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Abstract  
 

 

 

Methyl chloride is of interest for atmospheric applications, since this molecule is directly 

involved in the catalytic destruction of ozone in the lower stratosphere. In a previous work 

[Bray et al. JQSRT 2011;112:2446], lines positions and intensities of self-perturbed 
12CH3

35Cl and 12CH3
37Cl have been studied into details for the 3.4 µm spectral region. The 

present work is focused on measurement and calculation of N2-broadening coefficients of the 
12CH3

35Cl and 12CH3
37Cl isotopologues. High-resolution Fourier Transform spectra of 

CH3Cl-N2 mixtures at room-temperature have been recorded between 2800 and 3200 cm-1 at 

LADIR (using a classical source) and between 47 and 59 cm-1 at SOLEIL (using the 

synchrotron source on the AILES beamline). 612 mid-infrared transitions of the ν1 band and 

86 far-infrared transitions of the pure rotational band have been analyzed using a 

multispectrum fitting procedure. Average accuracy on the deduced N2-broadening 

coefficients has been estimated to 5% and 10% in the mid- and far-infrared spectral regions, 

respectively. The J- and K-rotational dependences of these coefficients have been observed in 

the mid-infrared region and then a simulation has been performed using an empirical model 

for 0 ≤ J ≤ 50, K ≤ 9. The 12CH3
35Cl-N2 line widths for 0 ≤ J ≤ 50 and K ≤ 10 of the ν1 band 

and for 55 ≤ J ≤ 67 and K ≤ 15 of the pure rotational band have been computed using a semi-

classical approach involving exact trajectories and a real symmetric-top geometry of the 

active molecule. Finally, a global comparison with the experimental and theoretical data 

existing in the literature has been performed. Similar J- and K-rotational dependences 

appeared while no clear evidence for any vibrational and isotopic dependences have pointed 

out. 



1. Introduction 

 

Methyl chloride (CH3Cl) is a trace gas with a tropospheric concentration of about 550 

parts per trillion per volume [1] and a total atmospheric lifetime of about 1.2 year [2]. Methyl 

chloride is one of the most abundant chlorine-containing molecules in the atmosphere with 

oceans and biomass burning as major natural identified sources [3,4]. The overall 

uncertainties in CH3Cl quantities from these major sources are relatively large [1]. The first 

infrared detection of the ν1 band of methyl chloride (3.4 µm region) has been performed in 

1985 by the ATMOS Fourier-transform spectrometer onboard Spacelab 3 [5]. More recently 

solar occultation measurements performed by the ACE-FTS experiment on the SCISAT-1 

satellite [6] have been used to obtain the first global distribution of methyl chloride in the 

upper troposphere and lower stratosphere. To improve the spectroscopic retrieval of CH3Cl in 

the atmosphere, the laboratory spectroscopic parameters have to be improved. 

In a previous paper focused on the 3.4 µm spectral region [7], positions and intensities 
12CH3

35Cl and 12CH3
37Cl lines have been studied. The present work is dedicated to the study 

of the N2-broadening coefficients. In order to analyze the J- and K- rotational dependences, a 

large set of 612 measurements in the ν1 band around 3.4 µm has been performed at room 

temperature corresponding to various J and K quantum numbers (J ≤ 50, K ≤ 9). The FT 

spectrometer of LADIR has been used to study both the CH3
35Cl and CH3

37Cl isotopologues. 

A multispectrum fitting procedure using 7 experimental spectra recorded at various partial 

pressures of CH3Cl and N2 allowed the retrieval of N2-broadening coefficients. The 

experimentally observed J-and K-dependences have been modeled using a second-order 

polynomial function. FT spectra of CH3Cl-N2 mixtures have also been recorded in the pure 

rotational region using the AILES beamline of the synchrotron SOLEIL. 86 N2-broadening 

coefficients have been deduced for J  ≥ 55 and K ≤ 12. However, due to the weak dependence 

of the line widths for such transitions, an average value for the N2-broadening coefficients has 

been obtained. Finally, the nitrogen-broadening coefficients for the experimentally studied 

transitions have been computed using a semi-classical approach [8]. 

Measurements and calculations of N2-broadening coefficients have been previously 

performed for CH3Cl in the ν3 band around 730 cm-1 [9-12].  The experimental spectra have 

been recorded using a diode laser spectrometer which allows recording of spectra with a high 

signal-to-noise ratio but only for a small spectral range. Only 29 transitions have been 

retrieved corresponding to a reduced range of J and K values. These measurements have then 

been compared to a semiclassical impact calculation based upon the Anderson-Tsao-Curnutte 



formalism [13]. This theoretical calculation predicted a strong K dependence that could not 

have been totally confirmed due to the reduced number of measured data.  

More recently, experimental and theoretical studies of the N2-broadenig coefficients in 

the pure rotational spectral region have been completed by Colmont et al. [14] and by Guinet 

et al. [8]. In Ref. [14], measurements and calculations are presented for the J = 14 ← 13 

transitions focusing on the K dependence. In Ref. [8], two experimental setups (frequency-

modulation chain and continuous-wave photomixing spectrometer) have been used to record 

the rotational lines located between 186 GHz and 1.346 THz (6 ≤ J ≤ 50 and K ≤ 18). N2-

broadening coefficients have been retrieved for 84 transitions, and a semi-classical calculation 

has been done using exact trajectories, an interaction potential including short-range forces, 

and a rigorous treatment of the active molecule as a symmetric top. In this study the J and K 

dependences of the N2-broadening coefficients have been clearly observed and successfully 

reproduced by calculation. 

