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Line mixing in the ν 6 Q branches of self-and nitrogen-broadened methyl bromide
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Line-mixing effects are studied in the ν 6 R Q K and P Q K (K = 0 -6) branches of CH 3 Br perturbed by nitrogen. Laboratory Fourier transform spectra have been obtained at room temperature, and for a large range of pressure values of atmospheric interest. In order to accurately model these spectra, a theoretical approach accounting for line-mixing effects is proposed. This model is based on the use of the state-to-state rotational cross-sections calculated by a statistical modified exponential-gap fitting law depending on a few empirical parameters. These parameters are deduced adjusting the calculated diagonal elements of the relaxation matrix to the N 2 -broadening coefficients, known from accurate previous measurements. Comparisons between experimental and calculated profiles for various Q branches and under various pressure conditions (0.2 -1 atm), demonstrate the adequacy and consistency of the proposed model. To allow accurate laboratory measurements, line-mixing effects are also modeled in the case of self-perturbed CH 3 Br.

Introduction

Methyl bromine (CH 3 Br) is the major source of stratospheric bromide, which has been shown to contribute significantly to the ozone depletion. It is also the primary organobromide species in the lower atmosphere. For these reasons, the infrared spectrum of CH 3 Br has been extensively studied in the 10 µm atmospheric window, where the fundamental ν 6 band occurs (see Refs. [START_REF] Brunetaud | Line intensities in the ν 6 fundamental band of CH 3 Br at 10 µm[END_REF][START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF] and references therein). In 2002, Brunetaud et al [START_REF] Brunetaud | Line intensities in the ν 6 fundamental band of CH 3 Br at 10 µm[END_REF] studied line positions and intensities for the two main isotopologues CH 3 79 Br and CH 3 81 Br, and generated a synthetic spectrum between 820 and 1120 cm -1 , for atmospheric purposes. Recently, Jacquemart et al [START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF] studied again this spectral region, measuring a larger number of line positions and intensities, as also numerous N 2 -and self-broadening coefficients at room temperature. A more accurate theoretical treatment of the Hamiltonian and dipole moment operators has also been performed, allowing the calculation of a line list (about 15000 lines of both isotopologues) dedicated to atmospheric databases.

As Q branches of the ν 6 band are the best candidates for atmospheric remote sensing, they have to be known as accurately as possible. Previous studies [START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF] were limited to relatively low pressures (smaller than 30 hPa). In the present work, nitrogen pressures up to about 1 atm were used. In such conditions, the usual Voigt or Lorentz line profiles can no longer correctly reproduce the experimental shape of the Q branches, because of line mixing [START_REF] Ben-Reuven | Impact broadening of microwave spectra[END_REF][START_REF] Lévy | Collisional line-mixing[END_REF]. Line mixing has been studied for various molecules as CO 2 , N 2 O, CH 4 . For C 3v molecules, the number of works is less. The line-mixing effects have been analyzed for CH 3 F perturbed by rare gas [START_REF] Grigoriev | Line-mixing effects in the ν 3 parallel absorption band of CH 3 F perturbed by rares gases[END_REF][START_REF] Thibault | Line-mixing effects in the ν 3 band of CH 3 F in helium: Experimental band shapes and ECS analysis[END_REF] using a dynamical model. A simple modelling of the ν 5 R Q 0 branch of CH 3 Cl perturbed by N 2 was proposed by Hartmann et al [START_REF] Hartmann | Simple modelling of Q branch absorption -II: Application to molecules of atmospheric interest (CFC-22 and CH 3 Cl)[END_REF] and Frichot et al [START_REF] Frichot | Pressure and temperature dependences of absorption in the ν 5 R Q 0 branch of CH 3 Cl in N 2 : Measurements and modelling[END_REF].

