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Abstract  

 

Methyl chloride (CHR3RCl) is one of the most abundant chlorine-containing molecules in the 

atmosphere. For this reason a recent update was performed by Iouli Gordon (private 

communication) in HITRAN in the 640-2600 cm P

-1
P region using line parameters generated by 

A. Nikitin, et al. [Nikitin A Champion JP, and Bürger H. J Mol Spectrosc 2005;230:174-184]. 

CHR3RCl has a rather strong signature around 3000 cm P

-1
P which was used recently by the 

Atmospheric Chemistry Experiment (ACE) satellite mission to produce the first study of the 

global distribution of methyl chloride in the upper troposphere and stratosphere. However it 

was mentioned that the CHR3RCl line positions and intensities spectroscopic parameters are of 

very low quality in this spectral region in the public access HITRAN or GEISA databases. We 

present a complete update of the line positions and line intensities for the νR1R, νR4R, 3νR6R bands of 

CHR3RP

35
PCl and CHR3RP

37
PCl in the 3.4 µm region. For this task, Fourier transform spectra have been 

recorded at high resolution in “Laboratoire de Dynamique, Interactions et Réactivité“ 

(LADIR). Measurements of line positions and line intensities have been retrieved for both 

isotopologues P

12
PCHR3RP

35
PCl and P

12
PCHR3RP

37
PCl in the νR1R, νR4R, 3νR6R bands. The theoretical model 

accounts for the interactions coupling the (vR1R=1; =0), (vR4R=1; = 1) and (vR6R=3; = 1) energy 

levels, together with additional resonances involving several dark states. 
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1. Introduction  

 

One of the most abundant chlorine-containing molecules in the atmosphere is methyl 

chloride (CHR3RCl); a species whose sources are almost entirely natural. The most common 

sources of methyl chloride are tropical plants, withering  or dead leaves and biomass burning. 

As the impacts of the Montreal Protocol and its subsequent amendments are becoming 

apparent in the reduction of chlorofluorocarbons in the atmosphere, naturally- produced 

methyl chloride is playing an increasingly significant role in the atmospheric ozone budget. 

Solar occultation measurements performed from the infrared Fourier transform spectrometer 

(0TACE-FTS 0T) on board the Atmospheric Chemistry Experiment (ACE) satellite mission have 

been used recently to produce the first study of the global distribution of methyl chloride in 

the upper troposphere and stratosphere [1]. For this task, the retrievals of CHR3RCl abundances 

from atmospheric infrared spectra rely on the observation of the Q-branch structures of the νR1RP

0
P 

band of CHR3RCl in the 3.4 µm region. The atmospheric retrievals require accurate 

spectroscopic parameters especially for line positions and intensities.  

 

For the 3.4 µm region the HITRAN [2] or GEISA [3] linelist for CHR3RCl covers the 

2907.8-3182.9 cm P

-1
P region. Figure 1 gives an overview of the 3.4 µm infrared absorption 

region which corresponds to the strong νR1RP

0
P band and to the two times weaker νR4RP

1
PR Rand 3νR6RP

1
P and 

2νR5RP

0
P bands. The band notation νR4RP

1
P (for example) with as superscript corresponds to the 

vibrational transition between the (vR4R=1; = 1) state and the ground state. Also   refers to 

i

i , where the i  are the vibrational angular momentum quantum numbers associated to 

degenerated modes. As evidenced in Fig. (2) the most striking deficiencies of the linelist 

available in the public access databases concern the strong νR1RP

0
PR Rband for which the list is 

restricted to several P

Q
PQRKR structures (for K= 1 to 6) in the 2965.7 to 2968.6cm P

-1
P region. 

Although this list contains numerous lines from the weak νR4RP

1
P and 3νR6RP

1
P bands, the much 

stronger P- and R-lines of the νR1RP

0
PR Rband are completely missing, and this is evidenced on Fig. 

(3) which details a portion of the P-branch of the νR1RP

0
PR Rband.  
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This is a problem for the atmospheric retrievals performed at 3.4 µm, not only for 

CHR3RCl, but also for several atmospheric target species, for example ethane (CR2RHR6R), for which 

CHR3RCl acts as an interfering molecule at 3.4 µm.  

The CHR3RP

35
PCl and CHR3RP

37
PCl list present at 3.4 µm in HITRAN [2] or GEISA [3] takes 

its origin from rather old spectroscopic studies. Only the most recent ones will be mentioned 

here.  

The line positions of the νR1RP

0
PR RbandR Rwere investigated by Morillon et al. [4] using grating 

spectra recorded at medium resolution (0.030 cm P

-1
P) and then latter by Dang-Nhu [5] by 

Fourier transform spectroscopy, and no noticeable perturbations was noticed during the νR1RP

0
P 

band investigation. In Ref. [6], the analysis of the νR4RP

1
P, and 3νR6RP

1
P interfering bands was 

performed by combining Fourier transform spectra recorded at 0.0074 cm P

-1
P resolution with 

Raman data. Only the strong resonances coupling the (vR4R=1; = 1) and (vR6R=3; = 1) energy 

levels were accounted for during the energy levels calculations. The results were satisfactory, 

in general, although several perturbed series (starting from K=7) had to be excluded from the 

calculation. It is presumed [7] that the (vR2R=1,vR3R=1,vR6R=1; = 1) and/or (vR6R=3; = 3) and/or 

(vR1R=1; =0) energy levels are involved in the observed perturbations. 

The available data for intensities are rather sparse. Low and medium intensities 

measurements have been reported in the past [8, 9]. The first individual line intensities 

measurements at 3.4 µm were performed using a single high resolution FTS spectrum by 

Dang-Nhu and co workers in Refs. [5] and [10], for the νR1RP

0
PR RbandR Rand for the νR4RP

1
P and 3νR6RP

1
P 

interfering bands, respectively. Because of its consistency with the results issued from these 

studies, it is highly presumed that the HITRAN [2] or GEISA [3] line list for CHR3RCl at 3.4 µm 

originates from Dang-Nhu et al studies [5, 10]. More recently, cross sections were measured 

for CHR3RCl at 0.06 cm P

-1
P resolution in the whole 600-6600 cm P

-1
P spectral range at Pacific 

Northwest National Laboratory [11].  
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The present work is a thorough analysis of the νR1RP

0
P, νR4RP

1
P, and 3νR6RP

1
P bands of methyl chloride, 

relying on high-resolution Fourier transform absorption spectra recorded at the LADIR. 

Absolute line positions and intensities have been measured for 182 transitions of P

12
PCHR3RP

35
PCl 

and 378 transitions of P

12
PCHR3RP

37
PCl of these three bands using a multispectrum fitting procedure. 

Moreover 3451 and 1371 positions of P

12
PCHR3RP

35
PCl and P

12
PCHR3RP

37
PCl transitions respectively have 

been obtained from a peak finding procedure and assigned. An accurate set of vibrational 

energies, and rotational, anharmonic and Coriolis constants was obtained for the (vR1R=1; =0), 

(vR4R=1; = 1) and (vR6R=3; = 1) interacting vibrational states. For this calculation it was 

necessary to account for additional resonances involving the (vR3R=2,vR5R=1; = 1), (vR5R=2; = 2) 

and (vR6R=3; = 3) dark resonating states. Additionally, absolute line intensities have been 

calculated, and a list of line positions and intensities was generated, including information for 

the νR1RP

0
P, νR4RP

1
P, 3νR6RP

1
P bands for both P

12
PCHR3RP

35
PCl and P

12
PCHR3RP

37
PCl isotopic species. Finally, it should 

be mentioned that the present analysis does not involve the weaker 2νR5RP

0
P band centered near 

2880 cm P

-1
P, which is extremely perturbed [12-14] and of less interest for atmospheric 

applications. 

 

 

2. Experimental conditions 

 

 Six Fourier transform spectra have been recorded using the rapid scan Bruker IFS 120 

HR interferometer of the LADIR. The experimental conditions are summarized in Table 1. 