 

In next Section the experimental conditions are presented for spectra recorded at 

LADIR and SOLEIL.  Then, the retrieved broadening coefficients are presented in Section 3. 

The analysis of the measurements including an empirical modeling and a theoretical 

calculation is given in Section 4. Finally Section 5 is dedicated to a comparison of the present 

results with those from the literature. 

 
 
 
2. Experimental conditions 

  

 Two different sets of experimental spectra have been recorded using high resolution 

Fourier-transform spectrometers, one in the mid-infrared region around 3.4 µm and the other 

in the far-infrared region around 55 cm-1. To achieve the best signal-to-noise ratio in these 

two spectral regions, the first set of spectra has been recorded at LADIR with a globar source, 

whereas the second set has been recorded using the AILES beamline of the synchrotron 

SOLEIL. The experimental conditions of each set of spectra are described in the following 

sub-sections.  In both cases, the average interferograms has been Fourier transformed using 

the procedure included in the Bruker OPUS package, selecting a Mertz phase error correction. 

The spectra have not been numerically apodized. 

 

2.1. Spectra recorded at LADIR around 3.4 µm 



 

Around 3.4 µm, 7 Fourier-transform spectra have been recorded using the rapid scan Bruker 

IFS 120 HR interferometer of LADIR. The experimental conditions are summarized in 

Table 1. The interferometer has been equipped with a CaF2 beam splitter, an InSb detector 

and a globar source. All spectra have been recorded near the room temperature. The 

temperature has been measured using four platinum probes located at different places inside 

the cell. The accuracy of the average temperatures given in Table 1 is around ± 0.5 K.  A 

multi-pass White-type cell (1 m base length) with an absorption path of 415 cm has been 

used. For these LADIR spectra (#1 to #7, see Table 1), since no optical filter has been used, 

the whole 1800-5000 cm-1 spectral range has been recorded. Therefore, CO2 and H2O 

transitions, coming from impurities present in the interferometer, have been used to perform 

the wavenumber calibration (see Section 3.1).  The commercial methyl chloride and N2 gases, 

furnished by Alpha Gaz with a stated purity of 99.9 % in natural abundance, were used 

without any further purification. Pressures of gases have been measured with 4 Baratron 

gauges with accuracy better than ± 0.15 % for the 1 mbar full scale gauge and better than 

± 0.25 % for the 100 and 1000 mbar full scale gauges. A weak multiplicative channel 

spectrum, due to the windows of the cell, has been observed in all experimental spectra. Its 

period is around 0.60 cm–1 with maximum peak to peak amplitude less than 2 %. Because the 

adjusted spectral domains used in this study are always narrower than the half-period of the 

channel, this channel spectrum can be reproduced by using a polynomial expansion that 

adjusts the continuous background. 

 
 

2.2. Spectra recorded at SOLEIL in the pure rotational region 

  

Four spectra have been recorded with the rapid scan Bruker IFS 125 HR interferometer 

of the SOLEIL/AILES beamline.  Experimental conditions for these spectra (#8 to #11) are 

gathered in Table 1.  For high-resolution measurements, the use of a synchrotron source was 

necessary to achieve a satisfactory signal-to-noise ratio in the pure rotational region. The 

interferometer has been equipped with a 6 mm Mylar beam splitter, a 4.2 K Si-Bolometer 

detector and an optical filter covering the spectral region between 0 and 250 cm-1. The entire 

AILES beamline has been used without any aperture stop in order to obtain the maximum 

signal-to-noise ratio. The optical weighting due to the size of the beam inside the 

interferometer will be studied in Section 3.2. The whole optical path was maintained under 



vacuum and a multipass White-type cell (2.5 m base length) has been aligned to provide a 

(10.14 ± 0.01) m absorption path length. The cell has been equipped with 50-mm-thick 

polypropylene windows and the temperature of the gas in the cell has been obtained by 

averaging measurements performed in the room at different times, so that the uncertainty on 

the temperature has been estimated to be around ± 1 K. Pressures inside the cell have been 

measured using two MKS Baratrons (1- and 10-mbar full scale range manometers) with an 

accuracy better than ± 0.25 %. The signal-to-noise ratio of the average spectra depends on the 

wavenumber and was about 25 in the rotational band around 60 cm–1. As it can be observed 

in Fig. 1, a significant irregular multiplicative channel (with maximum peak to peak 

amplitude around 30%) spectrum was present in all spectra. This channel spectrum has been 

modeled locally as a background adjusted on a small spectral range of around 0.14 cm–1 with 

a second-order polynomial function. As a comparison (see Fig. 1), the experimental spectra 

recorded in LADIR do not contain a such significant and irregular multiplicative channel 

spectrum. 