Lately, a statistical model was used by Chackerian et al to calculate this Q branch [START_REF] Chackerian | Methyl chloride ν 5 region lineshape parameters and rotational constants for the ν 2 , ν 5 , and 2ν 3 vibrational bands[END_REF]. In the present paper, a model similar to the one used for CH 3 Cl [START_REF] Chackerian | Methyl chloride ν 5 region lineshape parameters and rotational constants for the ν 2 , ν 5 , and 2ν 3 vibrational bands[END_REF] was applied to calculate line mixing in the ν 6 R Q K and P Q K (K = 0 -6) branches of CH 3 Br perturbed by nitrogen and self perturbed.

In this aim, laboratory Fourier transform spectra have been obtained at room temperature, and for a large range of pressure values of atmospheric interest (0.2 -1 atm).

Spectra and experimental considerations are presented in Section 2. A model based on the use of the state-to-state rotational cross-sections, calculated by a statistical modified exponentialgap fitting law depending on a few empirical parameters, was used to model line mixing. The parameters were deduced through a sum rule, adjusting the diagonal elements of the relaxation matrix to the N 2 -broadening coefficients, previously measured [START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF]. This model is presented in Section 3, together with the spectroscopic parameters used to calculate the CH 3 Br spectra. Comparison between experimental and calculated spectra for various Q branches is discussed in Section 4. Line-mixing effects modeled in the case of self-perturbed CH 3 Br, are also presented in the same section.

Experiment

The rapid scan Bruker IFS 120 HR interferometer of the Laboratoire de Dynamique, Interactions et Réactivité (LADIR) was used to record self-and N 2 -perturbed spectra of CH 3 Br. The unapodized spectral resolution (FWHM) used is ranging from about 1 to 4 × 10 - 3 cm -1 , corresponding to a maximum optical path difference ranging from 125 to 400 cm. The interferometer was equipped with a Ge/KBr beamsplitter, a MCT photovoltaic detector, a

Globar source, and an optical filter covering the 800 -1100 cm -1 spectral region. The experimental conditions of the recorded spectra are summarized in Table 1. Under these conditions, the rotational structure of CH 3 Br transitions is not completely resolved, as it can be observed on Fig. 1 which presents the whole studied spectral domain. For all spectra, the whole optical path was under vacuum. Two cells were used: a multipass cell of 1 m base length with a total absorption path of 415 cm, as well as a 30 cm cell. These cells were equipped with KCl windows. The commercial gas sample, furnished by Fluka, with a stated purity of 99.50% in natural abundances, was used without further purification. All the spectra recorded in this work are at room temperature, close to 296 K. The pressure of the gas was measured with a capacitance MKS Baratron manometer with an accuracy estimated to be ±1%. Every scan among the 200 recorded for each spectrum has then been individually transformed to spectrum, using the Fourier transform procedure included in the Bruker software OPUS package [START_REF] Wartewig | IR and Raman Spectroscopy: Fundamental Processing[END_REF], selecting a Mertz phase error correction [START_REF] Mertz | Transformations in Optics[END_REF][START_REF] Griffiths | Fourier Transform Infrared Spectrometry[END_REF]. The spectra were not numerically apodized. They were slightly over sampled (over sampling ratio equal to 2) by post-zero filling the interferograms. Averaging the 200 scans, the signal to noise ratio is nearly equal to 100. Symmetric line profiles were observed on the average spectra, validating that the phase error was well corrected. Note that, as for spectra of Ref. [START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF], a weak multiplicative channelled spectrum is expected in the experimental spectra. Due to the high pressure of gases used in this work, it is more difficult to remove this channelled spectrum.

The residuals of the adjustments on Fig. 1 give an idea of its amplitude, especially around 1000 cm -1 where it is the strongest.

Though the line-mixing of CH 3 Br self-perturbed has no importance for atmospheric applications and could be neglected in our spectra, its knowledge is useful for laboratory experiments that require noticeable CH 3 Br concentrations. Therefore, a few pure CH 3 Br spectra were recorded under pressures up to about 100 hPa.

Theoretical model

This section is dedicated to the theoretical treatment of the CH 3 Br line-mixing.