The interferometer was equipped with CaFR2R beam splitter, InSb detector, globar source, and 

an optical filter covering the 2800-3200 cm P

-1 
Pspectral region. For spectrum #3, no optical filter 

has been used for recording the whole 1800-5000 cm P

-1
P spectral range. This allowed observing 

COR2R and HR2RO impurities present in the interferometer. The transitions of COR2R near 2300 cm P

-1
P 

and of HR2RO near 1900 and 3700 cm P

-1
P have been used to perform the wavenumber calibration 

(see Section 3.2). The whole optical path was under vacuum, and a single pass (30.00  0.05) 

cm cell equipped with KCl windows was used. The commercial gas sample, furnished by 

Alpha Gaz, with a stated of purity of 99.9% in natural abundances, was used without any 

purification. All spectra have been recorded at room temperature. Spectra #3 and #4 are 

plotted in Fig. 4, showing the good quality of experiments. The pressure of the gas was 

measured with 2 baratron gauges with an accuracy better than ± 0.15% for that of 1 mbar full 

scale and ± 0.25% for that of 10 mbar full scale. The average interferogram has been Fourier 
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transformed using the procedure included in the Bruker software OPUS package, selecting a 

Mertz phase error correction. The spectra have not been numerically apodized.  

 

 

3. Measurements 

 

 To measure as many as possible transitions, a multispectrum fitting procedure [15] was 

used to retrieved line parameters. Since methyl chloride has a large dipole moment, the effect 

of the self broadening on the line profile is significant [16] (self-broadening width at 5 mbar is 

nearly equal to the Doppler width at 3000 cm P

-1
P). The line intensity measurement is strongly 

dependent on the broadening coefficient, so that accurate measurements of line intensities 

need an adjustment of the self-broadening coefficients. The self-broadening coefficients will 

be presented in a forthcoming paper dealing also with NR2R widths. For all spectra, a Voigt 

profile was used and no deviation from this profile was observed in the residuals. An example 

of a fit is given in Fig. 5. 

The measurements of line positions and intensities have been used to adjust the 

constants of the theoretical model described in sections 5-7 respectively.  

 

3.1. Apparatus function and baseline 

 For each spectrum, the apparatus function was calculated performing numerically the 

Fourier transform of the optical weighting function of the interferogram, taking into account 

the effect of the throughput and of the finite optical path difference [17]. In the definition of 

the apparatus function, the aperture and the focal length of the collimator are sensitive 

parameters. The nominal value of the focal length (418 mm) was used as well as an effective 

value of the aperture found close (0.80 mm) to the nominal value (0.75 mm). To determine 

this effective value, the iris radius was fitted on isolated lines in spectrum #3 for which 

CHR3RCl, HR2RO and COR2R transitions are simultaneously observed. The average value of the 

aperture was found equal to (0.80±0.04) mm for the 90 fitted transitions and no wavenumber 

dependence was observed. The effect on the line parameter retrievals is not negligible even if 

this average value is close to the nominal one. It can amount to a few percent (1-3% 

depending on the deepness of the transitions) on line intensity and broadening coefficients.  

 Also a multiplicative channel spectrum, due to the cell windows, was observed in all 

experimental spectra. Its period is around 0.60 cm P

–1
P with maximum peak to peak amplitude of 
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about 5 %. Because the adjusted spectral domains used are always less than the half-period of 

the channel, it can be reproduced by the polynomial expansion that adjusts the continuous 

background. 

 

3.2. Wavenumber calibration 

 The HITRAN [2] wavenumbers of COR2R transitions around 2300 cm P

-1
P, and for HR2RO 

transitions around 1900 and 3600cm P

-1
P [2] were taken as etalons. The quantity ε = (νRHITRAN2008R 

– νRthis workR ) / νRHITRAN2008R was calculated from spectrum #3, and an average value was deduced: 

< ε > = 1.8×10P

–7
P, which corresponds to a wavenumber deviation of 0.6×10P

–3
P cm P

–1 
Pat 3000 cm P

–

1
P with a scattering (1SD) of 0.1×10P

–3
P cm P

–1
P. Considering the scattering of the wavenumber 

calibration, and the accuracy of the COR2R and HR2RO line positions, the accuracy of measured 

wavenumbers was estimated to be better than 0.5 ×10P

–3
P cm P

–1
P.  

 

 

4. Rovibrational analysis  

 

 Figure 1 presents an overview of the 2νR5RP

0
P, νR1RP

0
P, νR4RP

1
P and 3νR6RP

1
P bands of methyl chloride in 

the 2850-3300 cm P

–1
P region. The analysis proved to be rather easy for the νR1RP

0
P band, but 

difficult for the νR4RP

1
P, 3νR6RP

1
P bands which are weaker and exhibit strong perturbations. As it will 

be discussed later, at least three additional dark states are responsible for the perturbations 

observed on the (vR1R=1; =0), (vR4R=1; = 1) and (vR6R=3; = 1) energy levels. According to 

symmetry considerations, for a CR3vR-type molecule, νR1RP

0
P is a parallel band, while νR4RP

1
P and 3νR6RP

1
P 

are perpendicular bands. Finally let us remember the extreme complexity of the 2νR5RP

0
P band [12-

14]: this weak band which has low atmospheric interest was not considered in the present 

study. 

 

The first νR1RP

0
P, νR4RP

1
P and 3νR6RP

1
P assignments were performed using calculated predictions 

both for line positions and relative line intensities. The ground state energy levels were 

computed using a standard symmetric-top Hamiltonian (see appendix Eq.(A1)) together with 

the rotational and centrifugal distortion constants quoted in Ref. [18]. For the upper states the 

preliminary set of vibrational energies, rotational and interacting constants from Refs. [4] and 

[6] were used for the calculation of the (vR1R=1; =0) and of (vR4R=1; = 1) and (vR6R=3; = 1) 

energy levels, respectively. As in Ref. [6] the (vR4R=1; = 1)  and (vR6R=3; = 1) upper state 
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energy levels were computed accounting for the anharmonic and Z-type Coriolis interactions 

which couple these energy levels. For the preliminary list of predictions, the relative 

intensities of the νR1RP

0
P, νR4RP

1
P and 3νR6RP

1
P bands were computed using the theoretical method 

described in paragraph 5 and using the intensity parameters delivered by [5, 10] for the νR1RP

0
P 

and νR4RP

1
P fundamental bands. Indeed, as an overtone, the 3νR6RP

1
P band is in principle a dark band 

but is observable because strong anharmonic and Coriolis resonances couple the (vR4R=1; = 1) 

and (vR6R=3; = 1) interacting energy levels [6]. Some low and medium J and KR Rtransitions for 

the νR1RP

0
P, νR4RP

1
P and 3νR6RP

1
P bands were first assigned for both isotopic species. Then, using the 

ground state parameters of Ref. [18], the lower state energy levels were calculated and added 

to the newly observed line positions to get a list of experimental upper state energy levels. 

These upper state levels were included in a least squares fit to get an improved set of upper 

states parameters allowing better predictions and hence more assignments to be made. At a 

given level, it was necessary to account for (∆ = 1;∆K= 1,) resonances coupling the 

(vR1R=1; =0) energy levels with those from the (vR4R=1; = 1) and (vR6R=3; = 1) vibrational 

states. In addition resonances coupling the (vR1R=1; =0), (vR4R=1; = 1) and (vR6R=3; = 1) with 

those from the (vR3R=2,vR5R=1; = 1), (vR5R=2; = 2) and (vR6R=3; = 3) dark states had to be 

considered during the assignments.  

This iterative process was carried out until the complete assignment of the νR1RP

0
P and the 

νR4RP

1
P and 3νR6RP

1
P R Rbands for both isotopic species.  

 

The results of the final assignments are given in the upper part of Table 2. Because of 

the existence of numerous resonances involving the (vR3R=2,vR5R=1; = 1), (vR5R=2; = 2) and 

(vR6R=3; = 3) dark states, it was possible to identify several transitions belonging to the 

2νR3R+νR5RP

1
P and 3νR6RP

3
P associated dark bands. Examples of such assignments are given in Figs. 2-3 

and 6-8. Table 2 shows that the range of upper state rotational energy levels covered by the 

present analysis is significantly extended as compared to the previous ones [4-6]. Indeed, the 

previous investigations were restricted to |K| 6 for the νR1RP

0
P band [4, 5], and up to |K| 7 and J  

28 for the νR4RP

1
P and 3νR6RP

1
P bands [6]. 

 

 

 

5. Energy levels calculation 
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The list of CHR3RCl normal modes and vibrational energies is given in Table 3. A global 

fit of the lower five polyads of interacting states (fundamental and overtones or combination 

states) in the 0 to 2600 cm P

-1
P was performed by Nikitin et al [19]. The vibrational energies for 

vibrational states existing in the 0-3480 cm P

-1
P energy range were calculated for CHR3RP

35
PCl and 

CHR3RP

37
PCl from a full dimensional ab initio surface [7]. According to Table 5 in Ref. [7], 

numerous dark states exist in the 2700-3200 cm P

-1
P energy range which are potentially 

responsible for resonances perturbing the energy levels of the bright (vR1R=1; =0) and 

(vR4R=1; = 1) states and of the (vR6R=3; = 1) dark state.  