   

 
3. Preliminary treatments and measurements of N2-broadening coefficients 

 To analyze the spectra recorded both at LADIR and at SOLEIL, a preliminary 

treatment has been performed in order to deduce accurate N2-brodening coefficients. It 

concerns mainly the optical weighting due to the size of the beam that affects the apparatus 

function (not negligible with Fourier transform spectrometers). Moreover a wavenumber 

calibration has been done for each set of spectra.   

 

3.1. Preliminary treatment of LADIR spectra 

 For each spectrum, the apparatus function has been calculated performing numerically 

the Fourier transform of the interferograms, taking into account the effect of the throughput 

and of the finite optical path difference [15]. In the definition of the apparatus function, the 

aperture (nominal value equal to 0.75 mm) and the focal length of the collimator (418 mm) 

are sensitive parameters. Since the effect of the beam size on the apparatus function is more 

sensitive on spectra #1 and #2, the effective iris radius has been fitted on isolated transitions 

in these spectra. The average effective iris radius has been obtained using CH3Cl, H2O and 

CO2 transitions and has been found equal to (0.80 ± 0.04) mm for the 90 fitted transitions.  

The effect on the line parameters retrievals is not negligible even if this average value is close 

to the nominal one. For example, for the transition at 2961.9511 cm-1 with an intensity of 



4.46×10−21 cm-1/(molecule.cm-2), the N2-broadening coefficient is 2% higher when using a 

value of aperture equal to 0.80 mm instead of 0.75 mm. 

 Concerning the wavenumber calibration, absolute wavenumbers from HITRAN [15] 

have been used for isolated transitions of CO2 near 2300 cm-1 and H2O near 1900 and 3900 

cm-1. Taking into account the accuracy of positions in HITRAN and the precision on the 

present measurements, the absolute accuracy on line positions has been estimated between 

0.1×10−3 and 1×10−3 cm-1. 

 

3.2. Preliminary treatment of SOLEIL spectra  

In the case of the AILES beamline at SOLEIL synchrotron, the entire beam is injected 

into the interferometer, and the beam size depends on the wavenumber in contrast with 

classical sources. The knowledge of the beam size is important to calculate accurately the 

apparatus function. This is necessary to extract accurate broadening parameters. In the 

following, the beam has been considered as limited by an iris of radius R to be determined as 

a fitted parameter. For spectra obtained in this work, since the full width at half maximum 

(FWHM) of the apparatus function (0.002 cm–1) is of the same order of magnitude as the 

FWHM of the lines (between 0.002 and 0.004 cm–1), the effect of the optical weighting on the 

apparatus function cannot be neglected. However, in order to better determine the effective 

radius of the beam, spectra #8 has been chosen to fit this parameter. Indeed, the collisional 

width of the transitions is the weakest in spectrum #8, so that the effect of the apparatus 

function is well observable and adjustable. 24 isolated transitions of water between 59 and 

211 cm–1 (present as trace in the cell) have been selected. Their intensities have been fitted 

together with the effective beam radius parameter in the spectrum #8. This preliminary study 

allowed firstly, to estimate the effective value of the size of the beam, but also to perform an 

absolute wavenumber calibration using as reference the line positions given in the HITRAN 

database [16] (line positions coming from Ref. [17]). 

 Previous studies [18, 19] on the AILES beamline have been performed and the results 

concerning the radius values in the present work are compared in Fig. 2 to what has been 

found previously [19]. As it can be seen on this figure, there is a good agreement between the 

wavenumber dependence of the effective radius of the beam obtained from this work and the 

previous studies. Moreover, the effective radius of the beam obtained is always higher than 

the calculation using SOLEMIO and SRW models [20]. This dependence has been modeled 

with a polynomial function that reproduces such dependence inside the studied spectral range 

(50-100 cm-1). In the next step of this work, the broadening parameters have been fitted using, 



for the optical weighting of the apparatus function, the values of the radius of the beam 

deduced from the polynomial function. In the 50-100 cm-1 spectral range, since the 

wavenumber dependence on the size of the beam is very strong, neglecting it will lead to 

erroneous measurements for the line parameters. 
 
 

3.2. N2-broadening coefficients measurements 
 
 A multispectrum fitting procedure [21] has been used to adjust simultaneously the 

profiles of the transitions in spectra #1-7 and in spectra #8-11 for retrieving the N2-

broadening coefficients in the 3.4 µm region and in the pure rotational region. Since methyl 

chloride has a large dipole moment, the effect of the self broadening on the line profiles is 

significant [22-23] and a low pressure of methyl chloride has been used to minimize 

perturbations in the measurement of the N2-broadening coefficients. Note that due to the 

strong overlapping of CH3Cl transitions and to the presence of both CH3
35Cl and CH3

37Cl 

isotopologues, the higher pressure of N2 in the cell was constrained to 120 mbar for spectra 

#1-7 and to 16 mbar for spectra #8-11. For the broadening coefficients, we assumed that the 

effects of collisions for CH3
35Cl and CH3

37Cl are similar, so that the broadening coefficients 

can be written: 

 35 35 37 37 37 35 35 37
3 3 3 3 3 3 3 3CH Cl/CH Cl CH Cl/CH Cl CH Cl/CH Cl CH Cl/CH Cl selfγ = γ = γ = γ = γ , (1) 

 35 37
23 2 3 2

NCH Cl/N CH Cl/Nγ = γ = γ . (2) 

No temperature correction has been done, since temperatures of all spectra are close to 296K. 

