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Abstract  

Rovibrational absorption spectra of methyl chloride in the spectral region between 2800 and 

3200 cm-1 were recorded with a high-resolution Fourier spectrometer. A multispectrum fitting 

procedure was used to analyze 527 transitions of the ν1 band and to retrieve the self-

broadening coefficients for various J- and K-values with an estimated accuracy around 8%. 

Pure rotational transitions of CH3Cl in the submillimeter/terahertz region (0.2–1.4 THz) were 

also investigated using two complementary techniques of frequency-multiplication and 

continuous-wave photomixing. 43 pure rotational self-broadening coefficients were extracted 

with the accuracy between 3 and 5%. The whole set of measured values was used to model 

the J- and K-rotational dependences of the self-broadening coefficients by second-order 

polynomials. In addition, semi-classical calculations were performed, based on the real 

symmetric-top geometry of the active molecule, an intermolecular potential model including 

not only the dominant electrostatic but also the short-range forces, as well as on an exact 

classical treatment of the relative translational motion of the colliding partners. Comparison of 

all experimental and theoretical results shows similar rotational dependences and no 

significant vibrational dependence, so that extrapolations to other spectral regions should be 

straightforward. 



1. Introduction 

 

Methyl chloride is one of the most abundant organohalogen, anthropogenic or natural 

in the Earth’s atmosphere, so that its quantification and monitoring are of great importance for 

atmospheric studies [1-4]. It has a rather strong signature around 3000 cm-1 (ν1 band region) 

which was recently used by the Atmospheric Chemistry Experiment (ACE) satellite mission 

to produce the first global distribution of methyl chloride in the upper troposphere and 

stratosphere [5]. Prior to a precise quantification of CH3Cl in the atmosphere, the accurate 

determination of line profile parameters of CH3Cl is required. These parameters have to be 

determined from laboratory experiments. For the symmetric top CH3Cl, numerous 

measurements have to be performed in order to reach transitions with various J and K values 

and obtain the rotational J- and K-dependences of line broadening coefficients.  

 

Self-broadening coefficients of methyl chloride infrared transitions have been 

previously studied experimentally for the ν2, 2ν3 and ν5 bands [6] as well as for the ν3 band 

[7-9]. In Ref. [6], Chackerian et al. recorded high-resolution Fourier Transform spectra and 

retrieved 423 self-broadening coefficients exhibiting well-pronounced dependences on the 

quantum number J, but no dependence on the quantum number K. In Refs. [7-9] a diode laser 

spectrometer characterized by a high signal-to-noise ratio but limited to a narrow spectral 

range was used to obtain 29 self-broadening coefficients. In Ref. [9] semi-classical 

calculations were also performed to evaluate the J-and K-dependences of self-broadening 

CH3Cl coefficients at 200 and 296K but a strong over-estimation of calculated line widths 

was stated. The determination of self-broadening coefficients of CH3Cl lines from pure 

rotational transitions using electronic sources was limited to old studies focused on the lowest 

energy (J = 0-1) transition [10]. Using far infrared lasers, some measurements [11] were 

performed on isolated terahertz (THz) lines but without any possibility to study the J and K 

rotational dependences. More recently, Harde et al. [12] via THz coherent transients and THz 

time-domain spectroscopy were able to study the J dependence of collisional-broadened 

CH3Cl line-widths. Limited by the resolution of the spectrometer, the J dependence was 

retrieved with measurements at pressures higher than 75 Torr where strong nonlinear 

broadenings are observed. 

 

This work is dedicated to the study of room-temperature CH3Cl self-broadening 

coefficients in different spectral regions and by various experimental techniques. Self-



broadening coefficients have been measured in the “Laboratoire de Dynamique, Interactions 

et Réactivité” (LADIR) for transitions of ν1 band around 3000 cm-1 from the analysis of 

infrared Fourier-transform (FT) spectra. Self-broadening coefficients of pure rotational 

transitions have also been measured in the “Laboratoire de Physico-Chimie de l’Atmosphère” 

(LPCA) in terahertz region using a continuous-wave photomixing spectrometer and in the 

“Laboratoire de Physique des Lasers, Atomes et Molécules” (PhLAM) using a frequency-

modulation spectrometer. The observed J-and K- rotational dependences are also modeled by 

a second-order polynomial with empirical coefficients deduced from fitting to the bulk of 

obtained experimental data. In addition, semi-classical calculations of self-broadening 

coefficients are performed in order to compare with the empirical model but mainly to be able 

to calculate self-broadening coefficients for transitions with high K and J values that have not 

been observed. 

 

In the next section the experimental conditions and brief descriptions of the 

instrumental setups used in the present work are presented. The retrieval of self-broadening 

coefficients is described in Section 3. The modeling of the measurements by an empirical 

polynomial function and the details of the semi-classical calculations are presented in 

Sections 4 and 5, respectively. Section 6 is dedicated to comparisons of our results with those 

available in the literature. The final section outlines the general conclusions and some 

perspectives of the present study. 

 
 
2. Experimental conditions 

2.1 Infrared Fourier transform spectrometer 

Fourier transform spectra have been recorded between 2800 and 3200 cm-1 using the 

rapid scan Bruker IFS 120 HR interferometer of the LADIR. The experimental conditions are 

summarized in Table 1. This set of spectra have been already analyzed [13] with a 

multispectrum fitting procedure to measure line positions and intensities of around 500 

transitions in the 3.4 µm spectral region. More details concerning the experimental setup and 

conditions can be found in Ref. [13].   

