic Defence and Space Company
Suresnes, France
laurent.wouters @ eads.net

Abstract—This paper deals with the problem, coming from
an industrial context, of ontology transformations. EADS, as
a major aircraft manufacturer faces the problem of integrat-
ing works of experts from different domains using different
notations. Addressing this Domain-Specific Language (DSL)
problem, we previously developed a solution based on OWL2
ontologies for the integration of multiple domains at the
abstract syntax level. Our next step is then the production
of visual concrete syntaxes from this abstract syntax, for each
domain. Considering this problem as a transformation issue,
we raise the challenge of ontology transformations. We provide
an OWL2-based rule language for the expression of such
transformations. Validating this approach, our rule language
has been implemented in a rule and transformation engine and
tested on applications coming from the industry.

Keywords-Ontology Transformation, MOF-based Model

Transformation

I. INTRODUCTION

These last years, Domain Specific Languages (DSL) are
gaining in importance in the Model-Driven Development
(MDD) community. They enable Domain Experts to model
themselves their knowledge, rather than delegate this task to
a software engineer. This lowers the risk of misunderstanding,
or loss of information during the knowledge elicitation phase.
However this requires making available a visual concrete
syntax intuitive enough and close to the experts’ domain.
EADS, as a major actor of the aircraft industry, faces such a
challenge. The design of complex systems such as aircrafts
typically involve experts from multiple domains, e.g., System
Engineering, Thermal Engineering, Structural Engineering
and Human Sciences. All these experts have their own spe-
cific knowledge, know-how and skills. They do not have the
same background regarding modeling. They work with their
own modeling tool, if any, using their own domain-specific
notations and vocabulary. However, together they have to
model the same final product and consequently cooperatively
build a single artifact. In a previous work, we focused on how
to express such an artifact. We illustrated the requirements
coming from our industrial area, and advocated for a language
having specific characteristics: native multi-level modeling
capabilities, support of inferences, and behavior modeling
constructs [1]. We consequently proposed xXOWL, a structural
and behavioral modeling language extending the W3C OWL2

Marie-Pierre Gervais
Université Paris Ouest
Laboratoire d’Informatique de Paris 6 (LIP6)
Faris, France
marie-pierre.gervais @lip6.fr

standard [2]. xOWL has been designed for the expression of a
common abstract syntax for all domains. Thus, its meta-model
includes the OWL2 metamodel enhanced with behavioral
concepts.

In an approach similar to DSLs, domain-specific concrete
syntaxes can be developed for each class of domain experts.
Thus, said experts can access a common artifact through
visual notations specific to their respective domains.

Providing the visual notations from the common abstract
syntax requires, for each domain, mapping concepts of this
abstract syntax to drawing elements (e.g., Rectangle, Ellipse,
Image, Text, etc). A single concept may have different
notations in different domains. For example, the same engine
in an aircraft is noted as an electrical generator in electric
schemas and as a heat source in heat transfer schemas.
Consequently, for each domain, mapping rules must be
expressed and then applied in order to obtain concrete syntax
elements from the abstract syntax.

We choose to deal with this issue as an ontology transfor-
mation problem, considering that the drawing primitives can
also be represented within an ontology. Each transformation
would take the common artifact as input and outputs the
corresponding drawing primitives.

Contrary to ontology transformations, model transforma-
tions are well investigated with metamodel-based approaches.
Most of them provide ways to express the relations between
an input and an output metamodel, which are usually
expressed in the Meta-Object Facility language (MOF). A
transformation engine can then implement the transformation,
operating at the model level. Operational and declarative, as
well as hybrid approaches have been devised for expressing
the transformations themselves. Our issue at hand then seems
to be solved using existing transformation techniques and
tools.

Because we are using OWL2 ontologies as input and
output, we face the following dilemma, summarized in Fig.
We can either:

1) Use the MOF-based model transformation technologies,

represented by the 7 arrow in Fig. [T} This would require
a paradigm shift from the OWL2 to MOF world, or

2) Investigate a native OWL2 ontology transformation

approach, represented by the 7/ arrow in Fig.

Translated input model

T MOF World
ontology to model ;’ model to ontology

Drawing primitive model

OWL2 World

Input xOWL artifact Output drawing primitives

Figure 1. Solutions for the transformation of OWL2 ontologies

The first solution mentioned hereinbefore seems appealing
because it reuses existing model transformation solutions.
However, it also has hidden costs and limitations. We first
have to translate the original input ontology into a MOF-based
model conforming to a metamodel, which itself conforms
to MOF. This intermediate representation can then be trans-
formed and the result translated back to OWL2. In addition
to the fact that three transformations are operated where
only one is really necessary, the translation of an ontology
to a MOF-based model is not an easy task and has several
limitations [3[]. Mainly, the complete semantics of OWL2
ontologies cannot be mapped to exactly equivalent MOF-
based models [4]. In particular, OWL2 natively supports
the expression of multi-level models through a mechanism
called “punning”, enabling a model element representing
a domain entity to be a class and an instance at the same
time. Such native OWL2 constructs require to be expressed
using substitutions constructs [5]. This leads to the loss of
information. Consequently, in this paper we propose a native
OWL2 ontology transformation approach.