For all transitions, a Voigt profile has been used and no systematic deviation from this profile 

has been observed in the residuals for all spectra.  Figure 3 gives an example of a fit in the 3.4 

µm spectral region and the pure rotational region. Residuals obtained for fits in the 3.4 µm 

spectral region are lesser than 1% due to the high signal-to-noise ratio. In the pure rotational 

region, residuals can exceed 5% due to the low signal-to-noise ratio. In pure rotational region, 

the transitions for K = 0 and 1 are overlapped. To obtain a fit of the J-branches, a simple 

transition has been taken into account for these two overlapped transitions. This explains the 

high residual observed on the low K values of the J-branches. This effect is less important 

more the pressure of gas is important. Taking into account the relatively high pressure of N2 

used for spectra around 3.4 µm and the signal-to-noise ratio obtained in this region (see Table 

1), the average accuracy on N2-broadening coefficients measurements has been estimated to 

be around 5%. For the pure rotational region, taking into account the signal-to-noise ratio (see 



Table 1) and the lower N2 pressures, the average accuracy on N2-broadening coefficients 

measurements has been estimated to be around 10%. 

In the 3.4µm spectral region, 612 measurements of N2-broadening coefficients have 

been obtained for large set of J and K values (J from 0 up to 40, and K from 0 up to 9). These 

results have been used to adjust an empirical model described in Section 4.1. In the pure 

rotational region, 86 measurements have been performed for high J values (J higher than 55) 

and for K values between 0 and 12. However, due to the weak dependence of the line widths 

on J and K observed for J ≥ 55 and K ≤ 12, an average value for the N2-broadening 

coefficients has been obtained for transitions with J ≥ 55. 
 
  
 
4. Analysis and theoretical calculation 
 
4.1. Analysis of the measurements using an empirical model 

 

 Extensive measurements of N2-broadening coefficients, obtained for a large scale of J 

and K values, allowed the study of the rotational dependences (in J and K) of broadening 

coefficients. This large scale of measurements describing the J and K dependences confirmed 

and clarified the trend of previous works [9-12].   

For C3v molecules, in the study of Jacquemart et al. [24] on CH3Br, an empirical model has 

been used to reproduce the rotational dependence of the large set of broadening coefficients 

measured for various J and K values. In the present work, the same model has been employed 

to analyze the measurements of N2-broadening coefficients of CH3Cl.  

 

 For each set of transitions with the same J value, the N2-broadening coefficients have 

been fitted with a polynomial expansion of order two in K (fixing the first-order term to zero):  

 
2

0 2 2( )N emp J JK a a Kγ = + . (3) 

An example of these fits is given in Fig. 4 for transitions with J = 4, 10, 19, and 28. Due to the 

small number of measurements for J >38, the coefficients 0
Ja  and 2

Ja  have been obtained only 

for J ≤38. The coefficients 0
Ja  and 2

Ja  obtained for each set of same J value have been plotted 

versus J in Figs. 5 and 6 respectively. The parameter 2
Ja  represents the K dependence of the 

broadening coefficients having the same J value. This dependence is maximum when J is 

equal to K. In the present work, the K dependence begins to be observable when K ≥ J/2. 

Taking into account that measurements are obtained only for transitions with K up to 9, the K 



dependence is clearly observed in Fig. 4 only for set of J values up to 18. For transitions with 

J higher than 20, the observed K dependence is weak since no transition with K values higher 

than 9 was observed. The fitted parameters 0
Ja  and 2

Ja  have been smoothed to allow to 

calculate the N2-broadening coefficients for any value of J and K. Using this model, the K 

dependence is plotted in Fig. 7 versus J for K ranging from 0 to 9. The fitted and smoothed 

values of 0
Ja  and 2

Ja  parameters are summarized in Table 2. The calculated N2-broadening 

coefficients using this model and the smoothed values of Table 2 are given in supplementary 

data together with experimental values (see Section 5).  

 

4.2. Theoretical calculation 

 

 Since no isotopic dependence has been observed for 12CH3
35Cl and 12CH3

37Cl, the 

theoretical calculation of N2-broadening coefficients has been performed only for the 
12CH3

35Cl isotopologue. The semi-classical calculation has been done using the formalism 

developed in Ref. [25] for symmetric-top active molecules of CH3X-type colliding with non-

polar diatomics Y2 involving exact trajectories. The intermolecular interaction potential 

CH3Cl-N2 has been taken as described in Ref. [8], and the rotational constants used for the 

ground (A0 and B0) and excited ν1 (A1 and B1) vibrational states of the active molecule are 

those of Ref. [7]: A0 = 5.2053361 cm-1, B0 = 0.44340278 cm-1, A1 = 5.149695 cm-1, 

B1 = 0.4430333 cm-1.  In order to perform a comparison with the measurements from the 

present work, the N2-broadening coefficients have been calculated both for the ν1 and pure 

rotational transitions. Calculated values for transitions of the ν1 band with 0 ≤ J ≤ 50 and 

K ≤ 10, and for pure rotational transitions with 51 ≤ J ≤ 70 and K ≤ 15 are given in 

supplementary materials and have been used for the comparison presented in Section 5. A 

sample of comparison between the calculations for the pure rotational and the ν1 bands is 

given in Table 3 for transitions with K equal to 3 and J less than 40. This comparison shows 

that there is no significant difference between the results obtained for the two bands 

(difference smaller than 2×10-5 cm-1.atm-1). Such a deviation could not be observable from 

measurements. Consequently, the vibrational dependence of the N2-broadening coefficients 

can be neglected for CH3Cl. 