 

2.2 THz photo-mixing spectrometer 



A photomixing CW-THz spectrometer was also used at LPCA to record CH3Cl spectra 

between 0.8 and 1.4 THz corresponding to 31 ≤ J ≤ 50. This spectrometer is based on an ultra 

fast photomixer converting a beating between two near infrared laser diodes into the THz 

domain. This opto-electronic frequency-conversion provides a THz radiation at the frequency 

difference between the two infrared sources keeping their spectral purities. The diodes were 

locked onto a frequency comb generated from a femtosecond laser itself locked onto a 

frequency standard (provide by a GPS). The synthesized THz source exhibits metrological 

characteristics (a relative frequency accuracy of 10-8 and an apparatus function in the order of 

30 kHz FWHM). More details can be found in [14,15]. Different stainless steel absorption 

cells, with various lengths (25, 65, 85, 120 cm), equipped with PTFE windows were used 

depending on the line intensity (see Table 1). For J = 31, a room temperature Schottky diode 

detector (VDI). For the other values of J, the detection has been used with a liquid He-cooled 

bolometer (QMC Instruments). The spectra were recorded at room temperature (293 ± 1 K). 

The pressure was measured with a 1 mbar full scale pressure gauge (Alcatel ADS-1004) with 

a stated accuracy of 0.25%. A total of 130 cw-THz spectra in a 75-1000 mTorr pressure range 

were recorded. More details on the experiments are available in Refs. [16,17] dealing with the 

O2 and N2 broadening coefficient measurements of CH3Cl.  

 

2.3 Millimeter frequency-modulation spectrometer 

The measurements on the J = 67 rotational line of 12CH3
35Cl at 186 GHz were 

performed with the PhLAM frequency-modulation spectrometer that has been described in 

details in previous papers [17,18], so we only recall its principal features. The electromagnetic 

(e.m.) source consisted of a synthesizer (Agilent E8257D) locked onto a GPS receiver and 

followed by an active sextupler (Spacek Inc.). The e.m. power was detected by an InSb liquid 

He-cooled bolometer (QMC Instruments) and the corresponding signal, demodulated by a 

lock-in amplifier (Ametek 7270DSP) operating at twice the modulation frequency (f = 10.5 

kHz), was stored in a computer which managed all the spectrometer.  

The absorption cell was a stainless tube having a 1.1 m length and a 4 cm diameter and 

set at room temperature. Gas pressure was measured with a 1-Torr capacitance manometer 

(MKS Baratron 627A) having a 0.1 mTorr resolution and a stated reading accuracy of 0.12%. 

The CH3Cl sample (Aldrich) in natural abundance had a commercial purity better than 99.9% 

and was used without further purification. The experimental conditions are summarized in 

Table 1. 



 
 
3. Measurements of self-broadening coefficients  

 Measurements of 12CH3Cl transitions have been obtained in the pure rotational region 

and for the ν1 band around 3.4 µm. The hyperfine structure was taken into account for pure 

rotational transitions but not in to the IR region where it could be neglected. Because of the 

nuclear spin I = 3/2 of the 35Cl or 37Cl atom, rotational levels are split due the interaction of 

the chlorine quadrupole moment and the molecular field gradient. Each K-component is split 

into 12 quadrupolar components, at least for rotational lines considered in this work that 

involve sufficiently large J-values. Defining the total angular momentum F


 as IJF


+= , 

the four main components related to ∆F = +1 are of comparable intensities, about 1/4 of the 

unperturbed line intensity, and are better resolved as J is smaller and K is higher. In contrast, 

∆F = 0 component intensities are quite lower and become much lesser as J gets larger 

whereas the ∆F = -1 components are always practically negligible. In the pure rotational band 

case, this hyperfine structure has already been studied in details [19], and was taken into 

account in photomixing and frequency-modulation measurements of this work. Furthermore 

and following our previous studies on the CH3Cl relaxation induced by N2 and O2 [16,17] or 

according to our conclusions on the H2-induced relaxation [18, see also 20,21], all hyperfine 

components of a given (J, K) line were considered as having the same collisional broadening. 

In the ν1 rovibrational band case, it can be assumed the total frequency spreading of the 

quadrupolar structure related to ∆F = +1 components is comparable to that observed for the 

pure rotational band, that is a ≈ 1.10-3 cm-1 maximum value observed for the J = K = 2 line, 

and much lesser for higher J-values [19]. Consequently, taking into account of the large 

Doppler effect (≈ 3.10-3 cm-1 HWHM), rovibrational (J, K) lines were considered as single 

lines. Note that in the following of the text, figures and tables, J and K refer to the quantum 

numbers associated to the lower state of the transition.  

 

3.1 Infrared measurements with the Fourier transform spectrometer 

 In the IR spectral region, measurements have been performed for 527 lines with J and 

K values ranging from 0 up to 42 and from 0 up to 11, respectively. A multispectrum fitting 

procedure [22] has been used to adjust the line profiles of transitions simultaneously on the 

various experimental spectra of Table 1. Measurements of line positions and intensities have 



already been presented in Ref. [13]. For all spectra, a Voigt profile was used and no deviation 

from this profile has been observed in the residuals of the fits as shown in Fig. 1 of Ref. [13]. 

More details concerning the fitting procedure applied for these spectra can be found in Ref. 

[13]. The self-broadening coefficients were measured with an estimated accuracy around 8%, 

assuming the effects of the collisions similar for CH3
35Cl and CH3

37Cl: 

 35 35 37 37 37 35 35 37
3 3 3 3 3 3 3 3CH Cl/CH Cl CH Cl/CH Cl CH Cl/CH Cl CH Cl/CH Cl selfγ = γ = γ = γ = γ . (1) 

No temperature correction has been done since temperatures of all spectra are close to room 

temperature.  

The whole set of 527 experimental self-broadening coefficients is given as 

supplementary material and a sample of these measurements is given in Table 2. These self-

broadening coefficients have been used to adjust an empirical model described in Section 4.1. 