Hereafter in Sect. [l we first provide a simple but
representative example of two domains with their respective
notations. Because the transformations themselves must be
specified in some way, we investigate in Sect. [I1I| the existing
model transformation languages and technologies. We then
propose in Sect. our own rule language for OWL2,
building upon the existing state of the art. This proposition
is validated by the prototype implementation described in
Sect. |V} its application to an industrial example, as presented
in Sect. [VI|and a study of the implementation’s performances
presented in Sect. We finally conclude and present some

perspectives in Sect.

II. EXAMPLE

In this section we describe a small but representative
use case example in order to illustrate our objective. In the
industry, the design of a product’s manufacturing process is
as important as the design of the product itself. This means,
engineers will have to design the manufacturing workshops,
assembly lines, as well as the associated processes along
the product itself. Following an MDD approach, engineers
model the workshops, lines and manufacturing processes.
The resulting model will be used to ensure that, for example,
the products can indeed be physically built under given time
constraints.

In this example, a WORKSHOP is defined as a set
of WORKSTATIONs. A WORKSTATION corresponds to a
physical location dedicated to an activity in the assembly line.
There are multiple kinds of WORKSTATIONS, such as WELD-
ING WORKSTATIONS and ASSEMBLY WORKSTATIONS. In
addition, WORKSTATIONS can have a list of STEPs describing
the work of the assigned operator. When a WORKSTATION
does not have any STEP, it is unmanned.

Experts from different fields have to access this common
model:

o Workshop layout experts want to see how the dif-
ferent WORKSTATIONS are physically organized and
connected.

o Manufacturing process experts want to see the manu-
facturing STEPs associated to each WORKSTATION in
order to ensure the consistency of the overall process.

These two fields refer to common concepts (WORKSTATION
in this example). However, according to the habits and
customs of each field, they use different visual notations.

Manufact. Steps [€3

==
=

Workshop Layout [$3]

weld casing

Weld

\ v \

S S /
~-- ~-~ ’

transformed to™.

Vi
"
- “Assembly
iWelding Workstation
Workstation /

XxOWL Model

Figure 2. Multiple concrete syntaxes for the same xOWL model

In the Workshop layout domain, WELDING WORKSTA-
TIONS are represented as white rectangles with their name
within them. ASSEMBLY WORKSTATIONS are represented as
grey rectangles with their name within them. However, all
unmanned WORKSTATIONs (of any kind) are represented as
black discs with their name within them.

In the Manufacturing process domain, only manned
WORKSTATIONS can be represented. All of them are rendered
as white rectangles containing the representation of their
respective STEPs. These are represented as grey rectangles
with the STEP’s description within them. A visual example
of these notations is given in Fig.

In each domain, the respective experts have identified a
set of representational mappings for the respective domain
concepts. These mappings associate model elements from the
domain to their respective notational elements, expressed as
drawing primitives. The following listings give an informal
representation of this knowledge in the form of rules.

— =

—_ =

— O 000NN R WN =

— O 000NN R W=

Listing 1. Informal rules for the Workshop layout domain
If ?w is a Welding Workstation named ?n
and ?w has at least one Step
Then ?wv is a White Rectangle with ?n in it

If ?w is an Assembly Workstation named ?n
and ?w has at least one Step
Then ?wv is a Grey Rectangle with ?n in it

If ?w is a Workstation named ?n
and ?w does not have any Step
Then ?wv is a Black Disc with ?n in it

Listing 2. Informal rules for the Manufacturing process domain
If ?w is of type ?wst

and ?wst is a sub—class of Workstation

and ?w has at least one Step
Then ?wv is a White Rectangle

and ?wv is traced to ?w

If ?s is a Step for ?w

and ?s is described with ?d

and ?wv is traced to ?w
Then ?sv is a Grey Rectangle with ?d in it

and ?sv is contained by ?wv

Our aim is then to provide a general transformation

language for OWL2. To validate our proposal, we apply
it to the example of producing the drawing primitives from

the domain concepts using the above mentioned rules.

III. STATE OF THE ART

Because model transformation is a strong and mature
field in the MDD community, we shall first investigate
technologies from this field in order to have a better
understanding of the possibilities and to identify relevant
approaches. Numerous approaches have been devised over
time, to the point where the Object Management Group
(OMG) specified the Query/View/Transformation (QVT)
standard. QVT specifies a set of model transformation
languages operating over MOF (Meta Object Facility) mod-
els [6]. QVT itself offers two approaches to the definition
of model transformations. The QVT-Operational language
supports their expression in an imperative style, whereas
QVT-Relations and QVT-Core support a declarative approach.
These languages have been implemented in different projects,
from SmartQVT [7] to mediniQVT [8]] and ModelMorf [9].
QVT-based technologies provide interesting properties, such
as the traceability of input to output model elements and
the support of incremental transformations. Approaches
combining imperative and declarative aspects have also been
proposed, most notably the ATLAS Transformation Language
(ATL) [10]. Moreover, approaches relying on Triple Graph
Grammars (TGG) [11] use a declarative definition of the
relations between two models. Interpreted in the context of
model transformations these relations enable bidirectional
and incremental transformations with explicit traceability
elements. All these approaches show a very strong support
for model transformations in a MOF-based paradigm.