The types of anharmonic or Coriolis resonances which can be observed during the analysis of 

the spectra are numerous. This is expected when examining the resonances which had to be 

considered for the polyads P3 to P5 [16, 19-24]. 

The situation for vibrational states located above 2500 cm P

-1
P (polyad P6) is even more 

complex [12-14]. By extrapolating from the resonance scheme in polyads P3 to P5 (see Tables 

3 and 4 in Ref. [19]) it is presumed that, gradually, all overtones or combination states from 

the (vR2R=2; =0) up to the (vR3R=vR5R=vR6R=1; = 0 and =2) (AR1R, AR2R and E symmetry near 3184-

3190 cm P

-1
P) are more or less coupled through various resonances. From extended studies 

performed in the 2650-2950 cm P

-1
P region [13, 14] only positions of some dark bands, namely 

νR3R+2νR6RP

0
P, νR2R+2νR3RP

0
P, νR2R+νR5RP

1
P, 2νR5RP

0
P, 2νR5RP

2
P, and 2νR3R+νR5RP

1
P, could be obtained for P

12
PCHR3RP

35
PCl and 

P

12
PCHR3RP

37
PCl, with an accuracy of ~0.1 cm P

-1
P.  

For this reason, the strategy that was adopted here was empirical. In a first step, our 

energy levels calculation was restricted to the system of (vR1R=1; =0), (vR6R=3; = 1) and 

(vR4R=1; = 1) interacting states. However, several additional local resonances were observed 

during the assignment process, and three dark states, (vR3R=2,vR5R=1; = 1), (vR5R=2; = 2), and 

(vR6R=3; = 3) were identified as responsible for most of the observed perturbations. So, the 

final calculation involved, altogether the {(vR5R=2; = 2), (vR3R=2,vR5R=1; = 1), (vR1R=1; =0), 

(vR6R=3; = 1), (vR6R=3; = 3), (vR4R=1; = 1)}, interacting states, neglecting the perturbations 

due to other dark states. Therefore, as a general conclusion, it is clear that the model used in 

this work for the energy level calculation is effective.  

 

The general form of the Hamiltonian matrix used to compute the energy levels is given in 

Table 4. As discussed in Refs. [25-27], it is important to define precisely the phase factor of 

the wavefunctions. In the present work the convention of  Refs. [28-30] was adopted and 
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differs from the one adopted by Fusina and Di Lonardo [31], and Pracna et al. [25, 32-34]. The 

diagonal and off diagonal matrix elements are given in Appendix (Eqs. (A1 to A10)). As 

usual, both essential and accidental resonances were considered. 

  

The experimental {(vR5R=2; = 2), (vR3R=2,vR5R=1; = 1), (vR1R=1; =0), (vR4R=1; = 1), 

(vR6R=3; = 1), (vR6R=3; = 3)} energy levels obtained in this work were introduced in a least 

squares fit procedure using this Hamiltonian model. For CHR3RP

37
PCl, all the observed energy 

levels were considered in this calculation. As compared to the P

37
PCl variant, the analysis for 

CHR3RP

35
PCl could be performed up to higher J and K values, but some perturbed series belonging 

to the (vR4R=1; = 1), and involving high K values (|K| 8) had to be excluded from the fit. One 

of the possible explanations is in the existence of resonances involving dark states located at 

energies above 3060 cm P

-1
P. For example states as (vR2R=1,vR3R=1,vR6R=1; = 1), or 

(vR3R=3,vR6R=1; = 1) located near 3088 and 3173 cm P

-1
P respectively [7], are not considered in the 

present model. Let us remember that except for the 4250-4600 cm P

-1
P spectral region [35] no 

high-resolution investigation exists for methyl chloride infrared bands located at 

wavenumbers higher than 3050 cm P

-1
P.  

Tables 5 and 6 list the Hamiltonian constants resulting from the fit for CHR3RP

35
PCl and 

CHR3RP

37
PCl, respectively, together with their associated statistical uncertainties. In these tables, 

the constants without uncertainties were fixed to their ground state values [18]. Because of the 

suspected existence of additional interactions, the parameters gathered in Tables 5 and 6 are 

effective, with poor physical meaning. The results of the energy levels calculations proved to 

be rather satisfactory, as can be seen from the standard deviation and statistical analyses given 

in the lower part of Table 2. 

 

 

6. Discussion 

 

It is useful to describe the wavefunctions resulting from the diagonalization of the 

upper and lower state Hamiltonian matrices. In the upper state, the considered |Γ, v′ ′, J K> 

wavefunctions are written as:   

' ' '
v

v ,

, v , v ,
KA

B K

A J K C JK'

'

, (1,a) 

with A= AR1R or AR2. 
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' ' '
v

v

, v , v ,
KE

B K

E J K C JK'

'

 (1,b) 

 

In Eqs. (1), the v
K

C  coefficients result from the diagonalization of the upper state 

Hamiltonian matrix and B’ = {(vR5R=2; = 2), (vR3R=2,vR5R=1; = 1), (vR1R=1; =0), (vR4R=1; = 1), 

(vR6R=3; = 1), (vR6R=3; = 3)} is the set of interacting states. The expansions in Eqs. (1) are 

performed on a set of 1Twavefunction basis 1T set which depend on the symmetry (Γ=AR1R, AR2R or E) 

of the considered |Γ, v′ ′, J K> energy level.  

For Γ=AR1R and AR2R symmetries (K-  = 3n), the | , J K γ> in Eqs. (1.a), are the Wang-

type wavefunctions defined as:  

 

1
2

, , ,J K JK J K , for K-  = 3n and ( 0 or K 0),                           (2) 

 

with 1
J K

 and 
1

1
J K

 for AR1R and AR2R symmetry, respectively.     

Finally, one has: 

 

0, 0 1 0, 0J K J K  for =0 and K=0.  (3) 

 

For E symmetry (see Eq. (1,b)), the base functions are the usual non–symmetrized 

wave basis functions defined as:   

 

| , J K>.   with K- =1 3n                                                                                           (4) 

 

Indeed, because of the E-type degeneracy, the wavefunctions in K-  =2 3n and K-  

=1 3n lead to equal eigenvalues.  

In the present case we are dealing only with cold bands, and the lower state is the 

ground state with =0. In this case, the set of lower state wavefunctions |Γ, v"=0 "=0, J" 

K"> coincide with the set of basis wavefunctions defined in Eqs. (2-4). 

 

As already discussed, we observed strong resonances between the energy levels of 

vibrational sates belonging to the polyad B’ = {(vR5R=2; = 2), (vR3R=2,vR5R=1; = 1), 
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(vR1R=1; =0), (vR6R=3; = 1), (vR6R=3; = 3), (vR4R=1; = 1)}. To stress this point, it is useful to 

define the mixing coefficient (in percentage) noted %(Γ,' v′ ′, J′ K′| v ) of a given |Γ', v′ ′, 

J′ K′> energy level on another v   v′ ′ interacting vibrational states of the B' polyad :  

 

2

v% ', v ' ', ' '| v 100
K

k

J K C      (5) 

 

Table 7 summarizes the main resonances observed during the present study. One has to stress 

that the resonance scheme is consistent for both  CHR3RP

35
PCl and CHR3RP

37
PCl.  

 

As an example, Fig. 9 gives the mixing percentages for the (vR4R=1; = 1) energy levels of 

CHR3RP

35
PCl with J=21 and AR1R symmetry. As it is the case for all J values, strong mixings couple 

together the (vR4R=1; = 1)  (vR6R=3; = 1) energy levels. In addition, for J=21, there exists a 

local resonance coupling together (vR4R=1; = 1), K=-2  (vR6R=3; = 1) K=0. Accordingly the 

νR4RP

1
P P

P
PQRK''=-3R branch (see Fig. 7) is strongly perturbed. 