Sections 3.1 and 3.2 are devoted to the formulation of the absorption coefficient and of the relaxation operator, and the application of this model is described in Section 3.3.

Absorption coefficient

Let us consider a mixture of an absorbing gas and of a buffer gas. Within the impact and binary collisions approximations, and disregarding Doppler effect that has negligible influences in the studied pressure range, the absorption coefficient α, in cm -1 , accounting for line-mixing effects at wavenumber σ and for temperature T is given by [START_REF] Ben-Reuven | Impact broadening of microwave spectra[END_REF][START_REF] Lévy | Collisional line-mixing[END_REF] 
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Σ, L 0 and W are operators in the Liouville line space. The first two are diagonal and can be expressed as follows:
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δ k, being the Kronecker symbol.

The relaxation operators W abs/abs and W abs/buffer , which contain the influence of collisions on the spectral shape, depend on the band, on the temperature, and on the collision partners. The off-diagonal elements of W account for interferences between absorption lines (line mixing), whereas the real and imaginary parts of the diagonal elements are the pressurebroadening (γ k ) and pressure-shifting (δ k ) coefficients of the lines
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In the case of W abs/abs , γ k and δ k are the self-broadening and -shifting coefficients of the absorbing transitions, whereas for W abs/buffer , γ k and δ k are the broadening and shifting coefficients due to the pressure of the buffer gas. Let us recall that neglecting line mixing (i.e., assuming that all off-diagonal elements of W are equal to zero) leads to express the profile as a sum of Lorentz profiles.

Relaxation operator

According to Eq. ( 4), the diagonal elements are set to the broadening and shifting coefficients. The imaginary part of the off-diagonal elements can be neglected, since the shifting coefficients are expected to be small, as it has been shown experimentally [START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF]. The real off-diagonal elements are modeled using the state-to-state inelastic collisional rates of the lower state through 
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where E n is the rotational energy of the initial level of line n (n =  or k). The upward rates are then calculated by using the detailed balance
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The coefficients a 1 , a 2 , a 3 , and a 4 are obtained by least squares fitting the sum rule to the γ (k) values. For a Q branch, this sum rule is modeled by

        ← + ← = ∑ ∑ ≠ ≠ k k J J k J J k f f K i i K k γ ' ' ) ( ) ( 2 1 ) (     , ( 8 
)
where i n and f n are respectively the initial and final level of the transition n (n =  or k), J n and J' n are the rotational quantum numbers of i n and f n .

Application to the CH 3 Br spectra

Using experimental spectra recorded at various CH 3 Br and N 2 pressures, we calculated the effects of line mixing, due to both CH 3 Br and N 2 , in several Q branches of the ν 6 band. As Q branches are well separated (see Fig. 1), inter-branch line mixing (for example with ∆K = 3n [START_REF] Herlemont | Study of rotational relaxation in CH 3 Br by infraredmicrowave double resonance[END_REF]) have not been taken into account.

The spectroscopic parameters required for the calculation of the profiles at room

temperature are σ k , ρ k , d k , E k , γ k .
All these parameters have been constrained to the values obtained in Ref. [START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF]. As it has been said previously, the pressure shift has been neglected.

Note that neglecting them has no observable consequence in the calculated spectra. The pressure of the absorbing gas is the partial pressure of one of the two main isotopologues, i.e, respectively. The concentration of the 13 C isotopologues (about 1 % on the whole) is neglected. As these two isotopologues have similar abundances and absorb in the same spectral region, they have to be studied simultaneously, so that the whole absorption coefficient is actually the sum of the absorption coefficients due to each isotopologue. Note that the line intensity in Eq. ( 2) is defined for a 100% CH 

W

.

The parameters a 1 , a 2 , a 3 , and a 4 obtained for the R Q 0 branch were retained for all the other Q branches, since it is the strongest of the observed branches, and therefore is the most tractable to derive significant line-mixing parameters. We checked that the values found for the parameters from the R Q 0 branch can be transferred for others branches without degrading the residuals. Moreover, before calculating the absorption coefficient, a renormalization procedure [START_REF] Niro | Spectra calculations in central and wing region of CO 2 IR bands between 10 and 20 µm -I: Model and laboratory measurements[END_REF] has been applied to the off-diagonal terms of W, in order to satisfy almost exactly the sum rule (Eq. 8).