OWL-based transformations are not offered the same
extensive support. Although the idea of OWL-based transfor-
mations has been proposed in [[12f], an approach has yet to

be devised. In order to cope with this issue, multiple works
provide some kind of mapping between MOF-based models
and OWL-based ontologies. First and foremost, the Ontology
Definition Metamodel (ODM) is an OMG standard for the
representation of OWL ontologies in the form of a MOF-
based model [13]. However, as shown in Fig. [3] leveraging

M3

MOF |

conforms to conforms to

~ conforms to
conformsto | - =

M2

View
Metamodel

Transformation
language

Domain
Ontology

Figure 3. Leveraging ODM for MOF-based ontology transformations

ODM for MOF-based ontology transformation introduce a
mismatch in the OMG stack architecture. With ODM at
the M2 level, the domain ontology should be at M1, but is
required to be at M2 for using it in the MOF-based definition
of transformations. To avoid this problem, the semantics of
the OWL2 domain ontologies must be mapped directly to
metamodels expressed in MOF. This is represented by the
dotted arrow in Fig. [3| Clues for this mapping have been
provided in [14], although the complete mapping is never
demonstrated. The serious limitation of this approach is that
the full semantics of OWL2 ontologies cannot be mapped to
MOF or UML models [[15]], [16]].

Conversely, other works have bridged the gap in the
other direction in providing ways to represent MOF or
UML models in OWL2 ontologies. The conversion of UML
models to OWL2 ontologies has been investigated in [|17]]
and standardized in the ODM specification document [13].
This direction of the mapping is easier to achieve because
the semantics of MOF can be straightforwardly mapped to
OWL2 ontologies. Nevertheless, it is still difficult to map
arbitrary OWL2 ontologies into MOF-based models and we
risk losing the original semantics that may be necessary
for the transformation at hand. Consequently, focusing on
providing an OWL2-native transformation technology, we
investigate the possibilities.

The OWL2 world does not yet provide means for ontology
transformations. However, some works have been achieved
that shall be investigated in this regard. In particular, an
issue at hand is to find a language for the expression
of ontology transformations. To achieve this, declarative
rules could be used. The Semantic Web Rule Language
(SWRL) [18]] has precisely been designed for this case. SWRL
allows the expression of rules for OWL ontologies, although
these are usually used as inference rules. That is to say
the semantics of SWRL rules are slightly different from
transformation rules. SWRL is clearly designed to operate
over individuals (instances) and thus provides easy-to-use
language constructs in this regard. However, it lacks the
capability to operate over classes and properties [[19]. For

example, it is possible with SWRL to match all individuals
related by a known property. But it is not possible to
match all the properties relating two known individuals. In
order to express ontology transformations leveraging the
complete range of OWL2’s language constructs, one cannot
use SWRL. To summarize, to the best of our knowledge
at this time, ontology transformations can only be achieved
through back and forth translations to MOF-based models in
order to use the existing model transformation approaches.
This comes at the cost of losing some of the original’s
ontology’s semantics due to the greater expressiveness of
OWL2 over MOF or UML. Consequently, we propose a
native approach to ontology transformations lifting these
limitations. We hereafter define our rule language that can
operate over the complete set of OWL2’s language constructs.

IV. RULE LANGUAGE FOR OWL2

In this section we define the general-purpose rule language
for OWL2. In order to demonstrate how this proposal is
consistent with the OWL2 philosophy, we first describe in
the following paragraph the fundamental concepts of OWL2.

A. OWL2 Fundamentals

OWL2 ontologies are formally defined as sets of ax-
ioms [2]], where an axiom is a unit of information stating what
is true in the domain described by the ontology. The OWL2
language defines multiple kinds of axioms. For example,
one can use the ClassAssertion axiom in order to state
the class-instance relationship between two concepts. The
SubClassOf axiom can be used to state the sub-classing
relationship between two OWL2 classes. Other kinds of
axioms are used to state the relations between ontological
concepts. The fundamental idea is that axioms being units
of information, they can be treated independently from each
other’s.

Although software must treat OWL2 ontologies as sets
of axioms, human users usually interpret them as the set
of entities they represent, that is to say, the set of classes,
individuals and properties described within them. The OWL2
axioms refer to the ontological entities using their name. For
example, expressing that B is a sub-class of A is achieved
as:

Listing 3. OWL2 axioms

SubClassOf (:B :A)

In the rule language described hereafter, we build upon this
property.

B. Rule Representation

Our proposal integrates with OWL2 by making rules
first-class citizens in OWL2 ontologies. That is to say, as
illustrated in Fig. [4] rules are defined as elements of an
OWL2 ontology in the same way axioms are. As stated above,
ontological entities are identified by their name, in fact an

Internationalized Resource Identifier (IRI). Being consistent,
rules are then also identified by IRIs. Also as shown in Fig. 4]

Ontology

Rule
—®iri: String

0.* antecedentsT1 . T(;orlsequents

LiteralExpression | Assertion

guards

isPositive : Boolean axioms

isMeta : Boolean

Figure 4. The rule metamodel

rules are composed of a set of antecedent assertions, a set
of consequent assertions and a set of guards. Antecedents
are conditions to be matched for the rule to trigger and
consequents are the results of the eventual rule’s triggering.
Figure [shows an attribute for assertions called isMera. It is
used as a flag for transformations, as explained in In
addition, both antecedent and consequent assertions are given
an isPositive attribute. A positive antecedent simply describes
what shall be matched in the input ontology prior rule’s
execution. On the contrary, a negative antecedent describes
what should not be matched. If a negative antecedent matches
the input, it prevents the rule’s execution. Consequents shall
be regarded as modifications to be applied to the output
ontology. Therefore positive consequents are added to the
ontology and negative consequents are removed from it. All
positive antecedents must be matched and all negative ones
not matched in order for the rule to trigger.