 

3.2 THz measurements with the photo-mixing spectrometer  

Transitions of the most abundant CH3
35Cl isotopologue have been studied for J-values 

ranging from 31 up to 50 and for K-values up to 12. An example of three K components of the 

J = 40 line recorded around 36.18 cm-1 region (1.087 THz) at four different pressures is 

presented in Fig. 1. Each set of measurements consisted of the use of 5-6 experimental spectra 

recorded at different pressures that were simultaneously adjusted with a similar multispectrum 

fitting procedure [23]. As explained previously, the CH3Cl hyperfine structure was taken into 

account in the submillimeter/THz spectra to accurately retrieve the self broadening 

coefficients [16,17,24]. For each (J, K) line, we have considered the four most intense 

hyperfine components ∆F = +1; the other hyperfine components with ∆F = 0 and -1 with 

weaker intensities have been ignored. The lines were then modeled with a sum of four Voigt 

profiles with the Gaussian line-width fixed to the Doppler value and the Lorentzian line-width 

fitted to the profile. As quoted before, we have assumed identical self-broadenings for the 

four ∆F = +1 components of a given K-value. Dealing with the intensities, only the strongest 

hyperfine component was adjusted, the intensities of the three weaker lines being fixed to the 

HITRAN2008 values [25]. The frequencies were adjusted constraining the three frequency 

differences to the JPL data [19]. Lastly, the observed spectrum was fitted introducing the 

Beer-Lambert law and the base line was approximated with a second order polynomial. As a 

result, signal to noise ratios between 40 and 90 were obtained. The standard deviation of the 

retrieved self-broadening parameters was calculated to 2.5% of broadenings for the K = 0–6 



components and 4.3% for K = 7, 9 and 12 components. Finally, the accuracy of these 

measurements takes into account the measurement precision and the possible biases (pressure 

gauge accuracy (1%), gas purity (0.5%), gas contamination (0.3%), temperature variation 

(0.3%), zero transmission determination (0.1%)), quadratically added; all the details 

concerning the evaluation of the systematic errors are given in [16]. We estimated the 

accuracy to 3% for the self-broadening coefficients of the K = 0–6 components and to 5% for 

the K = 7, 9 and 12 ones. The results are presented in Table 3.  

 

3.3 Millimeter measurements with the frequency-modulation spectrometer 

Due to the large intensity of CH3
35Cl lines in the pure rotational region [19] and taking 

account of the cell length, the self broadening could be studied with the frequency-modulation 

technique for the J = 67 transition at 186 GHz only. As an example, the corresponding 

absorption spectrum recorded at a pressure of 19.9 mTorr is presented in Fig. 2. In addition to 

the second derivative appearance of line shapes due the frequency modulation technique, this 

spectrum is quite complex because of the hyperfine structure due to the 35Cl atom. Each 

K-component is split into 4 main quadrupolar hyperfine components corresponding to ∆F = 

+1, and smaller ones corresponding to ∆F = 0, the ∆F = -1 components having a negligible 

intensity. Optical thicknesses of main hyperfine components being as large as about 0.18-0.25 

for K = 0-3 and 0.06-0.11 for K = 4-6, the optically thin sample approximation is not valid 

and the Beer-Lambert law had to be considered. This was done with line intensities fixed at 

their theoretical values obtained from Ref. [19] since the frequency modulation technique did 

not allowed an absolute determination of the experimental absorption. In this purpose, 

observed spectra were fitted using an extension of the code used in Ref. [18]. In a first step, 

the total absorbance A(ν) was computed as the sum of the absorbance contributions aj(ν) 

corresponding to the different hyperfine j-components, which allowed for a determination of 

the sample transmission T(ν) = exp [ - A(ν)]. In a second step, the signal S(ν) detected with 

the 2f-frequency modulation technique used was obtained from a generalization of Dore 

method [18,26]. More precisely, let us define the sample correlation function Θ(τ), that is the 

time domain response of the sample after a pulse excitation taking place at time τ = 0, which 

is given by the Fourier transform of T(ν). Then, the detected signal S(ν) is proportional to the 

real part of a Fourier transform written as in Ref. [18]: 



  ( ) ( ) ( )[ ] ( ) ( )
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∞
τντπτνπτπντπτΘν d2exp2cos2/2sinc2Je 20

imS mm , (2) 

where J2[x] stands for the second-order Bessel function, m and νm represent the modulation 

depth and frequency, respectively, and sinc(x) means sin(x)/x. 

  According to above discussions, experimental spectra have been considered as a 

superposition of independent Voigt profiles with a same relaxation rate for a given K-value. 

Line amplitudes were fixed at their theoretical values whereas their frequencies were left 

adjustable in so far as the spectral resolution was sufficient. Finally, Doppler broadening as 

well as modulation depth and frequency were fixed at values corresponding to experimental 

conditions and, as usual, fits included adjustments of a scaling factor and a linear base line.  

  Figure 2 shows the result of a fit performed on the J = 67 transition at 186 GHz. A 

rather good agreement is obtained for the whole spectrum, namely for the K = 4-6 

components. From 5 records with pressures ranging from 20 up to 100 mTorr, the linear 

dependence on pressure of the collisional broadening of each K-component has been 

analyzed: corresponding results are reported in Table 3.  

  Although it is out the scope of the present paper, it is worth noting that the K = 5 and 6 

components exhibit clear departures from the Voigt profile characteristic of line narrowing 

effects [27]. According to the large values of corresponding broadening parameters (from 310 

up to 480×10-3 cm-1.atm-1, that is at least 10 times larger than the kinetic diffusion parameter 

βkin ≅ 33 10-3 cm-1.atm-1), it can be claimed [27-29] that Dicke effect plays no role but that 

these features result nearly exclusively from the speed dependence of relaxation rates. 

However, such a study could not been done in details because of an insufficient signal to 

noise ratio.  

 
4. Empirical modeling of experimental measurements 

The large scale of measurements coming from various experimental setups is coherent 

and shows no vibrational dependence and similar rotational dependences (see Figs. 3-5). The 

whole set of measurements presented in Section 3 (see Table 3 and supplementary data) has 

been used to generate empirical coefficients that allow to reproduce the experimental trends of 

the J and K rotational dependences. This extensive set of measured self-broadening 

coefficients, obtained for values of K from 0 to 12 and for J values from 0 to 50 allowed the 

accurate study of the rotational J and K dependences. Since no systematic discrepancy has 



been observed for self-broadening coefficients of the various sub-branches, all the 

measurements have been analyzed together taking into account only the rotational quantum 

numbers J and K of the lower state of the transitions. 