For the R Q 0 branch, the sum rule was evaluated with unrestricted collisional selection rules on ∆J with J ≤ 59 (broadening coefficients being known up to J = 59) and with ∆K = 0 [START_REF] Herlemont | Study of rotational relaxation in CH 3 Br by infraredmicrowave double resonance[END_REF][START_REF] Everitt | Rotational energy transfer in CH 3 F: The ∆J=n, ∆K=0 processes[END_REF][START_REF] Frenkel | Spectroscopy and collisional transfer in CH 3 Cl by microwave-laser double resonance[END_REF][START_REF] Pape | Time resolved double resonance study of J and K changing rotational collision processes in CH 3 Cl[END_REF]. The vibrational ground state has only A+ levels. The upper states of ν 6 R Q 0 transitions are split into A-and A+ levels. The optical selection rule for these R Q 0 transitions is A+ → A-. As mentioned by Chackerian et al [START_REF] Chackerian | Methyl chloride ν 5 region lineshape parameters and rotational constants for the ν 2 , ν 5 , and 2ν 3 vibrational bands[END_REF], who studied the CH 3 Cl molecule similar to CH 3 Br, both collisional relaxation between A-↔ A-and A-↔ A+ levels (instead of only A-↔ A-) in the excited state were needed to correctly describe line-mixing effects in CH 3 Cl. Allowing also such collisional relaxations for CH 3 Br, the sum rule becomes
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However, in the case of the R Q 0 branch of CH 3 Br, the rotational energies of A-and A+ levels of the upper state are very close, contrary to CH 3 Cl, so that this refinement does not change the value of the right member of Eq. ( 8). Therefore, only A-↔ A-collisional relaxations in the upper state have been considered to simplify the calculation. To ensure the convergence of the sums in Eq. ( 8), they were calculated with J  up to 80. For some levels with high rotational quantum number values, the level energies have been extrapolated using the spectroscopic constants given in [START_REF] Brunetaud | Line intensities in the ν 6 fundamental band of CH 3 Br at 10 µm[END_REF][START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF].

The values obtained for a 1 , a 2 , a 3 , and a 4 are given in Table 2, and the validity of the model is demonstrated on Fig. 2 showing the quality of the N 2 -and self-broadening coefficients calculated in such a way.

The coefficients k A ,  in Eq. ( 5) depend on the considered band and on the buffer gas, so that we have to determine the parameters 

A

, in addition to a 1 , a 2 , a 3 and a 4 .

Each parameter was determined from a single experimental spectrum, namely the spectrum at 849.8 hPa for N 2 -perturbed CH 3 Br, and the spectrum at 212.5 hPa for self-perturbed CH 3 Br.

This was done by successive estimations, and we found 

A

. The broadening parameters calculated from the off-diagonal elements and the sum rule, are not perfect, especially for the Q branches with K ≠ 0 (for which the broadening coefficients are different from those of the R Q 0 branch (see Ref. [START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF])). The renormalization procedure [START_REF] Niro | Spectra calculations in central and wing region of CO 2 IR bands between 10 and 20 µm -I: Model and laboratory measurements[END_REF][START_REF] Tran | Line-mixing and collision-induced absorption by oxygen in the A band: Laboratory measurements, model, and tools for atmospheric spectra computations[END_REF] has been applied to the off-diagonal terms, in order to satisfy exactly the sum rule. Finally, note that two types of calculations of the absorption coefficient will be made: performing the direct calculation of Eq. ( 1) through the inversion of the relaxation operators In order to simplify computations for possible atmospheric applications, the absorption coefficient was also calculated using the Rosenkranz profile [START_REF] Rosenkranz | Shape of the 5 mm oxygen band in the atmosphere[END_REF]. Expanding Eq.