A fundamental idea of our proposition is that because
OWL2 axioms are units of information that can be treated
independently, rules must operate over axioms. That is to say,
a rule must match a set of axioms; and its execution results
in another set of new axioms. To achieve this, all assertions
are defined as a conjunctive set of at least one axiom. With
this definition, we are able to express negative conjunctions
of axioms. This property is important for the expression of
complex rules.

In addition, rules can be guarded by literal expressions that
must evaluate to true in order to be fired. Literal expressions
not being part of the standard OWL2 language, we rely on
xOWL for this purpose.

C. Integration with xOWL

This rule language is integrated with our previous extension
of OWL2, called xOWL. xOWL provides procedural algo-
rithms modeling facilities within ontologies. Consequently,
xOWL offers extensive language constructs to build literal
expressions with usual mathematical operators, string con-
catenations, etc. XOWL also embeds a query language for
OWL2. The queries are simply patterns of OWL2 axioms
that can use logical variables to be matched on the repository.

The same language constructions are used to express rules’
antecedents and consequents.

For example, the first and last rules shown in Listing [I]
can be implemented as:

Listing 4. Implementation of example rules
Rule (: WeldingWorkstationToRectangle

Antecedents (
ClassAssertion (model: WeldingWorkstation ?w)
DataPropertyAssertion (model:hasName ?w 7n)
ObjectPropertyAssertion (model: hasStep ?w ?s)

)

Consequents (
ClassAssertion (view: Rectangle ?r)
ObjectPropertyAssertion (view:content ?r ?1)
ClassAssertion (view: Label ?1)
DataPropertyAssertion (view:value

21 7n)

Rule (: AssemblyWorkstationToRectangle
Antecedents (
ClassAssertion (model: AssemblyWorkstation ?w)
DataPropertyAssertion (model:hasName ?w 7n)

ObjectPropertyAssertion (model: hasStep ?w ?s)
)
Consequents (
ClassAssertion (view: Rectangle ?r)
ObjectPropertyAssertion(view:content ?r ?1)

ClassAssertion (view: Label ?1)
DataPropertyAssertion (view:value ?1

)

7n)
)

Rule (: UnmannedWorkstationToDisc
Antecedents (
ClassAssertion (7wt ?w)
SubClassOf (?wt model: Workstation)
DataPropertyAssertion (model: hasName ?w ?7n)
Not(ObjectPropertyAssertion (model: hasStep ?w ?s))
)

Consequents (
ClassAssertion (view: Ellipse ?e)
ObjectPropertyAssertion (view:content ?e ?1)
ClassAssertion (view: Label ?1)

DataPropertyAssertion (view:value ?1 ?n)

Due to simplifications from the real industrial case, these
examples only show one-to-one mapping. However, the rule
language presented here does not restrict its users to this
property. Arbitrarily complex queries can be written using
logical variables, as explained hereafter.

These are written in rules as an arbitrary name preceded
by the ‘?” mark. They can be used wherever an ontological
entity or a literal can be used. “?w” at line 3 of Listing [4]
is an example of a logical variable where an expression of
ontological entity is expected. Conversely, “?n” at line 4 is
an example of a logical variable where a literal expression is
expected. When a rule is matched, the logical variables are
bound to the values corresponding to the matched OWL2
axioms. They can be referenced in the rules’ consequents
as placeholders for their bound values. Rules’ consequents
also allow the use of logical variables that are not bound by
matching the antecedents. That is to say, they do not appear
in them. “7r” at line 8 is an example. These variables mean
the rule engine will automatically create a new ontological
entity (a name) to bind to them. This means, whenever

the first rule in Listing [] is triggered, a new rectangle is
created. Thus, a separate rectangle is created for each found
WeldingWorkstation.

The use of a negative antecedent assertion is also illustrated
in Listing [at line 34. It prevents the rule’s triggering
whenever the workstation “?w” is related to a step (“7s”).
Conversely, the first rule in Listing 4] uses the same assertion
in its positive form at line 5 in order to match only manned
workstations.

Moreover, XOWL expression can be leveraged in order
to express computations with rules. For example, we have
a family with members and want to transform them to
individual persons with full names:

Listing 5. Dynamic values in rule’s consequents
Rule (: MemberToPerson
Antecedents (

ClassAssertion (ml: Family ?f)

DataPropertyAssertion (ml: familyName ?f ?fn)

ClassAssertion (ml:Member ?m)

DataPropertyAssertion (ml:givenName ?m ?gn)

ObjectPropertyAssertion (ml: memberOf ?m ?f)
)

Consequents (
ClassAssertion (m2: Person ?p)
DataPropertyAssertion (m2: fullName ?p Plus(?gn ?fn))
)
)
In Listing[3]at line 11, the Plus construct coming from xOWL
is used to concatenate two strings. The result is then used

as the value for the “fullName” property.