 

 

7. Line intensity calculation: 

 

The absolute line intensity Nk  (integrated over one line, given in cm P

–1
P/(molecule.cm P

–

2
P) for CHR3RCl in natural abundance) of a transition between a lower level L of energy ERLR and an 

upper level U of energy ERUR can be expressed as: 

 

3
N

a

0

8 hchc
k I . 1 exp exp

k k4 3hc ( )

Cl H UL
nucl nucl L

E
g g R

T TQ T
    (6) 

 

 

where T is the temperature in Kelvin, =(ERUR–ERLR)/hc is the line position (in cm P

–1
P), IRaR = 

0.748937 and 0.239491 is the isotopic abundance of P

12
PCHR3RP

35
PCl and P

12
PCHR3RP

37
PCl, respectively 

[36]. In this expression 
Cl
nuclg and 

H
nuclg  are the nuclear statistical weights due to the chlorine 

and hydrogen nuclear spins of the lower level (I=3/2 and I=1/2 for Cl and H, respectively), 



 13  

with 
Cl
nuclg = 4 for all levels, and 

H
nuclg  = 4:4:4 for the AR1R:AR2R:E symmetries, respectively.  

Also Q(T) is the total internal partition function for which we used values consistent with 

those quoted in HITRAN [2] (Q(296K) = 57916.1 and 58833.9 at 296 K [37] for P

12
PCHR3RP

35
PCl 

and P

12
PCHR3RP

37
PCl, respectively).  

 

QRvibR(296K)=1.0475                                                   

(7) 

 

U
LR  is the square of the matrix element of the transformed dipole moment operator 

'
Z : 

2
'v ' ', ' ' v" ", " "U

L ZR J K J K                                                                                         (8) 

 

where (v"; ") and (v′; ′) and J" K" and J′ K′ are the vibrational and rotational quantum 

numbers, respectively, in the lower and upper levels of the transition. Since we are dealing 

only with cold bands, and because the CHR3RCl ground state is non degenerate ( "=0), the 

values (v"=0; "=0) are set as |0> in the following. The expansion of the upper state 

rovibrational wavefunctions is given in Eqs (1) according to the symmetry (AR1R, AR2R or E) of 

the considered energy level. The transformed dipole moment operator '
Z  can be expanded as:   

 

' v

v ' '

0 v ' 'Z Z

B

 (9) 

 

where v
Z  is the transformed dipole moment operator corresponding to the transition |0>  

|v'; ' >. 

By extension from the asymmetric-top molecules model [38] and using the phase 

convention of Refs. [28-30, 39], the expansion of the transformed transition dipole moment 

operator for a given 0  parallel band (for example the νR1RP

0
P band) or for a given 1 

perpendicular band (for example the νR4RP

1
P band) can be written as: 

 

0 0 0 01 0 1 1 1 2 1 21
0 1 2 32

, , , , ...Z z x y y x z z ziJ i J J J  (10) 

4 1 4 1 4 1 4 1
0 4 5, , ...Z y x z z xi J J                                                  (11) 
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with in ( 0 ; K=0) and in ( 1; K= 1) selection rules for the νR1RP

0
P and νR4RP

1
P R Rbands, 

respectively. According to Tarrago and Delaveau [30] higher order terms in ( 0 ; K= 3) 

and ( 1; K= 2 ) are also to be considered in the expansions given in Eqs. (10) and (11), 

respectively. However, these terms do not lead to any improvement for the present line 

intensity calculation. Finally for ( 2 ; K= 1) perpendicular bands, like the 2νR5RP

2
P dark 

band, the expansion of the transformed transition dipole moment operator takes a  form: 

 

 55 2 55 2
1 ...Z x ,                                                                                                     (12) 

 

which differs in phase factor from ( 1; K= 1) type transitions. 

In Eqs. (10-12), φRzR, φRyR and  φRzR are the ZRxR, ZRyR and ZRzR components of the direction cosines 

between the Z laboratory fixed axes and the x, y and z  molecular axes. The elements of 

matrices are given in Tables VIII of Ref. [38]. As compared to Table II of Ref. [30], these 

dipole moment matrix elements differ only by the definition of the expansion terms for the νR1RP

0
P 

and νR4RP

1
P bands.  

The νR1RP

0
P and νR4RP

1
PR Rbands are fundamental bright bands, and their non-zero transition 

moment operators involve first order derivatives of the CHR3RCl dipole moment. On the other 

hand, for the 3νR6RP

1
P, 3νR6RP

3
P, 2νR5RP

2
P and 2νR3R+νR5RP

1
P overtone or combination bands, the transition dipole 

moment operators are assumed to have negligible value since they involve second order 

derivatives of the dipole moment. 

The goal of the present study was to explain the observed intensity pattern at 3.4 µm. 

In this approach the dark bands are observable because they borrow their intensities from the 

strong νR1RP

0
P band and the medium-intensity νR4RP

1
PR Rband. To demonstrate this effect, only the 

parameters involved in the expansion of the νR1RP

0
P and νR4RP

1
P bands were considered in the line 

intensity calculation.  

A similar theoretical approach was adopted by Dang-Nhu [10], but at that time the 

calculation was restricted to the νR4RP

1
PR Rand 3νR6RP

1
P interacting bands. Indeed in Ref. [5] the intensity 

calculation was performed for the νR1RP

0
P band assuming that this band was isolated.  

 

In order to increase the consistency of the intensity parameters, the experimental line 

intensity achieved in this work for P

12
PCHR3RP

35
PCl and P

12
PCHR3RP

37
PCl were introduced altogether in the 
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least squares fit calculation. In this way, a common set of 4 1
i and 1 0

i parameters was 

obtained for both isotopic species: these are collected in Table 8. Let us also mention that the 

sets of intensity parameters achieved from separate intensity calculations performed for 

P

12
PCHR3RP

35
PCl and P

12
PCHR3RP

37
PCl do not differ significantly within their experimental uncertainty. The 

statistical analysis of the line intensity calculation is given in Table 8, showing that the 

calculations are satisfactory. The full comparison between experimental results of Section 3 

and the theoretical calculation is given as supplementary data. Table 9 gives sample of such 

comparisons for several CHR3RP

35
PCl and CHR3RP

37
PCl line intensities.   

 

 

8. Line list for the 3.4 µm region  

For atmospheric applications in the 3.4 µm region, a complete list of line positions and 

intensities was generated for the νR1RP

0
P, νR4RP

1
P and 3νR6RP

1
P bands of both P

12
PCHR3RP

35
PCl and P

12
PCHR3RP

37
PCl 

isotopologues. This list was restricted to the 2920-3100 cm P

-1
P region since the present study 

does not concern the weaker and highly perturbed bands located at different frequencies [12-

14]. The line positions were computed using the vibrational energies together with the 

rotational and coupling constants of Table 5 (P

12
PCHR3RP

35
PCl) and Table 6 (P

12
PCHR3RP

37
PCl) for the 

upper {(vR5R=2; = 2), (vR3R=2,vR5R=1; = 1), (vR1R=1; =0), (vR4R=1; = 1), (vR6R=3; = 1), 

(vR6R=3; = 3)} resonating states and of Ref. [18] for the ground state. For CHR3RP

35
PCl, several 

perturbations due to dark states are not accounted for correctly in our calculation (see the 

discussion in section 6). As a consequence, the positions of CHR3RP

35
PCl lines were obtained 

using, whenever possible, the observed energies of the (vR5R=2; = 2), (vR3R=2,vR5R=1; = 1), 

(vR1R=1; =0), (vR4R=1; = 1), (vR6R=3; = 1), (vR6R=3; = 3) upper levels. The intensities were 

computed using the transition dipole moment constants given in Table 8.   