This empirical model was previously used in works on CH3Br [30] and CH3Cl [31] to 

describe the K-dependence for transitions having same the J value. Each set of broadening 

coefficients characterized by the same J value is fitted with a polynomial expansion of the 

second order in K (fixing the first-order term to zero).  

 220)( KaaK JJJ +=γ . (3) 

This model is then applied for all J values measured. Example of the fit of the K 

dependence for J = 6, 10, 23, 28, 31 and 50 transitions is given in Fig. 3.  The two coefficients 
0
Ja  and 2

Ja  obtained for each set of same value of J have then been plotted versus J in Fig. 4, 

and are given together with their smoothed values in Table 4. The use of THz and millimeter 

measurements together with IR measurements allowed to improve the model especially for 

high J values.  

 
 
5. Semi-classical calculations  

The quite high value of the CH3Cl dipole moment leads to strong long-range 

interactions between the active and perturbing molecules. For such molecular systems the 

usual line-width expression [32] 
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(n is the number density of perturbing particles, v  is the mean thermal velocity, b is the 

impact parameter further replaced by the distance of the closest approach rc, S2 are the 

second-order contributions to the scattering matrix) and the modified formula [33] 
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(performing the average 〈…〉J2 on the perturber’s rotational states J2 as the cumulant average 

in order to insure a correct application of the cumulant expansion) are expected to give 

noticeably different results [34]. In order to check this point, we have used both Eqs (4) and 

(5) in our calculations. 

 



 When the exact-trajectory model [35] is chosen to describe the relative translational 

motion in the field of an isotropic potential, the theoretical expressions of the real parts of the 

S2 terms for two symmetric tops of CH3X-type can be either deduced from the general 

formulae [36] for two asymmetric colliders or calculated directly from the rotationally 

invariant representation of the intermolecular interaction potential 
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 are the Clebsch-Gordan coefficients and the radial potential components )(21

21
rV kk
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contain contributions from various kinds of intermolecular interactions (electrostatic, 

induction, dispersion, short-range repulsion). In the present work we have considered l1 ≤ 2 

and l2 ≤ 2 and composed the potential as a sum of electrostatic (e) and pairwise atom-atom (a-

a) interactions. For the electrostatic terms we have included the leading dipole-dipole, the 

dipole-quadrupole and the quadrupole-quadrupole terms for which k1 = k2 = 0: 
eeeee VVVVV 00

224
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00 +++=  (with the numerical values μ = 1.89592 D for the 

dipole moment and Q = 1.23 DÅ for the quadrupole moment of CH3Cl [37]). For the atom-

atom terms the radial potential components are determined by the interatomic parameters dij 

and eij (which are connected to the Lennard-Jones parameters εij, σij of the atoms i and j 

via 124 ijijijd σε= , 64 ijijije σε= ) and by the orientations of each atom ji 2/1Ω′  in the 

corresponding molecular frame:  
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(explicit forms of the functions 6
21 lllf , 12

21 lllf  coming from the two-center expansion of the 

interatomic distances in the laboratory-fixed frame can be found, for instance, in Ref. [16]). 

With the anisotropic potential of Eq. (6), the second-order contribution composed of three 

terms S2,i2, S2,f2, S2,f2i2 is given by 
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      (9) 

(in the second equation k1 = 0 for l1 ≤ 2 since this term is diagonal on the rotational quantum 

numbers of the active molecule). The so-called resonance functions 21

21

kk
lllf  have the same form 

as those given in Ref. [16] for CH3X-Y2 but with the second (zero) superscript of the radial 

potential components replaced by k2. The coefficients D(JiJfKiKf ;ρl1) = 
2/1)]12)(12[(2)1( ++− +

fi
JJ JJfi ( )( ) );( 100 11

lJJJJWCC fifi
KJ

lKJ
KJ

lKJ
ff

ff

ii

ii
ρ  depend in particular on 

the Racah coefficients W(JiJfJiJf;ρl1). To govern the classical trajectories, the isotropic 

potential is traditionally taken in the Lennard-Jones form with the parameters ε = 368.4 K, 

σ = 3.584 Å [38]. 

 We have started our calculations with Eq. (4). Since the electrostatic dipole-dipole 

interactions yield clearly dominant contribution to the collisional broadening of CH3Cl-

CH3Cl lines [9] we have studied first the line widths resulting solely from this interaction, in 

order to establish the calculation parameters (maximal included values of the intermolecular 

distance, of the resonance parameter, etc.) required for the converged results. An example of 

calculated K-dependences is given in Fig. 6 for the transition J = 4→5. As can be seen from 

this figure, the intermolecular distances should be taken into account up to their very high 

values and the line widths are nearly converged with the maximal value of 35 Å. The 

convergence with respect to the resonance parameter is insured even for kc max = 20 but in our 

calculations we kept kc max = 25. Further we have tested the role of the other dipole-

quadrupole and quadrupole-quadrupole electrostatic contributions (the influence of these 

interactions for a maximal intermolecular distance of 15 Å can be also seen in Fig. 6). These 

calculations show that adding dipole-quadrupole interactions ( 00 00
123 213

e eV V+ ) increases the line 

broadening very slightly and that the quadrupole-quadrupole interaction ( 00
224

eV ) is completely 

negligible. Therefore, for final calculations we have kept only three terms eV 00
112 , eV 00

123 , eV 00
213  

in the electrostatic part of the potential. 

Figure 7 shows the J-dependence of line broadening calculated for K = 0 and K = 7 

with these three electrostatic terms for various maximal values of the intermolecular distance. 