D. Transformations

Meta ontology

T

T

Input ontology Target ontology

Figure 5. A transformation 7 with the “meta” ontology
Building on the rule language described in this section, we
now define transformations as sets of unordered rules. Within
a transformation, all rules are equal in that there is no notion
of priority between them. A transformation matches the
axioms within an input ontology and produces modifications
to a target ontology. In addition, a transformation may use
what we call the meta ontology in order to store information
about the current state of the transformation. For example,
traceability links between input elements and target elements
are to be stored in the meta ontology. This information
can then be leveraged in order to support incremental
transformations. This meta ontology is accessible from either
side of the transformation. That is to say, transformation rules
may require matching information within the meta ontology,
or conversely add or remove information for it as a rule’s

consequent. This mechanism, allowing us to write rules in a
flexible manner, is implemented using the isMeta attribute
of assertions. In this approach, antecedent assertions marked
with “Meta” will have to be matched in the meta ontology and
not in the input ontology. Conversely, consequent assertions
marked with “Meta” will apply to the meta ontology and not
the target ontology. Figure [5] summarizes this approach.

In the following sections we will focus on the validation of
our rule and transformation language for OWL2 ontologies.
This validation is three-fold. Firts, the rule and transformation
language has been implemented, as shown in Sect. V| Second,
the real-world applicability of this approach is demonstrated
on an industrial use case in Sect. Third, further ensuring
the real-world applicability of this work, a performance study
has been conducted. Its results are presented in Sect.

V. IMPLEMENTATION

In order to validate our approach we first implemented this
rule language in the form a rule engine. In our previous work,
an interpreter for the XOWL language has been developed.
Building on this, the rule engine has been integrated within
the interpreter. This allows us to leverage the existing xXOWL
implementation for the evaluation of rule’s guards.

In order to produce an efficient implementation of the
rule’s engine, we decided to rely on an existing tried and
tested pattern-matching algorithm. In this regards, the RETE
algorithm [20] was deemed a good candidate because it can
be implemented for handling RDF triples and has useful
properties such as the support for incremental matches. The
OWL2 recommendation provides RDF-based semantics of
OWL2 ontologies, detailing how OWL2 axioms can be
translated to RDF triples [21].

Relying on a RETE network for pattern-matching, the
rule engine is notified whenever a match is detected or
invalidated. The rule engine is then responsible for firing
the corresponding rule. Because rules’ consequents are also
patterns, the rule engine “instantiates” them in the sense

they are specialized using the value of the matched variables.

The rule engine can then be seen as a black box which
is fed RDF patches, i.e. the adding or removal of RDF
triples. It also outputs RDF patches. This is because rules
can have positive and negative consequents, or the firing of a
previous rule can be cancelled. An important property of the
RETE algorithm is that is works incrementally. Consequently,
our implementation of the rule engine is able to perform
incremental model transformations. This is useful in the case
described in the example from Sect. |lI| because users will
be able to modify the transformation’s input ontology at
any time. Re-executing the whole transformation would be
inefficient.

In the following section, we present the application of this
approach and its implementation on an industrial example.

VI. APPLICATION TO AN INDUSTRIAL EXAMPLE

As a second validation step, the proposed approach
has been tested on industrials examples. In this section,
we present a complete application case from which the
initial example presented in Sect. [II| has been extracted. In
this application, multiple experts from different fields are
collaborating in order to design the assembly wo rkshop
and the manufactoring process for a product. The complete
workshops and manufacturing processes have to be
modeled. The resulting model will be used in order to
simulate the real workshops and processes. The experts
previously used standard office software in order to represent
their knowledge, but obviously had to do calculations and
run the test scenarios by hand. We are expected to provide
them modeling tools implementing their respective visual
notations so that they are able to build the common artifact
with each other’s.

Firstly, the xOWL language has been used in order to
integrate the concepts of the different domains. The complete
ontology for all domains has over 15 classes and 50 relations
and properties in order to represent the different kinds of
workstations, their properties, the manufacturing
steps’ description, etc. In this application case, we have
identified three broad fields of expertise, corresponding to
different visual notations:

o The Workshop Layout experts, as previously mentioned
focus on the physical organization of workstations.
They determine which workstation can exchange
materials, products, etc. with which workstation. In
this context, workstations are to be understood as
reusable resources of skills for certain kinds of tasks.

e The Manufacturing Process experts design the com-
plete list of manufacturing steps for the prod-
uct. These experts do not focus on which particular
workstation will be executing these steps. They
rather provide a sequential list of manufacturing
steps.

e The Workshop Supervision experts take the
manufacturing steps from the previous
experts and split them across the workstations
defined by the Workshop Layout experts. Their job
is to orchestrate and time the work of the different
workstations for the manufacturing steps
in the most efficient way possible.