 

 
5. Comparison 
 



 Comparisons between measurements and calculations have been performed both for 

transitions of the ν1 band and transitions of the pure rotational band. Moreover, comparisons 

with measurements and calculations available in the literature at 296 K have been included.   

 For transitions with J less than 50, our measurements in the ν1 band (for 612 

transitions) can be compared to the values calculated in Sections 4.1 and 4.2. Table 4 gives a 

sample of such comparison. The complete version of this table is available as supplementary 

materials. Moreover, the measurements obtained for the ν1 band can be compared to the 

measurements of Refs. [9-12] obtained in the ν3 band (for 29 transitions), and to those of Ref. 

[8] in the pure rotational band (for 84 transitions). Figure 8 shows such a comparison between 

experimental measurements together with the empirical model presented in Section 4.1, the 

theoretical calculation presented in Section 4.2, and the theoretical calculations of Ref. [9]. 

The general trend for the J- and K-rotational dependences of the N2-broadening coefficients is 

similar for all measurements and calculations: i.e. a decreasing of the widths for a same J 

value with increasing K (as observed in Fig. 7). Moreover, for K values close to those of J, we 

observed both for measurements and calculations the decreasing of the widths. This trend is 

enhanced when K is increasing. The maximal average deviation between the various 

measurements or calculations presented in Fig. 8 does not exceed 5%, except for the 

transitions with K = 9 but the intensities of these transitions are very weak. This seems to 

indicate that the N2-broadening coefficients of CH3Cl do not present a significant vibrational 

dependence, confirming the very good consistency between the theoretical calculations 

presented in Section 4.2 for the ν1 and pure rotational band (see Table 3). In general, a good 

consistency is observed between our results and those from the literature. However, it can be 

observed that for high J values, our measurements seem to be systematically slightly higher 

than those from Ref. [8] but in our spectra these transitions are weak. Note that measurements 

in submillimeter and terahertz regions from Ref. [8] are more accurate than in the infrared 

region since the strong line overlapping existing in the 3.4 µm spectral region is avoided. It is 

also important to stress that the various measurements have been obtained with different 

techniques: Fourier transform spectroscopy in our study, tunable diode laser for Ref. [9-12], 

and a frequency-modulation chain and continuous-wave photomixing spectrometer for Ref. 

[8]. The agreement between theoretical calculations and measurements is very satisfactory. 

There is also a good agreement between the theoretical and empirical calculation, except for 

high K values (K ≥7) for which the difference is probably due to the lack of accurate 

measurement obtained for such K values.  



 

 For transitions with J greater than 55, no measurements has been found in the 

literature, so that our measurements performed using the SOLEIL synchrotron can only been 

compared to the theoretical calculation of Section 4.1. The comparison is presented in Fig. 9 

versus J. First of all, we can notice the strong scattering of the measurements performed using 

spectra recorded in SOLEIL for transitions with J ≥ 55 and K ranging from 0 to 12. This 

scattering is due to the very low signal-to-noise ratio (20 to 50) and to the strong overlapping 

of the transitions. Since the maximum K value is only equal to 15 for transitions with J ≥ 55, 

no K-rotational dependence can be observed. For that reason all measurements have been 

plotted in Fig. 9 with the same symbol for all K values. Consequently, an average value equal 

to (0.092 ± 0.009) cm-1.atm-1 has been obtained. This value is coherent with the experimental 

measurements from Ref. [8] at J equal 50 (see Fig. 8). A sample of the experimental 

measurements performed at SOLEIL is given in Table 5 (the complete Table is available as 

supplementary material). The semi-classical calculations performed for J = 50–70 are almost 

identical for K equal to 0 and 15 (see Fig. 9) and close to the average value of 0.092 cm-1.atm-

1, confirming the weak K-rotational dependence for the set of studied transitions. 

 

 

 

5. Conclusion 

 

Using a multispectrum fitting procedure, 612 measurements of N2-broadening coefficients of 

methyl chloride have been performed in the 3.4 µm region (ν1 band) at room temperature. An 

empirical model and semi-classical calculations have allowed reproducing the J-and K-

rotational dependences of these measurements. Comparisons with the results existing in the 

literature show a good agreement and confirm the J-and K-rotational dependences of our 

experimental data. The proposed empirical model enables a good prediction of broadening 

coefficients when no theoretical results are available. If necessary, a reliable prediction of line 

widths can be obtained by the semi-classical method used in the present work. These 

calculations demonstrate also a good agreement with the measurements for the pure rotational 

band realized on the Synchrotron SOLEIL, which ensures the possibility to predict the N2-

broadening coefficients for any CH3Cl transitions with an accuracy estimated to be around 