The line list was generated in the HITRAN format [40]. For this purpose broadening 

coefficients had to be introduced. Values from HITRAN08 [2] originating from Ref. [16] for 

the self-broadening and from Ref. [41] for the air-broadening. The line list is available on 

request to the authors. Table 10 provides some statistics of its content as for example the Sum 

of the Individual Line Intensities at 296K (SILI) obtained from line intensities of the νR1RP

0
P, νR4RP

1
P 

bright bands together with those of the various dark bands 3νR6RP

1
P, 2νR5RP

2
P, 2νR3R+νR5RP

1
P and 3νR6RP

3
P.  

The ratio of the νR4RP

1
P to νR1RP

0
PR Rband has to be compared to what can be expected from the 

ratio of the zero order expansion of the transition dipole moment operator squared:  
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2 2
1 04 1

0 0  0.53                                                                                          (13) 

 

This ratio differs from the νR4RP

1
P to νR1RP

0
P band intensity ratio: 

  

P

ISO
PSILIRν4R(296K)/ P

ISO
PSILIRν R(296K)P

 
P 0.42                                                                                  

(14) 

 

with ISO=35 or ISO=37. But when considering the 3νR6RP

1
P and νR4RP

1
P contributions, the agreement 

with Eq. (13) becomes excellent:  

 

(P

ISO
PSILIRν4R(296K)+P

 ISO
PSILIR3ν6R(296K)) / P

ISO
PSILIRν R(296K)  0.54.                                              

(15) 

 

Therefore, it is clear that the model accounts correctly for the intensity transfer νR4RP

1
P 3νR6RP

1
P. 

The good agreement is also observable in the overall structure of the 3.4 µm region (see Fig. 

1)  

 

In addition, Figs. 2-3 and 6-8 give detailed comparisons of observed spectra in various 

regions. Figures 2 and 3 give portions of the νR1RP

0
P band. Figures 6 and 7 show perturbed regions 

of the νR4RP

1
P band: because of local resonances, transitions from the dark 2νR3R+νR5RP

1
P and 3νR6RP

3
P are 

observable. Finally, Fig. 8 gives a portion of the Q- and R-branches of the weak and perturbed 

νR4RP

1
P and 3νR6RP

1
P bands. In all spectral ranges, the agreement is excellent. 

 

 

9. Comparison with existing line intensity data 

As it was mentioned in the introduction the existing line intensities for the 3.4 µm 

bands of methyl chloride are rather sparse.  

The only existing individual line intensities at 3.4 µm were delivered by Dang-Nhu and 

co workers [5, 10]. The experimental intensities achieved during the present work are 

~(9±4)% weaker than those of Dang-Nhu et al. for the νR1RP

0
P band. A summary of the 

comparison have been resumed in Table 11. Let us remember that only a single FTS spectrum 
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(P=0.0363 Torr, path length l=2012 cm) was used during Dang-Nhu investigations. On the 

contrary, during the present study, the CHR3RCl intensities were extracted from a large set of 

FTS spectra recorded in different experimental conditions (see Table 1) and using for data 

retrievals a  software taking into account both apparatus function and broadening effects [15]. 

Since the linelist present in the HITRAN [2] and GEISA [3] databases at 3.4 µm originates 

from Dang-Nhu studies for CHR3RCl [5, 10], the individual lines generated in the present work 

are ~6 % weaker than those in HITRAN [2] or GEISA [3].  

 

To our knowledge the only existing recent band intensity measurements were performed 

at the Pacific Northwest National Laboratory (PNNL) [11]. In order to compare our results to 

the measured integrated band intensities SR3µmR(PNNL), it is necessary to account properly for 

the contribution of hot bands quantified as RRhot R  (QRVibR(T)-1), where QRVibR(T) is the vibrational 

partition function (see Eq. (7)). Contributions from isotopic species differing from P

12
PCHR3RP

35
PCl 

and P

12
PCHR3RP

37
PCl have also to be taken into account through 35 371ISOR I I .  

Therefore, our estimation for the integrated band intensities is: 

Vib

35 37

(296K)Calc
3 m Band

all bands

S S (296K)
Q

I I
                              (16) 

In this expression SRBandR(296K) is the sum of all individual line intensities  for a given 

vibrational band at 296 K. 

If we compare our calculated (P

Calc
PSR3µmR) to the PNNL measured (SR3µmR(PNNL)) integrated 

intensities, the ratio R = SR3µmR(PNNL)/P

Calc
PSR3µmR varies from 0.98 to 1.02, depending on the 

considered spectral range (see Table 12).  

 

 

10. Conclusion 

 

Using high-resolution Fourier transform spectra of natural methyl chloride, an extensive 

analysis of the νR1RP

0
P, R4RP

1
PR Rand 3 R6RP

1
PR Rbands of the CHR3RP

35
PCl and CHR3RP

37
PCl isotopic species was 

performed up to very high rotational quantum numbers. The upper state energy levels were 

calculated using a Hamiltonian matrix taking explicitly into account the interactions that 

couple altogether the {(vR5R=2; = 2), (vR3R=2,vR5R=1; = 1), (vR1R=1; =0), (vR4R=1; = 1), 

(vR6R=3; = 1), (vR6R=3; = 3)} interacting states through Coriolis and anharmonic resonances. 
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The upper state parameters (band centers, rotational and coupling constants) derived in this 

work allow to reproduce most of the observed experimental data, within their experimental 

uncertainties. An extended set of individual line intensities was measured for CHR3RP

35
PCl and 

CHR3RP

37
PCl isotopic species and least squares fitted to get the line intensity parameters for the 3.4 

µm region. Finally, a complete list of line parameters was generated for the first time in the 

3.4 µm region. The line intensities delivered in this work were compared to the recent 

integrated intensities from PNNL. A subsequent work is in progress and will involve line 

shape parameters (self- and NR2R-broadening coefficients) in the 3.4 µm region.  
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Table 1: 

Experimental conditions and characteristics of the recorded spectra. 

 

Table 2: 

(A) Energy levels analysis of the 3.4 µm region. 

(B) Statistical analysis of the energy level calculations. 

 

Table 3:  

Vibrational modes for CHR3RP

35
PCl and CHR3RP

37
PCl.  

 

Table 4: 

Hamiltonian matrix used to describe the {(vR5R=2; = 2), (vR3R=2, vR5R=1; = 1), (vR1R=1; =0), 

(vR4R=1; = 1), (vR6R=3; = 1), (vR6R=3; = 3)} resonating states of  methyl chloride. 

 

Table 5: 

Vibrational energies, rotational and interaction constants for the ground state and the {(v5=2; 

= 2), (v3=2,v5=1; = 1), (v1=1; =0), (v4=1; = 1), (v6=3; = 1), (v6=3; = 3)} 

vibrational states of CH3
35

Cl methyl chloride. All parameters are in cm
–1

. The quoted errors 

are one standard deviation. 

(A) Vibrational band centers and rotational constants. 

(B) Interaction parameters for CHR3RP

35
PCl. 

 

Table 6: 

Vibrational energies, rotational and interaction constants for the ground state and the {(v5=2; 

= 2), (v3=2,v5=1; = 1), (v1=1; =0), (v4=1; = 1), (v6=3; = 1), (v6=3; = 3)} 

vibrational states of CH3
37

Cl methyl chloride. All parameters are in cm
–1

. The quoted errors 

are one standard deviation. 

(A) Vibrational band centers and rotational constants. 

(B) Interaction parameters for CHR3RP

37
PCl. 
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Table 7: 

Example of resonances observed and modeled in this work. 

 

Table 8: 

Transition moment constants for the νR1RP

0
P and νR4RP

1
P bands. 

 

Table 9: 

Sample of experimental measurements of line parameters obtained around 3.4 µm. 

 

Table 10: 

Description of the generated linelist. 

 

Table 11: 

Comparison between our measurements of line intensities with those of Dang et al. [5]. 

 

Table 12: 

Comparison of the integrated intensities from PNNL and this work for various integration 

ranges. 
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Figure captions  

 

Figure 1: 

Overview of the νR1RP

0
P, νR4RP

1
P and 3νR6RP

1
P band of methyl chloride in the 3.4 µm region. In the 2920-

3150 cm P

-1
P spectral region, the agreement of the present calculation (upper panel) with the 

observation (spectrum #3) is significantly improved as compared to the one obtained when 

using the linelist available in HITRAN [2] or GEISA [3] (lower panel). The present study 

does not concern the highly perturbed 2νR5RP

0
P band centered near 2880 cm P

-1
P. 