(1) to first order, we obtain, e.g. in the case of CH 3

79

Br transitions for the R Q 0 branch vs the J rotational quantum number, in unit of atm -1 . These values were found very close for the two isotopologues. At this stage of the work, it is interesting to discuss qualitatively these values and to compare them with those obtained by Chackerian et al [START_REF] Chackerian | Methyl chloride ν 5 region lineshape parameters and rotational constants for the ν 2 , ν 5 , and 2ν 3 vibrational bands[END_REF] for another symmetric top molecule, CH 3 Cl. Figure 3 shows that the values we obtained for CH (estimated up to about 10%). We will show the efficiency of the Rosenkranz profile in the next section.

∑ + - - + = k k k k k k k k σ σ Y σ σ γ T S P T P P σ α 2 2 Br CH N Br CH ) ( ) ( ) ( 1 ) , , , ( 79 3 

Spectra calculations and discussion

The calculated spectra were obtained as follows. First, due to the broad unresolved branches or observed features, it was not necessary to take into account the apparatus broadening, the self broadening has been taken into account, although the partial pressures of CH 3 Br that we used were quite small as compared to the N 2 ones. The total broadening coefficient of a CH 3 Br transition is then given by the usual linear mixing rule

) ( ) ( ) ( self tot Br CH N N 3 2 2 k γ P k γ P k γ × + × = . ( 13 
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In Eq. ( 13),

) ( 2 N k γ and ) ( self k γ
are respectively the N 2 -and self-broadening coefficients from Ref. [START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF]. Because of the high pressures, it was not necessary to take into account the Doppler broadening for CH 3 Br in this spectral region.

Line-mixing effects on self-broadened CH 3 Br spectra

The a 1 , a 2 , a 3 , and a 4 parameters reported in Table 2 for self-perturbed CH 3 Br were used, as also the value found for

Br CH A 3
, so that no parameters were adjusted at this stage of the calculations. Because of the strong electric dipole moment of the CH 3 Br molecule, the CH 3 Br / CH 3 Br collisions are more efficient than the CH 3 Br / N 2 ones, leading to selfbroadening coefficients very much larger than N 2 -broadening ones [START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF], and consequently to a stronger line mixing (even at low pressure), more difficult to model. As example, Fig. 4 presents results obtained for the R Q 0 branch at three pressures. The absorption spectra have been plotted with transmission as ordinate, and the continuous background was considered a constant adjusted along each plotted spectral domain.

The effects of the line mixing on pure CH 3 Br spectra are well observed in the residuals of the fit. Where line mixing occurs, the characteristic signature obtained using a sum of Lorentz or Voigt profiles is considerably reduced when performing the direct calculation of Eq. ( 9). Note that the weak oscillation in the residuals of the lowest pressure spectrum at 67 hPa (Fig. 4a), observable in the tail of the Q branch towards low wavenumbers, should not be attributed to line-mixing effects, but merely to slight discrepancies between the experimental line positions and intensities, and those computed in [START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF] and used in our calculations. At higher pressure, the involved features are no longer resolved (Figs. 4b,c), and the oscillating signature disappears.

Line-mixing effects on the R Q 0 branch of N 2 -broadened CH 3 Br spectra

Figure 5 presents results obtained in the R Q 0 branch region, for three different pressures of nitrogen. As for self-perturbed spectra, these results confirm that neglecting line mixing leads to large errors, whereas our model gives satisfactory predictions. Comparisons between the experimental spectra and the ones calculated using a sum of Lorentz profiles show the absorption transfer from the regions of weak absorption to those of strong absorption. Outside the Q branch, where there is no noticeable line mixing, the experimental spectra and those calculated using a sum of Lorentz profiles are superimposed. Examining more accurately Fig. 5, one observes a very weak channeled spectrum in the residuals (period around 4 cm -1 ), having an experimental origin (see Section 1). Because of its weakness, we did not try to model and remove such an irregular and faint effect, which should be distinguished from line-mixing effects that would have not been taken into account.