It can be stated from this figure that the electrostatic interactions at large intermolecular 

distances contribute significantly to the line widths at middle J-values (as well as at very low 

J-values) and even overestimate the line broadening for these J. This overestimation can be 



explained by the approximate character of classical trajectories governed solely by the 

isotropic part of the interaction potential and accumulation of errors when doing trajectory 

integrations up to very large distances required for the dipole-dipole interaction. Although the 

general behaviour of the experimentally observed J-dependences is correctly reproduced by 

the calculations with the electrostatic potential, the underestimated line broadening clearly 

visible in Fig. 7 for very high J values (comparison with the measurements in the pure 

rotational band) seems to indicate (see Refs. [17,39]) that the long-range part of the 

intermolecular interactions is not sufficient and that the short-range forces should be included. 

We have completed therefore the leading eV 00
112  term by the corresponding atom-atom 

interaction aaV −00
112  (other atom-atom terms were supposed to be negligible) and recalculated 

the line broadening coefficients. No observable change in the calculated values has been 

stated (Fig. 7), which means that the short-range interactions are of minor importance for the 

self-broadening of methyl chloride lines. 

Since the converged line widths visibly overestimate the line broadening for middle J- 

values (Fig. 7), we have additionally sought for alternative models for the isotropic potential 

which governs the relative molecular trajectories and influences the second-order 

contributions S2. Using the code available for the atom-atom radial potential components we 

have computed the isotropic potential issued from the atom-atom interactions. Figure 8 shows 

a comparison of this new (numerical) potential with the previous Lennard-Jones one. Despite 

the fact that in the region of small intermolecular distances r ≤ 5.5 Å these potentials differ 

significantly, the line widths calculated with the numerical potential have practically the same 

values as that previously obtained with the Lennard-Jones model. It means that again only the 

long-range interactions are important for the CH3Cl-CH3Cl system. 

To resolve the problem of line-broadening overestimation (already mentioned in 

Ref. [9]) we have employed a solution proposed recently by Gomez et al. [40] which consists 

in applying a cut-off procedure on the maximal value of the intermolecular distance included 

in computations. As can be seen from Fig. 7, for the K-values studied in the present work a 

good agreement with the experimental data seems to be achieved for this cut-off realised at 

22 Å. 

The final point of our calculations is a comparison of line broadening coefficients 

computed with Eqs. (4) and (5). When Eq. (5) is used to calculate the line broadening with the 

cut-off at 22 Å, the computed values become too high and too distant from the experimental 

points, as it is shown in Fig. 9 for K = 0. If the cut-off is realized at shorter intermolecular 



distances, the maximum of broadening clearly observed on the experimental points is more 

and more smoothed on the theoretical curves, and the calculated J-dependences become 

completely unrealistic. We have to conclude therefore that, despite a correct use of the 

cumulant expansion, the modified line widths expression of Eq. (5) leads to very strongly 

overestimated self-broadening coefficients which can not be corrected even by an artificial 

cut-off procedure. Consequently, it is Eq. (4) which is retained for final calculations (with the 

cut-off at 22 Å) given as supplementary data for J and K quantum numbers ranging from 0 to 

60 and 0 to 25, respectively. 

 

6. Comparison of results and discussion  

The recorded high-resolution spectra of the ν1 band have allowed the measurements of 

527 self-broadening coefficients for 0 ≤ J ≤ 42 and 0 ≤K ≤ 11 (See Table 2 and supplementary 

data). For the pure rotational band, 43 self-broadening coefficients have been retrieved (see 

Table 3). Comparisons between the measurements, the empirical modeling and the semi-

classical calculations are presented for each set of transitions with same value of K in Fig. 5 

together with the measurements of Ref. [8]. The whole set of measurements is given in Fig. 

10 with the empirical J-dependence present in HITRAN08 [25] coming from Ref. [6]. For 

each set of transitions with same K-value, a similar trend of the self-broadening coefficients is 

observed, with the maximum broadening occurring at J = 16. However, contrary to the CH3Br 

[30] case, a strong increase of self-broadening coefficients is observed at low J-values (0–2) 

for K = 0 or 1.  

With respect to the measurements issued from different experimental techniques, the 

agreement between results obtained for transitions of the ν1 band and for pure rotational 

transitions is very good. The various measurements are consistent except maybe for the J = 6 

measurements for which a systematic discrepancy is observed between the (FT) and (FM) 

results. The measurements of Ref. [7] for 29 transitions of the ν3 band have been plotted in 

Fig. 5, showing a very good consistency between the various measurements. No significant 

vibrational dependence has been observed allowing thus to extrapolate our measurements and 

calculations to other vibrational bands of CH3Cl. For the ν1 band, measurements have been 

obtained for both CH3
35Cl and CH3

37Cl isotopologues showing no significant discrepancy 

between the two isotopologues. 

As seen in Fig. 5, both the empirical model described in Section 4 and the semi-

classical calculation developed in Section 5 are in good agreement with the measurements.  



However, it can be notice a small systematic discrepancy for high J-values (>35) between the 

empirical model and the semi-classical calculation. Deviations are also observed when K is 

close to J. 

 The high dispersion of the measurements presented in Fig. 10 is not due to the 

experimental uncertainties but to the significant K-dependence of the self-broadening 

coefficients which is especially pronounced for K approaching J. As it can be observed in Fig. 

5, the comparison between results obtained by different experimental methods shows a good 

agreement, with maximal average deviation not exceeding 10%.  

 The present results showing and modelling J- and K-rotational dependences of the 

self-broadening coefficients of CH3Cl make obvious that the polynomial expression of 

Chackerian et al. [6] that did not took into account the K-rotational dependence could be 

replaced in HITRAN08 database by the results of the present work. 

 

 

7. Conclusion 

 

Extensive measurements of CH3Cl self-broadening coefficients of transitions 

belonging to the ν1 band (2930–3001 cm-1) and to the rotational band (5–45 cm-1) have been 

performed in order to study both the rotational and vibrational dependences. Two different 

experimental techniques, using CW-THz photomixing and frequency-multiplication 

spectrometers, allowed to achieve measurements for pure rotational transitions, whereas the 

infrared region was studied with a FT spectrometer. No vibrational nor isotopologue 

dependences has been observed, but similar J- and K- rotational dependences were observed 

for pure rotational transitions and transitions of the ν1 band. 