 

Figure 2: 

Part of spectrum #3 near 2965 cm P

–1
P. The strong 

Q
KQ

 (∆J = 0, ∆K=0) series of the νR1RP

0
P band for 

K=1 to K=10 is indicated on the lower trace. All traces have the same vertical scale but are 

shifted for visual clarity. 

 

Figure 3: 

Part of the P

Q
PP branch of the νR1RP

0
P band in spectrum #3 near 2940 cm P

-1
P. For K=0 the upper J’ 

values are given and the transitions for CHR3RP

35
PCl and CHR3RP

37
PCl are marked by diamonds and 

triangles, respectively. All traces have the same vertical scale but are shifted for visual clarity. 

 

Figure 4: 

Single channel spectra of CHR3RCl around 3000 cm P

-1
P. The upper panel corresponds to spectrum 

#3 recorded without any optical filter (HR2RO and COR2R transitions are observed). The bottom 

panel corresponds to spectrum #4 recorded with an optical filter. 

 

Figure 5:   

Example of the simultaneous fit of two transitions from 6 experimental spectra (from lower to 

higher pressure, see Table 1) between 2931.18 and 2931.34 cm P

-1
P.  

 

Figure 6: 

Part of the methyl chloride spectrum near 2983 cm P

–1
P (R branch of the νR1RP

0
P band). The 

assignments are given for CHR3RP

35
PCl (circles) and CHR3RP

37
PCl (triangles). Because of a local 
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resonance the forbidden 2νR3R+νR5RP

1
P for CHR3RP

35
PCl [19 6 ← 19 5] (star) becomes observable. All 

traces have the same vertical scale but are shifted for visual clarity. 

 

Figure 7: 

Part of the methyl chloride spectrum near 3015 cm P

–1
P: The lines of the 

' 2, ' 1
" 3( )K

KQ J
 

series of the νR4RP

1
P band are clearly perturbed near J '~21. As a result, the 3νR6RP

3
P [21 0← 21 3] 

transition is clearly observable. For both series of assigned lines, the upper state J ' values are 

indicated. All traces have the same vertical scale but are shifted for visual clarity. 

 

Figure 8: 

Part of the methyl chloride spectrum near 3150 cm P

–1
P (P

R
PQRKR branch of the νR4RP

1 
Pband). Lines from 

the 3νR6RP

1
P band are also observable. All traces have the same vertical scale but are shifted for 

visual clarity. 

 

Figure 9: 

Analysis of the resonances perturbing the (v4=1; =±1) energy levels for J =21 and Γ=A1 or 

A2 symmetry. The mixing coefficient % (A1, (v4=1; =±1), J ’=21 K ’| v ), in percentage 

(see text) on the (v6=3; = 1), (v6=3; = 3) and (v0=1; =0) interacting vibrational states. 

There exists a local resonance coupling together (v4=1; = 1), K=-2  (v6=3; = 3) K=0. 
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SSTable 1: 

Experimental conditions and characteristics of the recorded spectra. 

 

Unapodized apparatus function 

Nominal aperture radius              0.75 mm 

Effective aperture radius              0.80 mm  

Collimator focal length                418 mm 

 

Absorbing sample 

Natural CHR3RCl 74.89 % of P

12
PCHR3RP

35
PCl 

 23.94 % of P

12
PCHR3RP

37
PCl 

Stated purity 99.9 %  

 

Experimental conditions 

Absorption path  30.00 ± 0.05 cm 

S/N ratio  700-1000  

_____________________________________________________ 

#          CHR3RCl pressure          ResolutionP

a
P         Number of  

                (mbar)P

  
P                        (cm P

-1
P)              co added scans 

_____________________________________________________ 

1     0.542  0.008 400 

2     0.621  0.008 100 

3P

b
P     0.702  0.008 400 

4     1.51  0.008 400 

5     3.30  0.01 400 

6     7.10  0.01 237 

_____________________________________________________ 
P

a 
PResolution as defined by Bruker = 0.9/Maximum optical path difference. 

P

b
P For this spectrum no optical filter has been used (see text). 
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Table 2: 

(A) Range of observed energy levels during the analysis of the 3.4 µm of CHR3RP

35
PCl and 

CHR3RP

37
PCl. 

CHR3RP

35
PCl 

 νR1RP

0
 νR4RP

1
 3νR6RP

1
 

2νR3R+νR5RP

1
 

(dark) 

3νR6RP

3
 

(dark) 

Number of 

lines 
1208 1649 585 3 6 

Max J, |K| J 48, |K| 12 J 43, |K| 13 J 34, |K| 13 J=19, K=6 
J=21 and 22, 

K=0 

Number of 

levels P

*
 

584/582 720/571 271/271 1/1 2/2 

 

 

CHR3RP

37
PCl 

 νR1RP

0
 νR4RP

1
 3νR6RP

1
 

2νR3R+νR5RP

1
 

(dark) 
 

Number of 

lines 
712 559 98 2  

Max J, |K| J 41, |K| 9 J 35, |K| 10 J 25, |K| 7 J=21, K=7  

Number of 

levels P

*
 

351/351 277/277 62/62 1/1  
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(B) Statistical analysis of the energy level calculations. 

 

 CHR3RP

35
PCl CHR3RP

37
PCl 

Number of levels P

*
 1578/1428 698/698 

3 10 1.10 cm  47.8 % 61.5% 

3 3 11.10 4.10 cm  41.8 % 31.8% 

3 3 14.10 30.10 cm  10.4 % 6.7 % 

Standard deviation (in cm P

-1
P) 0.34×10 P

-2
 0.23×10P

-2
 

* NRObsR/NRFittedR where NRObsR and NRFittedR are the number of observed levels and the number of levels used in our 

calculation, respectively. 

E Eobs calc  
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Table 3: 

Vibrational modes for CHR3RP

35
PCl and CHR3RP

37
PCl. 

 

Band Sym  (1) CHR3RP

35
PCl CHR3RP

37
PCl Ref 

νR1RP

0
 AR1 CHR3R stretch ERv 2967.7691 2967.7469 This work 

       

νR2RP

0
 AR1 CHR3 Rbend ERv 1354.8811 1354.6824 [19] 

       

νR3RP

0
 AR1 CCl stretch ERv 732.8422 727.0295 [19] 

       

νR4RP

1
 E CHR3R stretch ERv 3039.2635 3039.6311 This work 

   ν 
3037.1416 

 
3036.7516 This work 

       

νR5RP

1
 E CHR3R bend ERv 1452.1784 1452.1552 [19] 

       

νR6RP

1
 E CHR3R rock ERv 1018.0709 1017.6824 [19] 

       

3νR6RP

1 
E  ERv 3042.8944 3041.2568 This work 

   ν 3045.0164 3044.1363 This work 
 (1) : Vibrational energies (ERvR) and band center (ν) in cmP

-1
P.  
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Table 4:  

Hamiltonian matrix used to describe the {(vR5R=2; = 2), (vR3R=2, vR5R=1; = 1), (vR1R=1; =0), 

(vR4R=1; = 1), (vR6R=3; = 1), (vR6R=3; = 3)} resonating states of methyl chloride. 

 

The W(v;± ) are diagonal in v- rotational operators, including both diagonal and non diagonal in  terms. The 

( 1; 1), ( 1; 2), ( 2: 2), and ( 2; 1) are for (∆ ;∆K) rotational operators. C(0;0) and Anh(0;0) are for 

(∆ ;∆K)=(0;0)  z-type Coriolis and Anharmonic rotational operators. See Appendix for the details of the 

Hamiltonian equations. c.c. corresponds to the conjugate complex. 

 
(vR5R=2; = 2

) 

(vR3R=2,vR5R=1; = 1

) 

(vR1R=1; =0

) 

(vR4R=1; = 1

) 

(vR6R=3; = 1

) 

(vR6R=3; = 3

) 

(vR5R=2; = 2) W(v; =±2)
  c.c.    

(vR3R=2,vR5R=1; = 1

) 
 W(v; =±1)

 c.c.    

(vR1R=1; =0) 
( 2; 1) 

( 2; 2) 
( 1; 1) W(v; =0)

 
c.c. c.c.  

(vR4R=1; = 1)   
( 1; 1) 

( 1; 2) 
W(v; =±1)

 
c.c. c.c. 