Note that the residuals obtained with spectra calculated with the Rosenkranz profile are quasi-superimposed to those obtained by the full calculation performed directly from Eq. [START_REF] Wartewig | IR and Raman Spectroscopy: Fundamental Processing[END_REF]. Only a slight discrepancy appears just at the branch head inside a very narrow spectral domain, where the Rosenkranz profile underestimates the line mixing, whereas the full calculation overestimates them. This first order line-mixing profile, easy and quick to compute from Eqs. [START_REF] Mertz | Transformations in Optics[END_REF][START_REF] Griffiths | Fourier Transform Infrared Spectrometry[END_REF], could therefore be used in this range of pressures, instead of the full calculation (Eq. ( 10)).

Line-mixing effects on other R Q K and P Q K branches of N 2 -broadened CH 3 Br spectra

The model was applied to all branches of the ν 6 band and gave a good agreement with experimental spectra at different pressures. We present here representative examples of R Q K and P Q K branches. Their spectral structures are significantly different from that of R Q 0 , so that they enable a meaningful test of our approach. Let us recall that the parameters a 1 , a 2 , a 3 , and a 4 were determined from the pressure-broadening coefficients of R Q 0 lines, and are now fixed to the same values for the other branches. Note that the renormalization procedure was necessary for these branches, since the diagonal elements of W have now to be identified with the N 2 -broadening coefficients specific to each branch, which can differ from those of R Q 0 lines [START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF].

Comparisons between experimental and calculated spectra are shown on Figs. 1,6, and 7. As expected, although line-mixing effects in these branches are smaller than in the R Q 0 branch, the disagreements between the experimental data and the spectra calculated using the sum of Lorentz profiles remain important and qualitatively similar to that of R Q 0 . As shown on these figures, spectra calculated with our model are in good agreement with experiment.

The slight difference appearing between measured and calculated spectra in the branch heads at high N 2 pressure is probably due to inter-branch line-mixing effects that could be determined by a direct adjustment of a calculated spectrum to the experimental one, as done for CH 4 in Ref. [START_REF] Tran | Model, software and database for line-mixing effects in the ν 3 and ν 4 bands of CH 4 and tests using laboratory and planetary measurements -I: N 2 (and air) broadening and the Earth atmosphere[END_REF]. However, the CH 3 Br spectrum is very crowded and contains numerous weak high J lines and some Q branches of the 2ν 6ν 6 hot band not calculated in Ref. [START_REF] Jacquemart | A complete set of line parameters for CH 3 Br in the 10-µm spectral region[END_REF], but observable in the residuals of Fig. 1b. Therefore, such a direct adjustment of line-mixing parameters from an experimental spectrum could not be accurately performed at the present time. Though these hot bands can not receive an accurate spectroscopic treatment, it is however possible to roughly model them for possible applications, and therefore to decrease slightly the residuals, as has been done on Fig. 1. For that, the Q branches of the ν 6 band have shifted and rescaled to simulate those of the 2ν 6 ν 6 hot band.

Conclusion

Line-mixing effects have been calculated in the ν 6 band of the main isotopologues of methyl bromide, N 2 -perturbed and self-perturbed at room temperature. The model used is based on the use of the state-to-state rotational cross-sections calculated by a statistical modified exponential-gap fitting law, that depends on a few adjusted empirical parameters.

Comparisons performed between experimental and calculated spectra, under atmospheric pressure conditions (0.2 -1 atm), demonstrate the efficiency/effectiveness of the model to noticeably decrease the large systematic errors that would affect the treatment of experimental spectra if line mixing was disregarded. Furthermore, the simple first order Rosenkranz profile appeared precise enough for quick calculations.