The Workshop Layout experts use a particular represen-
tation for workstations, as shown in Fig. @, where
the specific notations for workstations depend on
whether they are automatic or not, and their field of work
(pressing, welding, painting, etc.). In Figure [6] automatic
workstations have a distinctive thick black border. In
addition, the workstations can be linked by routes

IThis font will be used for domain concepts

B xowL Graphical Modeling Environme
Fle Edi Run Help

D +O0oR

= Workshop! dowsi x|

GAl

General Assembly Unit 1

W1

Welding Uit 1

GAZ

General fssembly Unit 2

Wz

wielding Uit 2

1
Quaity Control 1

GA3

General Assembly Urit 3

Assembly
Wielding
Painting
Pressing

Qualty Control
Auto, Assembly
Auto. welding
Auto, Painting
Auto, Pressing

Auto, Quality Contral

S

Conveyor

Gangray

C—

Figure 6. Visual notation for Workshop Layout experts

raphical Modeling Environment

File Edt Ruon Help

D +O0OoR

i Process ‘
Workshest WLDI Case Welding Process
wiorksheet
‘ Step ‘WLDI 1 | Welding at points 2, 4, &
Step
s [mose] wWedng ot paits 1, 3,5 .
‘ Step ‘ WLD1.3 | Welding line OX
Worksheet A3SL Mount: Chip
‘ Step ‘ ASSLL | Pull lever, place chip, push lever
‘ Step ‘ ASS1.2 | Attach radiator
Workshest AS5Z Encase Card
‘ Step ‘ Ass2.1 | Place card in casing
‘ Step ‘ ASS2.2Z | Screw 1to S
‘ Step ‘ AS52.3 | Screw 6 ko 10
Figure 7. Visual notation for Manufacturing Process experts

xOWL Graphical Modeling Environment

Fie Edt Run Help

Now

D +

o Process % ‘ﬂsuperwslun ® |

[ManuFacturing
* i [Supervisor] Suy

P

i W
LAY £

£ £

Assoriation
Assembly
Welding
Painting
Pressing
Quality Control

‘orkshest

Lo Comeetors]

Link.

I

Figure 8.

Visual notation for Workshop Supervision experts

— OO0 00NN R WN =

—_ =

that specify where materials can be exchanged. These
routes are not directional and may be interpreted as
physical conveyors or manually operated wagons in the
real workshop. In this notation, the rule for transforming
manned painting workstations in their corresponding
notation elements is implemented as shown in Listing [6]

Listing 6. Implementation of the rule for manned painting workstations
Rule (: MannedPaintingWorkstation
Antecedents (
ClassAssertion (model: PaintingWorkstation ?w)
Not(ObjectPropertyAssertion (model: hasRobot ?w ?r))
)
Consequents (
ClassAssertion (view: Rectangle ?r)
ClassAssertion (view: Label ?lname)

)
)

In this listing, a negative antecedent assertion is used at line
4 in order to check that the workstation is manned, or has
no robot in this application case.

The Manufacturing Process experts represent
manufacturing steps in a table, as shown in
Fig. Each step is affected a unique identifier and
a description of the work to be executed. Steps are
grouped together in order to form consistent activities,
which are called worksheets. In this notation, the rules
for transforming worksheets and manufacturing
steps in their corresponding notation elements are
implemented as shown in Listing

Listing 7. Implementation of the rule for manufacturing steps
Rule (: WorksheetRule
Antecedents (
ClassAssertion (model: Worksheet ?ws)

)
Consequents (
ClassAssertion (view: Container ?c)

Meta(ObjectPropertyAssertion (meta:trace ?ws ?c))
)
)
Rule (: ManufacturingStepRule
Antecedents (
ClassAssertion (model: Step ?s)
ObjectPropertyAssertion (model: hasStep ?ws ?s)
Meta(ObjectPropertyAssertion (meta:trace ?ws ?c))

)
Consequents (
ClassAssertion (view: Container ?sc)

ObjectPropertyAssertion (view:contains ?c ?qgsc)
Meta(ObjectPropertyAssertion (meta:trace ?s ?sc))

)

In this listing, the first rule transforms worksheets in
the model into their representations and makes traceability
links between the worksheets and their representations.
The second rule transforming manufacturing steps
reuse these links in order to attach steps’ representations
to their respective parent worksheets’ representations. The
traceability links are stored in the meta ontology.

Last but not least, Workshop Supervision experts as-
sociate available worksheets to workstations and

—_

[e=lale Sl = N I RV S

specify how they are orchestrated. As can be seen in
Fig. [§] workstations are simply represented using a
color code corresponding to their line of work. This time,
the experts link the workstations with arrows, thus
specifying the orchestration. An arrow means the work at
the origin workstation is a prerequisite for the target
workstation. Also shown in Fig.[§] workstations are
affected particular worksheets, here simply represented
by their ID and the recognizable icon. In this notation, the
rule for transforming assembly workstations into their
corresponding notation elements is implemented as shown
in Listing [§]

Listing 8. Implementation of the rule for assembly workstations
Rule (: AssemblyWorkstation
Antecedents (
ClassAssertion (model: AssemblyWorkstation
)
Consequents (
ClassAssertion (view: Ellipse

w)

7r)

Meta(ObjectPropertyAssertion (meta:trace ?w ?r))
)
)

This industrial application shows how we leveraged ontol-
ogy transformations in order to produce drawing primitives
implementing different visual notations, based on the same
data. As a final validation step, we conducted a study of the
implementation’s performances. The results are presented in
the following section.