5% for transitions with J up to 70 and K up to 10. The global analysis of experimental and 



theoretical results argues in favor of no significant isotopic and vibrational dependences of 

CH3Cl-N2 line broadening coefficients. 
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Table 1: Experimental conditions and characteristics of the recorded spectra 

 
Unapodized apparatus function (for LADIR spectra) 
Nominal aperture radius              0.75 mm 
Effective aperture radius              0.80 mm  
Collimator focal length                418 mm 
 
Absorbing sample 
Natural CH3Cl   74.89 % of 12CH3

35Cl                                         
 23.94 % of 12CH3

37Cl 
Stated purity 99.9 %  
 
Broadening gas stated purity: 99.9% 
 
Experimental conditions 
S/N ratio ≈ 700-1000 for LADIR spectra (#1-7) 
               ≈ 20-50 for SOLEIL spectra (#8-11) 
___________________________________________________________________________ 
#          CH3Cl pressure     N2  pressure    Resolutiona       Absorption path      Temperature 
                (mbar)                         (mbar)            (cm-1)                     (cm)      (K) 
___________________________________________________________________________ 
1     0.0512     0                  0.008                 415 ±1            294.3 ±0.5 
2     0.1044     0                  0.008                 415 ±1                  293.5 ±0.5 
3     0.2538     0                  0.008                 415 ±1                  297.0 ±0.5 
4     0.3106  20.22              0.02                   415 ±1                  295.3 ±0.5 
5     0.2533  42.08              0.02                   415 ±1                  295.9 ±0.5 
6      0.2703  68.43              0.02                   415 ±1                  294.8 ±0.5 
7              0.2693    120.23                    0.02                   415 ±1                  295.4 ±0.5 
 
8              1.003                               0                0.002                1014±1   295.4 ±1 
9              1.008                           6.175             0.002                1014±1  295.5 ±1 
10            0.960                           9.890             0.002                1014±1  295.6 ±1 
11           1.008                          16.56               0.002                1014±1  295.6 ±1 
__________________________________________________________________________ 
a Resolution as defined by Bruker = 0.9/Maximum optical path  
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Table 2: 0
Ja  and 2

Ja  parameters (in cm-1.atm-1) obtained in this work to reproduce the J and K 
dependences of the N2-broadening coefficients. 
 
 

J 
0
Ja  2

Ja  
Fitted values Smoothed 

values 
Fitted values Smoothed 

values 
0 --- 0.1314 --- -- 
1 0.1300 0.1312 -4.38E-03 -4.16E-03 
2 0.1304 0.1293 -2.50E-03 -2.75E-03 
3 0.1291 0.1278 -1.57E-03 -1.73E-03 
4 0.1262 0.1265 -1.04E-03 -1.03E-03 
5 0.1252 0.1254 -6.55E-04 -5.65E-04 
6 0.1227 0.1243 -1.25E-04 -2.74E-04 
7 0.1231 0.1232 -2.13E-04 -1.09E-04 
8 0.1232 0.1221 -1.63E-04 -1.05E-04 
9 0.1221 0.1209 -3.07E-04 -1.02E-04 

10 0.1198 0.1197 -2.26E-04 -9.80E-05 
11 0.1181 0.1184 -1.05E-04 -9.50E-05 
12 0.1172 0.1170 -1.72E-04 -9.10E-05 
13 0.1154 0.1155 -1.81E-04 -8.80E-05 
14 0.1136 0.1141 -9.60E-05 -8.40E-05 
15 0.1133 0.1125 -1.21E-04 -8.10E-05 
16 0.1117 0.1110 -1.51E-04 -7.70E-05 
17 0.1093 0.1096 5.77E-06 -7.40E-05 
18 0.1090 0.1081 -8.44E-06 -7.00E-05 
19 0.1068 0.1068 -3.00E-05 -6.70E-05 
20 0.1033 0.1055 6.97E-05 -6.30E-05 
21 0.1030 0.1044 -1.36E-04 -6.00E-05 
22 0.1045 0.1033 -1.21E-04 -5.60E-05 
23 0.1027 0.1024 -6.50E-05 -5.30E-05 
24 0.0973 0.1015 -1.01E-05 -4.90E-05 
25 0.0971 0.1008 -1.08E-04 -4.60E-05 
26 0.0991 0.1002 6.80E-06 -4.20E-05 
27 0.0968 0.0997 -7.89E-06 -3.90E-05 
28 0.0970 0.0992 -2.24E-05 -3.50E-05 
29 0.0976 0.0988 -1.04E-05 -3.20E-05 
30 0.0978 0.0985 -4.33E-05 -2.80E-05 
31 0.0947 0.0981 -1.88E-05 -2.50E-05 
32 0.0973 0.0978 -2.35E-05 -2.10E-05 
33 0.0957 0.0974 9.13E-06 -1.80E-05 
34 0.0945 0.0970 3.42E-05 -1.40E-05 
35 0.0964 0.0966 -2.40E-05 -1.10E-05 
36 0.0947 0.0962 -6.46E-06 -7.00E-06 
37 0.0947 0.0957 -1.56E-05 -4.00E-06 
38 0.0949 0.0952 3.49E-05 0 
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Table 3: Comparison between theoretical calculations for N2-broadening coefficients (in 10-3 
cm-1.atm-1) obtained for the ν1 and the pure rotational bands (for K equal 3 and J ≤ 40).  
 