There exists a strong demand to include accurate spectroscopic data on the methyl bromide molecule in atmospheric databases as HITRAN [START_REF] Rothman | The HITRAN 2004 molecular spectroscopic database[END_REF] and GEISA [START_REF] Jacquinet-Husson | The 2003 Edition Of The GEISA/IASI spectroscopic database[END_REF], especially for the ν 6 band, which is located in an atmospheric window, and could be observed in long path solar occultation spectra at sunset or sunrise. The R Q 0 branch particularly, seems well suited for such studies, being located in a micro window, between two carbon dioxide lines and two water vapor lines. That is why we plan to record new spectra at temperatures of atmospheric interest, in order to get a better knowledge of the N 2 -broadening and line-mixing coefficients of CH 3 Br. of N 2 with an absorbing path length of 30 cm (c). The upper panels of residuals show the differences between the experimental spectra and spectra calculated with a sum of Lorentz profiles, the middle panels the differences between the experimental spectra and spectra calculated with a Rosenkranz profile, and the lower panels the differences between the experimental spectra and line-mixing full calculation spectra. 

  state-to-state collisional transfer rate from the initial level i k of line k to the initial level i  of line , at temperature T. The parameters k A ,  , which enable switching from the state-space to the line-space, are empirical and depend on the types of lines k and  considered[START_REF] Pieroni | Experimental and theoretical study of line-mixing in methane spectra. I. The N 2 -broadened ν 3 band at room temperature[END_REF][START_REF] Tran | Model, software and database for line-mixing effects in the ν 3 and ν 4 bands of CH 4 and tests using laboratory and planetary measurements -I: N 2 (and air) broadening and the Earth atmosphere[END_REF]. In order to simplify the problem, we made the approximation that k A ,  depends only on the band and on the buffer gas, but not on the quantum numbers of the lines themselves. by a statistical modified exponential-gap (MEG) fitting law[START_REF] Lévy | Collisional line-mixing[END_REF][START_REF] Chackerian | Methyl chloride ν 5 region lineshape parameters and rotational constants for the ν 2 , ν 5 , and 2ν 3 vibrational bands[END_REF][START_REF] Rahn | Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy[END_REF] 

  concentration (in natural abundances) are 50.54 % and 49.46 %

P

  the total pressure of CH 3 Br, not to be confused with the partial pressures of the specific absorbing isotopologues. Results obtained by the direct calculation are presented in Section 4.

  is a line-mixing parameter representing the coupling between line k of CH 3 79 Br and all other lines of the same branch. The Y k 's are given by

function. Absorption coefficients due to the two CH 3 79Br and CH 3 81

 33 Br isotopologues were added. Uncoupled lines present in the studied spectral domains were also taken into account in the calculation of the total absorption coefficient, their contribution being calculated using a Lorentz profile. Because of the large values of the self broadening compared with the N 2

Fig. 1 .Fig. 2 . 3 79Br and CH 3 81

 1233 Fig.1. P(CH 3 Br) = 49.3 hPa, P(N 2 ) = 849.8 hPa, L = 30 cm. In the upper panel, the experimental spectrum is plotted. The panels of residuals show the differences between the experimental spectrum and a spectrum calculated without taking into account line-mixing (a), with line-mixing taken into account, remaining features in the residuals being due to hot bands and high J lines of ν 6 (b), and same as (b) but with hot bands roughly taken into account (c).

Fig. 3 .Fig. 4 .Fig. 5 .

 345 Fig. 3. First order line-mixing parameters

Fig. 6 :Fig. 7 .

 67 Fig.6: Comparison between the transmissions of CH 3 Br/N 2 in the P Q 6 (a) and P Q 3 (b) branches regions calculated with () and without (---) line-mixing, and the measured values (•). These results have been obtained at room temperature, for 53.1 hPa of CH 3 Br diluted in 550.9 hPa of N 2 , and for an absorbing path length of 30 cm.