VII. PERFORMANCES STUDY

This study aims at determining whether our approach
and its implementation deliver sufficient performances in
order for industrial customers to use it. The performances of
the implementation is an important issue to industrial users
because it determines the responsiveness of their application.
Thus, in the example presented in the previous section, when
experts open a particular notation, the common artifact will
be transformed into drawing primitives. This is called the
initial transformation. Experts will then interact with their
notations, adding, removing and modifying elements, leading
to modifications to the common artifacts. These modifications
must be propagated to the respective notations through the
same ontology transformation in order to given feedbacks to
experts. This is called the increment transformation.

Workshop supervisor

Couple

workstation, | 4 worksheet, 1

Workstation Worksheet | hasSteps ¢+ Step
id : String id : String id : String
title : String title : String description : String

Workshop layout Manufacturing process

Figure 9. Domains of each transformation

In order to assess the performance of our approach and its
implementation for both initial and increment transformations
on realistic data, we used the three transformations from the
industrial example presented hereabove. The transformation
for the Workshop Layout notation is composed of 52 rules,
the one for the Manufacturing Process notation is composed
of 17 rules and finally the one for the Workshop Supervision
notation is composed of 31 rules. As shown in Fig. 0] the
three transformations operate on different but overlapping
domains in the same global ontology. In this figure, the
different kind of workstations are not represented but
belong to the same domains as the Workstation class.

A. Performance of Initial Transformations

The performance for the three transformations have been
tested on input ontologies of increasing sizes. A dataset of
input ontologies have been automatically generated as follow:
The n'" ontology will contain n x 10 workstations,
n X 10 worksheets, n X 20 steps (2 per worksheet)
and n x 10 couples associating a workstation to a
worksheet. In this way, generated ontologies are balanced
in that no particular transformation taking these as input
is favored. They still are fairly representative of ontologies
produced by human experts. The produced dataset contains
100 ontologies. The first of them contains 170 OWL2 axioms
and the last contains 17000 axioms.

We then measured in 10 distinct experiments the trans-
formation time of each input ontology with the three
transformations. The results are aggregated in Fig.

1400

1200 X

N
o
S
=]

x

800

-
=]
S

x|

o 4
+

N
S
=]
X

Transformation time (in ms)

x
e
o ¢
°
® -
e ° x Manufacturing Process

x
x

+ Workshop Layout

~
=3
S]

x e
5 o ° .
s § ° o Workshop Supervision

o

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Input model size (in number of OWL2 axioms)

Figure 10. Initial transformation times by input size

We first observe that the transformation time for a given
input ontology depends on the applied transformation. The
number of rules in the transformation cannot explain alone
this discrepancy. The worst performing transformation, the
one for the Manufacturing Process notation, contains 17
rules, although the other two containing respectively 52 and
31 rules have nearly identical performances. This difference
can be explained by the writing of the rule themselves. In

the database domain, the writing of a SQL query can heavily
impact the performance of the engine. The same phenomenon
ought to be expected here because the matching of rule’s
antecedents is similar to querying a database.

Another interesting result is that the correlation coefficient
between the size of the input ontology and the transformation
time is around 0.99 for each transformation. This means that
in the case of these transformations, the transformation time
is close to a linear function of the input ontology’s size.

B. Performance of Increment Transformations

The performance of increment transformations have been
measured in a similar fashion. We hypothesize the increments,
i.e. the modifications to the common artifact, are always
small in regard to the input ontology. We then measured for
each of the three transformations, the performance of a small
increment transformation for input ontologies of various sizes.
The previous dataset ontologies are reused in this purpose.
For each transformation and ontology in the dataset, the
input ontology is transformed and then the transformation
time of a small increment is measured. The increments have
been designed as follow: The increment for the Workshop
Layout notation consists in a new workstation, expressed
using 3 OWL2 axioms. The increment for the Manufacturing
Process notation consists in a new worksheet and two new
steps, expressed using 11 OWL2 axioms. The increment
for the Workshop Supervision notation consists in a new
workstation, a new worksheet and a new couple,
expressed using 9 OWL2 axioms. The results are presented

in Fig.

«
o

~
&

IS
S

w
&

w

S
X
x

x + Workshop Layout
x Manufacturing Process
x o Workshop Supervision

N
1S3
x

o o © °

-
@

Increment transformation time (in ms)
N
&

i
o

o
4

w

x
=
I

o

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Initial input model size (in number of OWL2 axioms)

Figure 11. Increment transformation times by initial input size

We observe that the performance of the increment trans-
formations depends primarily on the transformation’s rule, as
was the case with initial transformations. Also, the correlation
coefficient between the size of the initial input ontology and
the transformation time is at least 0.97 for the Manufacturing
Process transformation. The performance of the increment

transformation is then close to a linear function of the initial
input ontology’s size.

The performances presented in this study demonstrate that
ontology transformations can be executed at runtime in this
case. Hence, the drawing primitives for each notation can be
dynamically generated whenever an expert needs to access
the common artifact through his notation. The increment
transformation performances also show that the drawing
primitives for a notation can be synchronized fast enough for
an expert to modify the common artifact and immediately
see the result. With these results, we validated our approach
and its implementation.