J  pure rotational 
band ν1 band 

3 113.81 113.81 
4 119.41 119.41 
5 121.53 121.53 
6 122.44 122.44 
7 122.71 122.72 
8 122.53 122.53 
9 121.95 121.96 
10 121.00 121.01 
11 119.72 119.73 
12 118.14 118.16 
13 116.32 116.34 
14 114.33 114.35 
15 112.26 112.28 
16 110.16 110.17 
17 108.11 108.12 
18 106.17 106.18 
19 104.36 104.37 
20 102.71 102.71 
21 101.21 101.22 
22 99.86 99.86 
23 98.65 98.65 
24 97.56 97.56 
25 96.58 96.59 
26 95.71 95.71 
27 94.93 94.93 
28 94.23 94.23 
29 93.62 93.62 
30 93.10 93.10 
31 92.67 92.66 
32 92.32 92.31 
33 92.06 92.05 
34 91.89 91.88 
35 91.79 91.78 
36 91.77 91.75 
37 91.79 91.78 
38 91.85 91.84 
39 91.94 91.92 
40 92.03 92.01 
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Table 4:Sample of measured and calculated N2-broadening coefficients for the ν1 band. 
 

                                   Assignment                                         Position                 
2Nγ                     

2N empγ                  
2N theoγ  

  ISO           Upper state               Lower state 
 242    7   1    E     6   1    E       2973.80671       0.120       0.124       0.124 
 241    7   1    E     6   1    E       2973.92316       0.123       0.124       0.124 
 242    7   2    E     6   2    E       2973.63957       0.122       0.124       0.123 
 242    5   3    A     6   3    A       2962.01191       0.128       0.122       0.122 
 241    5   3    A     6   3    A       2961.95110       0.123       0.122       0.122 
 241    7   3    A     6   3    A       2973.47840       0.120       0.122       0.122 
 242    7   3    A     6   3    A       2973.36179       0.121       0.122       0.122 
 242    7   4    E     6   4    E       2972.97326       0.117       0.120       0.120 
 242    7   5    E     6   5    E       2972.47383       0.119       0.118       0.116 
 241    7   6    A     6   6    A       2971.98138       0.120       0.115       0.106 
 … 
 241   39   0   A2    40   0   A1       2932.58114       0.094       0.095       0.092 
 242   39   0   A2    40   0   A1       2933.10233       0.100       0.095       0.092 
 242   39   1    E    40   1    E       2933.05643       0.107       0.095       0.092 
 241   39   1    E    40   1    E       2932.53899       0.100       0.095       0.092 
 242   39   2    E    40   2    E       2932.84369       0.099       0.095       0.092 
 241   39   2    E    40   2    E       2932.32363       0.088       0.095       0.092 
 242   39   3    A    40   3    A       2932.59316       0.097       0.095       0.092 
 241   39   3    A    40   3    A       2932.07456       0.094       0.095       0.092 
 241   39   4    E    40   4    E       2931.69791       0.092       0.095       0.092 
 241   39   5    E    40   5    E       2931.21973       0.100       0.095       0.092 
 241   39   6    A    40   6    A       2930.61662       0.096       0.095       0.092 
 242   39   6    A    40   6    A       2931.14761       0.103       0.095       0.092   … 

In Column 1, “241” and “242” refer to the CH3
35Cl and CH3

37Cl isotopic species, respectively (AFGL notation). Columns 2 to 7 give for the upper and lower states 
respectively, the J and K rotational quantum numbers and the symmetry type of the levels. Note that “A” stands for overlapping A1 ←A2 and A2 ← A1 transitions. 
Columns 8 give the experimental line positions (in cm-1). Columns 9-11 are respectively the measured, calculated by empirical law (see Section 4.1) and calculated 
by theoretical method (see Section 4.2) N2-broadening coefficients (in cm-1.atm-1) at 296K. The complete Table is available in supplementary material.  
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Table 5: Sample of experimental N2-broadening coefficients for the pure rotational band recorded at SOLEIL synchrotron. 
 

                                   Assignment                                               Position                           
2Nγ                      1SD 