(vR6R=3; = 1)   ( 1; 1) 
C(0;0) 

+Anh(0;0) 
W(v; =±1)

 c.c. 

(vR6R=3; = 3)    ( 2; 2) 
( 2; 1) 

( 2; 2) 
W(v; =±3)
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Tables 5:  

Vibrational energies, rotational and interaction constants for the ground state and the {(v5=2; = 2), (v3=2,v5=1; = 1), (v1=1; =0), (v4=1; = 1), 

(v6=3; = 1), (v6=3; = 3)} vibrational states of CH3
35

Cl methyl chloride. All parameters are in cm
–1

. The quoted errors are one standard deviation. 

  

(A) Vibrational band centers and rotational constants. 

 |0> P

a
 (vR5R=2; = 2) (vR3R=2,vR5R=1; = 1) (vR1R=1; =0) (vR4R=1; = 1) (vR6R=3; = 1) (vR6R=3; = 3) 

Ev 0 2895.566(30) 2907.903(45) 2967.7691(41) 3039.26354(640) 3042.8944(69) 3060.0064(32) 

(A )  -1.2581523(110) -1.3048006(110)  0.388678(490) 1.276675(750) 1.276675P

b
 

2
21,xzc 10P

6
     2.201(670)   

1
22q 10P

4
      -0.99398(510)  

2
22q 10P

5
      -1.485(450)  

A 5.2053361 5.212437(510) 5.43872(180) 5.149695(170) 5.179097(190) 5.282501(270) 5.09116(130) 

B 0.44340278 0.4473610(790) 0.3913975(700) 0.4430333(540) 0.4435246(390) 0.4385771(120) 0.4395633(620) 

DRKR 10P

5
 8.2965 P

a
 P

a
 7.761(103) 8.718(100) P

a
 P

a
 

DRJKR 10P

6
 6.358 P

a
 P

a
 6.369(260) 6.943(260) P

a
 P

a
 

DRJR 10P

7
 6.0381 P

a
 P

a
 5.426(213) 6.342(120) P

a
 P

a
 

RKR 10P

9
 1.040 P

a
 P

a
 P

a
 P

a
 P

a
 P

a
 

HRKJR 10P

10 3.33 P

a
 P

a
 P

a
 P

a
 P

a
 P

a
 

HRJKR 10P

11
 1.143 P

a
 P

a
 P

a
 P

a
 P

a
 P

a
 

HRJR 10P

13
 -2.99 P

a
 P

a
 P

a
 P

a
 P

a
 P

a
 

P

a 
P: fixed to the values of the ground state from Ref. [18]. 

P

b
P : fixed to the (vR6R=3 ; =1) value.
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(B) Interaction parameters for CHR3RP

35
PCl. 

 

 

Energy state Energy state ∆  ∆K Constants Values 

(vR4R=1; = 1) (vR5R=2; = 2) 1 1 
1
xC  -1.306(170) 10P

-1
 

(vR4R=1; = 1) (vR5R=2; = 2) 1 1 
1
yzC  -7.327(570) 10P

-3
 

(vR1R=1; =0) (vR5R=2; = 2) 2 2 
0
22Q  -3.949(275) 10P

-4
 

(vR1R=1; =0) (vR5R=2; = 2) 2 1 
1
21,yC  1.3261(730) 10P

-1
 

(vR1R=1; =0) (vR5R=2; = 2) 2 1 2
21,yC  -1.206(270) 10P

-5
 

(vR4R=1; = 1) (vR1R=1; =0) 1 1 
1
xC  2.983(810) 10P

-2
 

(vR4R=1; = 1) (vR1R=1; =0) 1 1 
1
yzC  2.830(500) 10P

-3
 

(vR4R=1; = 1) (vR1R=1; =0) 1 1 
2
xC  -4.63(100) 10P

-6
 

(vR4R=1; = 1) (vR1R=1; =0) 1 2 2
12C  -6.88(130) 10P

-6
 

(vR4R=1; = 1) (vR1R=1; =0) 1 2 1
12C  1.194(110) 10P

-4
 

(vR6R=3; = 1) (vR4R=1; = 1) 0 0 
0Anh  3.49386(260) 

(vR6R=3; = 1) (vR4R=1; = 1) 0 0 
1Anh  -2.476(110) 10P

-4
 

(vR6R=3; = 1) (vR4R=1; = 1) 0 0 
1
zC  4.215(140).10P

-2
 

(vR6R=3; = 1) (vR4R=1; = 1) 0 0 
2
zC  -9.33(110) 10P

-5
 

(vR1R=1; =0) (vR5R=1; = 2) 2 2 
0
22Q  -3.949(270) 10P

-4
 

(vR1R=1; =0) (vR3R=2,vR5R=1; = 1) 1 1 
1
xC  -6.59(160) 10P

-3
 

(vR1R=1; =0) (vR3R=2,vR5R=1; = 1) 1 1 
2
xC  9.64(320) 10P

-5
 

(vR6R=3; = 1) (vR1R=1; =0) 1 1 
1
xC  2.22(130) 10P

-2
 

(vR6R=3; = 1) (vR1R=1; =0) 1 1 
1
yzC  5.445(610) 10P

-3
 

(vR6R=3; = 3) (vR6R=3; = 1) 2 2 
3, 1

22Q  -0.99398 10P

-4   c
 

(vR6R=3; = 3) (vR6R=3; = 1) 2 1 
1
21,xzC  -4.062(640) 10P

-3
 

P

c
P: 

3, 1 1
22 622 v 1; 1Q q . 

 



 8 

 

Tables 6: 

 Vibrational energies, rotational and interaction constants for the ground state and the {(v5=2; = 2), (v3=2,v5=1; = 1), (v1=1; =0), 

(v4=1; = 1), (v6=3; = 1), (v6=3; = 3)} vibrational states of CH3
37

Cl methyl chloride. All parameters are in cm
–1

. The quoted errors are one 

standard deviation. 

 

(A) Vibrational band centers and rotational constants. 

 

 |0> P

a
 (vR5R=2; = 2) (vR3R=2,vR5R=1; = 1) (vR1R=1; =0) (vR4R=1; = 1) (vR6R=3; = 1) (vR6R=3; = 3) 

Ev  2895.449(160) 2893.7394(2) 2967.74693(48) 3039.6311(500) 3041.2569(500) 3058.69130(780) 

(A )  -1.24096(330) -1.30462465(17)  0.384630(370) 1.281021(300) 1.281021 P

 b
 

1
22q 10P

4      -1.2917(430)  

ηRJ R 10P

5     -3.233(130)   

A 5.205374000 5.17794(620) 5.092566(150) 5.1499699(520) 5.179460(100) 5.282427(180) 4.21495(170) 

B 0.4365742400 0.440932(810) 0.4302316(190) 0.435455(290) 0.43671050(750) 0.4318326(130) 0.4343297(230) 

DRKR 10P

5
 8.427500000 P

a
 P

a
 8.169(100) P

a
 P

a
 P

a
 

DRJKR 10P

6
 6.449200000 P

a
 P

a
 P

a
 P

a
 P

a
 P

a
 

DRJR 10P

7
 5.859980000 P

a
 P

a
 P

a
 P

a
 P

a
 P

a
 

RKR 10P

9
 8.340 P

a
 P

a
 P

a
 P

a
 P

a
 P

a
 

HRKJR 10P

10 
2.83 P

a
 P

a
 P

a
 P

a
 P

a
 P

a
 

HRJKR 10P

11
 9.58 P

a
 P

a
 P

a
 P

a
 P

a
 P

a
 

HRJR 10P

13
 -3.14 P

a
 P

a
 P

a
 P

a
 P

a
 P

a
 

P

a 
P: fixed to the values of the ground state from Ref. [18]. 