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we proposed an OWL2-based rule language
for the expression of ontology transformations. This approach
has been validated by its implementation E] and its application
to an industrial case. However, some parts go beyond
the scope of this paper. In particular, a second set of
transformations describes how visual elements are mapped
back to model elements.

In this approach, a domain-specific notation is defined
through the expression of its corresponding transformation.
Although valid, it is difficult to really design the notation itself
only through the transformation. In addition, the notation
alone does not define how domain experts can use it in their
modeling tool integrating the notations. How this integration
can be achieved is still to be investigated.

REFERENCES
[1] L. Wouters and M.-P. Gervais, “xOWL an Executable Model-

ing Language for Domain Experts,” in EDOC. IEEE, 2011,
pp. 215-224.
[2] W3C, “OWL 2 Web Ontology Language Structural

Specification and Functional-Style Syntax,” Oct. 2009.
[Online]. Available: http://www.w3.org/TR/owl2-syntax/

[3] K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith,
W. Holmes, J. Letkowski, and M. Aronson, “Extending UML
to Support Ontology Engineering for the Semantic Web,” in
UML, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2001, vol. 2185, pp. 342-360.

[4] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter,
W. Retschitzegger, W. Schwinger, and M. Wimmer, “Lifting
Metamodels to Ontologies: A Step to the Semantic Integration
of Modeling Languages,” in MoDELS, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2006, vol.
4199, pp. 528-542.

[5] C. Atkinson, M. Gutheil, and B. Kennel, “A Flexible Infras-
tructure for Multilevel Language Engineering,” IEEE Trans.
Softw. Eng., vol. 35, 2009.

[6] OMG, Meta Object Facility Query/View/Transformation Ver-
sion 1.1, http://www.omg.org/spec/QVT/1.1/, OMG Std., Jan.
2011.

2available at |http:/xowl.codeplex.com/

[7]1 L. M. Surhone, M. T. Timpledon, and S. F. Marseken,
SmartQVT, V. P. House, Ed. VDM Publishing House, 2010.

[8] ikv++ technologies ag, “medini QVT,” Jan. 2012. [Online].
Available: http://projects.ikv.de/qvt

[9] H. Giese and S. Hildebrandt, “Incremental Model Synchro-
nization for Multiple Updates,” in Proceedings of the third
international workshop on Graph and model transformation.
ACM, 2008.

[10] F. Jouault and I. Kurtev, “Transforming Models with ATL,”
in MoDELS Satellite Events, ser. Lecture Notes in Computer
Science, vol. 3844. Springer Berlin / Heidelberg, 2006, pp.
128-138.

[11] J. Greenyer and E. Kindler, “Comparing Relational Model
Transformation Technologies: Implementing Query/View/-
Transformation with Triple Graph Grammars,” Software and
System Modeling, vol. 9, pp. 21-46, 2010.

[12] S. Roser and B. Bauer, “Ontology-Based Model Transfor-
mation,” in MoDELS Satellite Events, ser. Lecture Notes in
Computer Science, vol. 3844. Springer Berlin / Heidelberg,
2010, pp. 355-356.

[13] OMG, Ontology Definition Metamodel,
http://www.omg.org/spec/ODM/1.0/, OMG Std., May
2009.

[14] K. Falkovych, M. Sabou, and H. Stuckenschmidt, “UML for
the Semantic Web: Transformation-Based Approaches,” in

Knowledge Transformation for the Semantic Web. 10S Press,
2003, vol. 95, pp. 92-106.

[15] F Silva Parreiras and S. Staab, “Using Ontologies with UML
Class-Based Modeling: The TwoUse Approach,” Data &
Knowledge Engineering, vol. 69, no. 11, pp. 1194 — 1207,
2010.

[16] D. Djuric, D. Gasevic, and V. Devedzic, “Ontology Modeling
and MDA,” Journal of Object Technology, vol. 4, pp. 109-128,
2005.

[17] D. Gasevic, D. Djuric, V. Devedzic, and V. Damjanovi,
“Converting UML to OWL Ontologies,” in Proceedings of
the 13th international World Wide Web conference. ACM,
2004, pp. 488-489.

[18] W3C, “SWRL: A Semantic Web Rule Language Combining
OWL and RuleML,” May 2004. [Online]. Available:
http://www.w3.org/Submission/SWRL/

[19] 1. Horrocks, P. F. Patel-Schneider, S. Bechhofer, and
D. Tsarkov, “OWL Rrules: a Proposal and Prototype Im-
plementation,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 3, pp. 23 — 40, 2005.

[20] C. L. Forgy, “Rete: a fast algorithm for the many pattern/many
object pattern match problem,” Artificial Intelligence, vol. 19,
pp- 17 — 37, 1982.

[21] W3C, “OWL 2 Web Ontology Language RDF-Based
Semantics,” Mar. 2012. [Online]. Available: http://www.w3.
org/TR/owl2-rdf-based-semantics/

http://www.w3.org/TR/owl2-syntax/
http://xowl.codeplex.com/
http://projects.ikv.de/qvt
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/