  ISO           Upper state                    Lower state 
241      59 12   A         58 12  A          51.713485       0.064         0.031   
241      59 11   E         58 11  E          51.731007       0.082         0.031   
241      59  9   A         58  9  A          51.761755       0.075         0.006   
241      59  6   A         58  6  A          51.796286       0.093         0.003   
241      59  5   E         58  5  E          51.804799       0.095         0.004   
241      59  4   E         58  4  E          51.811738       0.093         0.004   
241      59  3   A         58  3  A          51.817191       0.097         0.003   
242      60  8   E         59  8  E          51.832289       0.080         0.024   
242      60  7   E         59  7  E          51.843609       0.086         0.018   
242      60  6   A         59  6  A          51.853522       0.098         0.008   
242      60  5   E         59  5  E          51.861932       0.098         0.009   
242      60  4   E         59  4  E          51.868802       0.098         0.008   
242      60  3   A         59  3  A          51.874176       0.092         0.004   
241      60 10   E         59 10  E          52.606995       0.105         0.017   
241      60  9   A         59  9  A          52.621698       0.092         0.006   
241      60  8   E         59  8  E          52.634946       0.082         0.007   
241      60  7   E         59  7  E          52.646724       0.097         0.006   
241      60  6   A         59  6  A          52.656892       0.091         0.003   
241      60  4   E         59  4  E          52.672561       0.106         0.004   
241      60  2   E         59  2  E          52.682003       0.091         0.005   
242      61  7   E         60  7  E          52.690506       0.104         0.021   
242      61  6   A         60  6  A          52.700358       0.095         0.006   
242      61  5   E         60  5  E          52.708844       0.098         0.010   
242      61  4   E         60  4  E          52.715901       0.090         0.009   
242      61  3   A         60  3  A          52.721320       0.093         0.005   
242      61  2   E         60  2  E          52.725171       0.097         0.008  … 

In Column 1, “241” and “242” refer to the CH3
35Cl and CH3

37Cl isotopic species, respectively (AFGL notation). Columns 2 to 7 give for the upper and lower states 
respectively, the J and K rotational quantum numbers and the symmetry type of the levels. Note that “A” stands for overlapping A1 ←A2 and A2 ← A1 transitions. 
Columns 8 give the experimental line positions (in cm-1). Column 9 is the measured N2-broadening coefficients (in cm-1.atm-1) at 296K. 1SD corresponds to the 
statistical deviation of the fitted broadening coefficients. The complete Table is available in supplementary material.  



Figure 1: 
In the upper panel, experimental absorption spectrum (#8, see Table 1 for experimental 
conditions) of CH3Cl recorded around 55 cm-1 using AILES beamline of SOLEIL 
synchrotron. This figure gives the K-branches for the two isotopologues CH3

35Cl and 
CH3

37Cl for J= 56 and 57 respectively. The significant irregular multiplicative channel 
spectrum can be modeled locally (on a small spectral range of around 0.14cm–1) as a 
background. In the lower panel, as comparison is presented an experimental absorption 
spectrum (#2, see Table 1 for experimental conditions) of CH3Cl recorded around 2981 cm-1 
in LADIR.  
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Figure 2: 
Comparison between ours results of effective radius of the beam for spectrum #8 and results 
for spectrum #1 from Ref. [19]. In open triangles, results of effective radius of the beam 
retrieved from water transitions. In solid triangles, results retrieved from water and C2H2 
molecules [19]. The continuous line (see polynomial function in section 3.2.) represents the 
rotational dependence of the effective radius of the beam used to calculate the apparatus 
function during the retrieval of broadening parameters. Stars represent the theoretical 
calculation using SOLEMIO and SRW models [20]. 
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Figure 3:  
The upper panel represents an example of the simultaneous fit of two transitions from 7 
experimental spectra (from lower to higher pressure, see Table 1) between 2931.17 and 
2931.37 cm-1. The lower panel represents an example of the simultaneous fit of 18 transitions 
from 4 experimental spectra (from lower to higher pressure, see Table 1) between 52.60 and 
52.74 cm-1 
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Figure 4: 
Experimental N2-broadening coefficients 

2

0
Nγ  vs. K² for different J values (4, 10, 19 and 28). 

The symbols represent the measured N2-broadening coefficients, the solid curve the 
calculation using the empirical model described in Section 4.1. Error bars corresponds to the 
statistical deviation (1SD) of the fit of the broadening coefficients. 
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Figure 5: 
Parameters a0

J deduced from the fit of the measured N2-broadening coefficients using Eq. [2]. 
The continuous line represents the smoothed values of these coefficients from Table 5. The 
error bars are 1SD. 
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Figure 6: 
Parameters a2

J deduced from the fit of the measured N2-broadening coefficients using Eq. [2]. 
The continuous line represents the smoothed values of these coefficients from Table 5. The 
error bars are 1SD. 
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Figure 7: 
K dependence of N2-broadening coefficients obtained using the empirical model described in 
Section 4.1. N2-broadening coefficients are displayed vs. rotational quantum number J for K 
values from 0 to 9.  
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Figure 8: 
J and K dependences measured and calculated for N2-broadening coefficients. Black open 
triangles represent the measured line widths from this work, black continuous line 
corresponds to the widths modelled by the algorithm described in Section 4.1, and blue 
continuous line indicates the calculations with the semi-classical method of Section 4.2. Red 
stars stand for the experimental values obtained in Ref. [9] and red dotted line represents the 
theoretical calculations from Ref. [9]. Blue solid circles symbolize the experimental values of 
Ref [8].  
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Figure 9: 
N2-broadening coefficients measured in the pure rotational band for J values between 55 and 
67 and K values between 0 and 12. A large dispersion is present due to low signal-to-noise 
ratio. The average value (continuous black line) is equal to (0.092 ± 0.009) cm-1.atm-1. The 
red and blue curves represent the values obtained from the theoretical calculation (see Section 
4.2) for J values between 53 and 70 and K values equal to 0 and 15 respectively. 
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