For practical use, an empirical polynomial model has been proposed whereas a semi-

classical approach, involving exact classical trajectories, an interaction potential with short-

range forces, and a rigorous treatment of the active molecule as a symmetric top, has been 

used to calculate self-broadening coefficients for J and K quantum numbers ranging from 0 to 

60 and 0 to 25, respectively. Because of very strong dipole-dipole interactions in the CH3Cl-

CH3Cl system, the semi-classical results have had to be corrected via an artificial cut-off 

procedure in order to match the experimental data near the maximum of broadening. It will be 

very interesting to extend this study to other halogenated CH3X compounds with (X=F, Br, I). 

By a systematic comparison of the self-broadening coefficients, we should particularly be able 



to understand the influence of the halogen nucleus and the molecular field gradient on the 

rotational J and K dependences. 
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Table 1:  

Experimental conditions and characteristics of the recorded spectra.  

 

___________________________________________________________________________ 
Absorbing sample      
Natural CH3Cl   74.894 % of 12CH3

35Cl 
 23.949 % of 12CH3

37Cl 
Stated purity      99.9 % (LADIR, PhLAM); 99.5% (LPCA) 
___________________________________________________________________________ 
LADIR (FT spectroscopy) 

Unapodized apparatus function 
Nominal aperture radius              0.75 mm 
Effective aperture radius              0.80 mm  
Collimator focal length                418 mm 
 
Experimental conditions 
___________________________________________________________ 
#          CH3Cl pressure        Resolutiona               Absorption path       
                (mbar)                            (cm-1)                          (cm)                      
___________________________________________________________ 
1     0.5420                        0.008                       30.00 ± 0.05                
2     0.6210                        0.008                       30.00 ± 0.05                
3b     0.7020                        0.008                       30.00 ± 0.05                
4     1.51                        0.008                       30.00 ± 0.05                
5     3.30                        0.01                         30.00 ± 0.05                
6     7.10                        0.01                         30.00 ± 0.05                
____________________________________________________________ 
a Resolution as defined by Bruker = 0.9/MOPD (Maximum Optical Path Difference). 
b For this spectra no optical filter has been used (see text). 
___________________________________________________________________________ 
LPCA (PM spectroscopy) 

Modulation amplitude: 350 Hz (mechanical chopper) 
Detection time constant: 300 ms 
Frequency steps: 800 kHz at a 1 Hz rate 
CH3Cl pressures: 0.1 Torr < P < 1 Torr 
Absorption path: 25.0 ± 0.2 cm (J = 31) 
      65.0 ± 0.2 cm (J = 37 and J = 40) 
      85.0 ± 0.2 cm (J = 45) 
     120.0 ± 0.2 cm (J = 50) 
___________________________________________________________________________ 
PhLAM (FM spectroscopy) 

Modulation frequency: 10.5 kHz 
Modulation amplitude: 180 kHz 
Detection at twice modulation frequency: 21 kHz 
Detection time constant: 10 ms 
Frequency steps: 15.6 kHz at a 30 Hz rate 
CH3Cl pressures: 19.9, 39.3, 61.7, 81.6 and 104.6 mTorr 
Absorption path: 110.0 ± 0.5 cm 
___________________________________________________________________________ 
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Table 2: 
Sample of self-broadening coefficients measured for transitions of the ν1 band. 
 

                              Assignment                           Position              Obs             Fit error        Calc1          %          Calc2          % 

  ISO         Upper state        Lower state 
 
 241    6   2    E    7   2    E     2961.34247    0.4188     0.0032    0.423   -1.0    0.443     -5.5 
 242    6   2    E    7   2    E     2961.41703    0.4391     0.0029    0.423    3.7    0.443     -0.9 
 241    6   1    E    7   1    E     2961.50876    0.3560     0.0196    0.432  -21.3    0.448    -20.5 
 242    6   1    E    7   1    E     2961.58341    0.4680     0.0040    0.432    7.7    0.448      4.5 
 242    6   0   A1    7   0   A2     2961.63878    0.4265     0.0049    0.435   -2.0    0.449     -5.0 
 241    5   3    A    6   3    A     2961.95114    0.4164     0.0016    0.385    7.5    0.418     -0.4 
 242    5   3    A    6   3    A     2962.01196    0.3720     0.0027    0.385   -3.5    0.418    -11.0 
 242    5   1    E    6   1    E     2962.45511    0.4252     0.0032    0.418    1.7    0.435     -2.3 
 241    4   2    E    5   2    E     2963.11400    0.4036     0.0027    0.392    2.9    0.423     -4.6 
 242    4   2    E    5   2    E     2963.16123    0.3668     0.0066    0.392   -6.9    0.423    -13.3 
 241    3   3    A    4   3    A     2963.72286    0.3524     0.0031    0.347    1.5    0.394    -10.6 
 242    3   3    A    4   3    A     2963.75643    0.3338     0.0067    0.347   -4.0    0.394    -15.3 
 241    3   2    E    4   2    E     2964.00002    0.3864     0.0032    0.384    0.6    0.423     -8.7 
 242    3   2    E    4   2    E     2964.03370    0.3223     0.0081    0.384  -19.1    0.423    -23.8 
 241    3   1    E    4   1    E     2964.16641    0.4039     0.0037    0.407   -0.8    0.437     -7.6 
 241    2   2    E    3   2    E     2964.88629    0.3890     0.0068    0.385    1.0    0.420     -7.4 
 242    2   2    E    3   2    E     2964.90620    0.3636     0.0081    0.385   -5.9    0.420    -13.4 
 241    1   1    E    2   1    E     2965.93925    0.4278     0.0235    0.440   -2.9    0.447     -4.3 
 242    1   1    E    2   1    E     2965.94577    0.4702     0.0112    0.440    6.4    0.447      5.2 
 241    1   0   A2    2   0   A1     2965.99463    0.4764     0.0190    0.454    4.7    0.461      3.3 
 