  Im{…} denotes the imaginary part, ρ k is the fractional population of the initial level of line k, and d n is the reduced matrix element of the electric dipole moment operator of line n (n =  or k), related to the integrated line intensity S n of the absorbing gas by
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	In this equation,	abs P and	buffer P	are the partial pressures of the absorbing and buffer gases,
	respectively. The sums include all absorption lines k and ,	

  Then, the a 1 , a 2 , a 3 , and a 4 parameters were supposed to be the same for the two isotopologues. However, as other spectroscopic data (σ k , ρ k , d k , γ k ) are different for the two isotopologues, the state-to-state collisional transfer rates were evaluated separately for these two molecules. That is to say, we calculated a relaxation operator

	CH 3	79 Br and CH 3	81 Br were found very close, the same smoothed N 2 -broadening coefficients
	were given for both CH 3	79 Br and CH 3 Br/CH 81 Br isotopologues. Br CH 3 3 W for each isotopologue, noted	Br/CH 79 3 CH W	Br 3	and
	CH 3 W	Br/CH 81	Br 3	, we also assumed that	Br/CH 79 3 CH W	3	Br 79	=	Br/CH 79 3 CH W	3	Br 81	, noted	Br/CH 79 3 CH W	Br 3	, and
	Br/CH 81 3 CH W	3	Br 79	=	Br/CH 81 3 CH W	3	Br 81	, noted	Br/CH 81 3 CH	Br 3
																3	79 Br or CH 3	81 Br sample, not to be
	confused with that given in natural abundances [2].
			For the calculation of the off-diagonal elements of the relaxation operators	CH W	Br/CH 3	3	Br
	and	Br CH 3 W	/ Ν	2	, the parameters a 1 , a 2 , a 3 , and a 4 have been determined through a sum rule
	from a least-squares fit of the self-and N 2 -broadening coefficients respectively. For this
	treatment, the smoothed values of the measured data determined in Ref. [2] were chosen,
	instead of the measured values. Since in this previous work the N 2 -broadening coefficients of

  [START_REF] Ben-Reuven | Impact broadening of microwave spectra[END_REF] Br have a very regular rotational dependence, whereas the values obtained for CH 3 Cl[START_REF] Chackerian | Methyl chloride ν 5 region lineshape parameters and rotational constants for the ν 2 , ν 5 , and 2ν 3 vibrational bands[END_REF] exhibit strong irregularities. This is due to the fact that CH 3 Cl, which is lighter than CH 3 Br, has a more spaced and irregular pattern of rotational levels than CH 3 Br. Furthermore, strong positive values have been found for low J lines of CH 3 Cl, whereas we found them negative for CH 3 Br. This is obviously because the studied Q branch of CH 3 Cl extends towards high wavenumbers, whereas the Q branches of CH 3 Br extend towards low wavenumbers. It is worth noticing that the Y k values of low J lines, which strongly depend upon pressurebroadening coefficients difficult to measure for such lines, can have large uncertainties

Table 1 .

 1 Experimental conditions and characteristics of the recorded spectra

	Unapodized apparatus function	
	Spectra 1-4	Maximum optical path difference	450 cm
			FWHM		≈ 1 × 10 -3 cm -1
	Spectra 5-6	Maximum optical path difference	125 cm
			FWHM		≈ 4 × 10 -3 cm -1
	Absorbing sample	
	Natural CH 3 Br		79 Br 81 Br (about 1 % of 13 C isotopologues neglected) 50.54 % of CH 3 49.46 % of CH 3
	Stated purity		99.50 %
	Experimental conditions	
	S/N ratio		≈ 100
	_______________________________________________
	# CH 3 Br pressure N 2 pressure	Absorption path
		(hPa)	(hPa)	(cm)
	_______________________________________________
	1	66.5	0	30
	2	109.4	0	30
	3	212.5	0	30
	4	2.01	287.1	415
	5	53.1	550.9	30
	6	49.3	849.8	30
	_______________________________________________

Table 2 :

 2 Parameters of the MEG model obtained for CH 3 Br/N 2 and CH 3 Br/CH 3 Br

	MEG law parameter	CH 3 Br/N 2	CH 3 Br/CH 3 Br
	a 1	0.00708	0.1006
	a 2	2.589	0.1883
	a 3	1.067	20.81
	a 4	0.571	0.891
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