In Column 1, ISO refers to the CH3
35Cl (241) and CH3

37Cl (242) isotopic species (AFGL notation used in HITRAN). Columns 2 to 7 give the 
assignment (J, K and symmetry type) of the upper and lower state of transitions. Note that “A” stands for overlapping A1 ←A2 and A2 ← A1 
transitions. Column 8 corresponds to the experimental line positions (in cm-1). Columns 9-10 are the measured self-broadening coefficients and their 
corresponding fitting uncertainties in cm-1.atm-1 at 296K. Column 11 and 13 are the calculated broadening coefficients (in cm-1.atm-1 at 296K) 
obtained respectively with the empirical model (section 4) and the semi-classical model (section 5). The columns 12 and 14 represent the differences 
between the observed and calculated widths in percent (Obs-Calc/Obs). The complete Table is available as supplementary material. 
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Table 3: 
Measured self-broadening coefficients (in cm-1.atm-1 at 296K) for pure rotational transitions. 
Between parentheses, are given the uncertainties in units of the last digit. For J = 6 values the 
observed widths have been obtained using the frequency modulation experiment. For the other 
values of J, the photomixing spectrometer has been employed. 
 
 

J K    Obs Calc1         % 
 

Calc2        %  

6 0 0.452(10) 0.422 6.6  0.437 3.3  
6 1 0.477(12) 0.418 12.4  0.435 8.8  
6 2 0.438(4) 0.406 7.3  0.429 2.1  

6 3 0.444(5) 0.385 13.3  0.418 5.9  
6 4 0.376(7) 0.356 5.3  0.400 -6.4  
6 5 0.332(5) 0.320 3.6  0.371 -11.7  

6 6 0.313(3) 0.274 12.5  0.317 -1.3  
    --   --  
31 0 0.368(15) 0.370 -0.5  0.349 5.2  

31 1 0.358(14) 0.369 -3.1  0.349 2.5  
31 2 0.363(15) 0.368 -1.4  0.349 3.9  
31 3 0.363(15) 0.366 -0.8  0.349 3.9  

31 4 0.353(14) 0.363 -2.8  0.348 1.4  
31 6 0.358(14) 0.354 1.1  0.347 3.1  
31 7 0.341(31) 0.349 -2.3  0.346 -1.5  

31 9 0.341(31) 0.335 1.8  0.344 -0.9  
31 12 0.337(30) -- --  0.339 -0.6  
    --   --  

37 0 0.290(12) 0.281 3.1  0.247 14.8  
37 1 0.284(11) 0.281 1.1  0.247 13.0  

37 2 0.287(12) 0.280 2.4  0.247 13.9  

37 3 0.280(11) 0.279 0.4  0.247 11.8  

37 4 0.275(25) 0.276 -0.4  0.246 10.5  

37 6 0.258(10) 0.270 -4.7  0.246 4.7  

37 9 0.254(23) 0.256 -0.8  0.245 3.5  
37 

 

 

 

12 0.246(22) --- --  0.242 1.6  

    --   --  

40 2 0.252(10) 0.247 2.0  0.207 17.9  

40 3 0.258(10) 0.246 4.7  0.207 19.8  

40 4 0.241(10) 0.244 -1.2  0.207 14.1  

40 6 0.231(9) 0.239 -3.5  0.206 10.8  

40 9 0.214(19) 0.227 -6.1  0.205 4.2  

40 12 0.206(19) --- --  0.204 1.0  

    --   --  

45 0 0.207(8) 0.202 2.4  0.158 23.7  

45 1 0.207(8) 0.201 2.9  0.158 23.7  

45 2 0.201(8) 0.201 0  0.158 21.4  

45 4 0.189(8) 0.198 -4.8  0.158 16.4  

45 6 0.198(8) 0.194 2.0  0.157 20.7  

45 9 0.174(16) 0.185 -6.3  0.157 9.8  

45 12 0.176(16) --- --  0.156 11.4  
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Table 3 (continued) 
Measured self-broadening coefficients (in cm-1.atm-1 at 296K) for pure rotational transitions. 
Between parentheses, are given the uncertainties in units of the last digit. For J = 6 values the 
observed widths have been obtained using the frequency-modulation experiment. For the other 
values of J, the photo-mixing spectrometer has been employed. 
 

    --   --  

50 0 0.158(6) 0.160 -1.3  0.127 19.6  

50 1 0.160(6) 0.160 0  0.127 20.6  

50 2 0.159(6) 0.159 0  0.127 20.1  

50 6 0.156(6) 0.154 1.3  0.127 18.6  

50 9 0.145(13) 0.147 -1.4  0.126 13.1  

50 12 0.141(13) --- --  0.126 10.6  
Calc1 and Calc2 are the calculated broadening coefficients (in cm-1.atm-1 at 296K) obtained respectively with the 
empirical model (section 4) and the semi-classical model (section 5). The % columns refer to the differences in % 
between the observed and calculated widths (Obs-Calc/Obs)×100. 
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Table 4: 

0
Ja  and 2

Ja  parameters (in cm-1.atm-1 at 296K) obtained from Eq. (3). Between parentheses, are 
given the standard deviation (1SD) in units of the last digit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 * Results from frequency-modulation spectrometer measurements. 
 ** Results from photo-mixing spectrometer measurements. 

      J 
              

0
Ja           

2
Ja  (in 10-3) 

Fitted 
values  
 

Smoothed 
values 

Fitted 
values  

 

Smoothed 
values 

0 -- 0.5903 --  
1 -- 0.5078 -- -19 
2 0.472(17) 0.4544 -20.3(84) -14 
3 0.3978(92) 0.4249 -2.8(18) -10 
4 0.400(12) 0.4144 -7.0(17) -7.5 
5 0.424(26) 0.4144 -5.22(68) -5.5 
6 0.4232(40) 0.4221 -5.2(16) -4.1 

  6* 0.4504(48) " -3.32(47) " 
7 0.4316(80) 0.4351 -2.04(53) -3.0 
8 0.455(15) 0.4515 -2.50(89) -2.2 
9 0.486(17) 0.4695 -3.10(82) -1.7 

10 0.483(12) 0.4878 -1.80(60) -1.4 
11 0.505(13) 0.5053 -0.66(73) -1.2 
12 0.512(11) 0.5211 -0.96(24) -1.1 
13 0.558(18) 0.5347 -1.19(24) -1.0 
14 0.533(19) 0.5454 -0.58(32) -0.96 
15 0.551(15) 0.5532 -0.67(25) -0.93 
16 0.568(21) 0.5579 -1.10(25) -0.90 
17 0.555(38) 0.5593 -0.79(50) -0.86 
18 0.547(14) 0.5577 -0.96(23) -0.82 
19 0.556(18) 0.5531 -0.88(23) -0.78 
20 0.5352(26) 0.5465   0.005(90) -0.74 
21 0.522(22) 0.5366 -0.35(41) -0.70 
22 0.532(17) 0.5244 -0.36(69) -0.66 
23 0.504(18) 0.5103 -0.34(32) -0.64 
24 0.505(15) 0.4947 -0.87(24) -0.61 
25 -- 0.4779 -- -0.58 
26 0.483(10) 0.4602 -1.20(18) -0.54 
27 0.449(11) 0.4420 -0.73(22) -0.51 
28 0.420(13) 0.4237 -0.12(31) -0.49 
29 0.4051(15) 0.4053   0.12(57) -0.47 
30 0.393(13) 0.3873 -0.36(33) -0.45 
31 0.360(14) 0.3698   0.08(38) -0.425 

    31** 0.3612(26) " -0.21(19) " 
32 0.357(11) 0.3529   0.08(35) -0.40 
33 0.3267(88) 0.3369 -0.19(27) -0.38 
34 0.3094(16) 0.3217   0.24(44) -0.36 
35 0.3180(14) 0.3074 -0.249(77) -0.34 
36 0.2945(10) 0.2940 -0.090(64) -0.32 
37 0.2834(16) 0.2815 -0.095(95) -0.31 

    37** 0.2865(59) " -0.645(23) " 
38 0.2658(20) 0.2698 -0.604(61) -0.29 
39 -- 0.2588 -- -0.28 

    40** 0.2512(59) 0.2485 -0.38(13) -0.265 
41 -- 0.2386 -- -0.255 
42 -- 0.2290 -- -0.24 
43 -- 0.2197 -- -0.23 
44 -- 0.2106 -- -0.215 

    45** 0.2017(40) 0.2016 -0.23(10) -0.205 
46 -- 0.1926 -- -0.195 
47 -- 0.1838 -- -0.185 
48 -- 0.1752 -- -0.175 
49 -- 0.1671 -- -0.165 

   50** 0.1595(35) 0.1599 -0.131(82) -0.155 



Figure 1: 
K = 0, 1 and 2 components of the J = 40 multiplet of CH3

35Cl measured from four CW-THz 
spectra recorded at P = 0.228, 0.1753, 0.1438 and 0.10815 Torr using a simple pass cell 
(L = 65cm). Experimental points and the Voigt profile fits are represented with circles and 
straight lines, respectively. 
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Figure 2: 
K-components of the J = 67 transition for CH3

35Cl recorded with the frequency-modulation 
spectrometer at 292 K with P = 19.9 mTorr (origin of frequencies is placed at 186.075 GHz). 
For the sake of clarity, quantum numbers K are indicated only for most intense lines 
corresponding to ΔF = +1. The groups of components K = 0–3 (lower panel) and 4–6 (upper 
panel) have been fitted separately and have different signal scales. Both signal and residuals 
(obs.-calc.) are unmagnified and have same scale.  

 

 
 
 
 
 



Figure 3: 
Experimental self-broadening coefficients γ0

self vs. K² for different J values: FT (solid 
squares), FM (open diamonds) and PM (open triangles). The straight lines represent the least-
squares linear fits with the quadratic empirical model of Eq. (3). For J = 6, the straight line 
corresponds to the linear fit of the FT measurements. 
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Figure 4: 
Parameters a0

J and a2
J deduced from the fits (see Eq. (3)) of the various measured self-

broadening coefficients: FTIR (solid squares), FM (open diamond), PM (open triangles). The 
error bars correspond to one standard deviation. The continuous line represents the smoothed 
values of these coefficients (see Table 4).  
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Figure 5: 
J and K dependences observed (FT: solid squares, FM: open diamonds, PM: open triangles) 
and calculated (empirical model: continuous line, semi-classical calculations with 
Eq. (4): dashed line) for the self-broadening coefficients obtained in the present work. The ν3 
experimental values of Ref. [7] are also given (solid stars). 
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Figure 6: 
Study of convergence of the calculated self-broadening coefficients obtained with Eq. (4) and 
various electrostatic terms with respect to the maximal intermolecular distance taken into 
account.  
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Figure 7: 

Influence of the maximal intermolecular distance accounted for the semi-classical calculations 
(using Eq. (4)) on the J-dependences of self-broadening coefficients for K = 0 (upper panel) 
and K = 7 (lower panel). The results obtained with the electrostatic terms only and with the 
atom-atom interactions added are practically indistinguishable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 8: 
Two isotropic potentials studied in the present work: the Lennard-Jones potential with 
ε = 368.4 K, σ = 3.584 Å [38] (solid line) and the numerical potential obtained as the isotropic 
part of the atom-atom interactions (dashed line). 
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Figure 9: 

Self-broadening coefficients calculated with Eq. (5) for various maximal values of the 
intermolecular distance for K = 0 (upper panel) and K = 7 (lower panel). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 10: 

Self-broadening coefficients γself vs. the rotational quantum number J: FT measurements for 
the isotopologues CH3

35Cl (solid squares) and CH3
37Cl (open squares); FM measurements 

(open diamonds) and PM measurements (solid triangles) for CH3
35Cl. The continuous line 

represents the calculations with the polynomial of Ref. [6]. 
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