P

b
P : fixed to the (vR6R=3 ; =1) value. 
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(B) Interaction parameters for CHR3RP

37
PCl. 

                                                                                                                              

Energy state Energy state ∆  ∆K Constants Values 

(vR6R=3; = 3) (vR6R=3; = 1) 2 2 3, 1
22Q  -0.8212(310) 10P

-4
 

(vR6R=3; = 3) (vR6R=3; = 1) 2 2 
3, 1

22,KF  4.444(280) 10P

-6
 

(vR1R=1; =0) (vR3R=2,vR5R=1; = 1) 1 1 
1
xC  -9.646(190) 10P

-2
 

(vR1R=1; =0) (vR3R=2,vR5R=1; = 1) 1 1 
2
xC  -7.983(670) 10P

-6
 

(vR1R=1; =0) (vR3R=2,vR5R=1; = 1) 1 1 
1
yzC  -7.401(150) 10P

-3
 

(vR1R=1; =0) (vR5R=2; = 2) 2 1 
1
21,yC  2.020(240) 10P

-1
 

(vR1R=1; =0) (vR5R=2; = 2) 2 1 
2
21,yC  -6.79(190) 10P

-6
 

(vR1R=1; =0) (vR5R=1; = 2) 2 2 
0
22Q  -3.377(110) 10P

-4
 

(vR6R=3; = 1) (vR4R=1; = 1) 0 0 
1
zC  -6.90(120) 10P

-2
 

(vR6R=3; = 1) (vR4R=1; = 1) 0 0 2
zC  4.22(180) 10P

-5
 

(vR6R=3; = 3) (vR4R=1; = 1) 2 1 
1
21,xzC  -6.826(340) 10P

-3
 

(vR6R=3; = 3) (vR4R=1; = 1) 2 1 2
21,yC  -2.287(220) 10P

-5
 

(vR6R=3; = 1) (vR1R=1; =0) 1 1 
1
xC  7.004(870) 10P

-2
 

(vR6R=3; = 1) (vR1R=1; =0) 1 1 
2
xC  -2.56(190) 10P

-6
 

(vR6R=3; = 1) (vR1R=1; =0) 1 1 
1
yzC  8.695(500) 10P

-3
 

(vR6R=3; = 1) (vR4R=1; = 1) 0 0 
0Anh  3.6018(110) 

(vR6R=3; = 1) (vR4R=1; = 1) 0 0 
1Anh  1.669(300) 10P

-3
 

(vR6R=3; = 1) (vR4R=1; = 1) 0 0 
2Anh  -2.804(300) 10P

-4
 

(vR4R=1; = 1) (vR1R=1; =0) 1 1 
1
yzC  3.529(350) 10P

-3
 

(vR4R=1; = 1) (vR1R=1; =0) 1 1 
1
xC  -2.006(340) 10P

-2
 

(vR4R=1; = 1) (vR1R=1; =0) 1 1 
2
xC  -6.10(100) 10P

-6
 

(vR4R=1; = 1) (vR1R=1; =0) 1 1 
2
yzC  -2.350(190) 10P

-5
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Table 7:  

Example of resonances observed and modeled in this work. 

CHR3RP

35
PCl 

Symmetry  K values   K values Type Max % J Max 

AR1R, AR2 (vR1R=1; =0) 

 

9 ↔ (vR4R=1; =±1) 8 slow 50% 43 

E (vR1R=1; =0) -5 ↔ (vR3R=2, vR5R=1; = 1) 6 sharp 30% 19 

AR1R, AR2 (vR6R=3; =±1) -2 ↔ (vR6R=3; =±3) 0 slow 37% 21 

E (vR1R=1; =0) 1,-2,4,-5,8 ↔ (vR5R=2; =±2) 0,-1,2,3,-3 slow 9% all J 

AR1R, AR2 (vR1R=1; =0) 12 ↔ (vR6R=3; =±1) 
-13  slow 45% 45 

AR1R, AR2R, E (vR4R=1; =±1) all ↔ (vR6R=3; l=±1) all strong 50% all J 

 

 

 

CHR3RP

37
PCl 

AR1R, AR2 (vR1R=1; =0) 9 ↔ (vR6R=3; =±1) 8 slow 17% 48 

AR1R, AR2 (vR1R=1; =0) 6 ↔ (vR3R=2, vR5R=1; = 1) 7 sharp 34% 21 

AR1R, AR2 (vR6R=3; =±1) -2 ↔ (vR6R=3; =±3) 0 slow 49% 48 

E (vR1R=1 =0) 1,-2,4,-5,8 ↔ (vR5R=2; =±2) 0,-1,2,3,-3 slow 4% 48 

AR1R, AR2 (vR1R=1; =0) 12 ↔ (vR6R=3; =±1) 
-13  slow 45% 45 

AR1R, AR2R, E (vR6R=3; =±1) all ↔ (vR6R=3; =±1) all strong 50% all J 
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Table 8:  

Transition moment constants for the νR1RP

0
P and νR4RP

1
P bands. 

 

Band Constants  Value in Debye 

νR1RP

0 01
0  φRz 0.524519(660)×10P

-1
 

 01
1  1

2
, i i ,x y y xJ J  

-0.1697(290)×10P

-4
 

νR4RP

1
 4 1

0  iφRy 0.37475(150)×10P

-1
 

 4 1
4  ,x zJ  -0.1849(230)×10P

-3
 

 4 1
5  ,z xJ  -0.7075(570)×10P

-4
 

φRxR, φRyR and φRzR stands for the direction cosines Φ RZxR , ΦRZy R RZz R The transition moment constants 

are given in Debye (1 Debye =3.22564x10 P

-30
P C.m) and the quoted errors are one standard deviation. 

 

 

Statistical analysis for the line intensity calculation:  

 CHR3RP

35
PCl  CHR3RP

37
PCl 

Number of lines 181  375 

Percentage of lines    

0 8%  73.1%  74.9% 

8% 16%  16.0%  17.2% 

16% 40%  10.9%  7.9% 

100 /Obs Calc ObsI I I   
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Table 9:  

Sample of experimental measurements of line parameters obtained around 3.4 µm. 

*                                   Assignment                                 Position                 Diff                 SRobsR                        SRcalcR                      % 

   ISO      Band    Upper state          Lower state 

   241  v1-0 37  6  A    38  6  A   2932.3536   -0.220   0.303E-01   0.298E-01     1.7 

   241  v1-0 38  4  E    39  4  E   2932.5665   -0.230   0.258E-01   0.211E-01    18.2 

   241  v1-0 38  3  A    39  3  A   2932.9437   -0.010   0.462E-01   0.501E-01    -8.4 

   241  v1-0 37 -5  E    38 -5  E   2932.9551    0.170   0.196E-01   0.195E-01     0.4 

   242  v1-0 38  4  E    39  4  E   2933.0720    0.740   0.238E-01   0.201E-01    15.9 

   241  v1-0 38 -2  E    39 -2  E   2933.1944   -0.110   0.289E-01   0.281E-01     2.5 

   242  v1-0 14  0 A1    13  0 A2   2979.9795    0.000   0.221E+00   0.221E+00     0.0 

   242  v1-0 16 -5  E    15 -5  E   2980.3384   -0.410   0.110E+00   0.113E+00    -3.1 

   242  v1-0 15  3  A    14  3  A   2980.3526   -0.210   0.339E+00   0.348E+00    -2.9 

   241  v1-0 21 10  E    20 10  E   2980.8805   -0.800   0.170E-01   0.147E-01    13.6                                      

   242  v1-0 16 -2  E    15 -2  E   2981.5030    0.230   0.212E+00   0.201E+00     5.4 

   242  v1-0 19  7  E    18  7  E   2981.6295   -0.180   0.665E-01   0.599E-01    10.0 

   242  v1-0 17  4  E    16  4  E   2981.7112   -0.280   0.142E+00   0.145E+00    -2.5 

   242 3v6-1 20  0  E    20  1  E   3031.2429    1.600   0.257E-01   0.228E-01    11.2 

   242  v4-1 12  0  E    12  1  E   3031.7407   -0.330   0.333E-01   0.291E-01    12.8 

   242  v4-1 11 -1  E    10 -2  E   3033.2274    0.010   0.130E-01   0.987E-02    23.8 

   242  v4-1 23  2  E    24  1  E   3033.2468    2.050   0.183E-01   0.176E-01     3.6                                

   242  v4-1 14  1 A1    15  0 A2   3033.4778    1.260   0.334E-01   0.311E-01     7.1 

   242  v4-1 13  1 A2    14  0 A1   3034.4171    1.970   0.314E-01   0.300E-01     4.2 

   242  v4-1 13  4  A    12  3  A   3082.5827   -1.770   0.587E-01   0.601E-01    -2.3 

   242  v4-1 14  4  A    13  3  A   3083.4206   -1.750   0.608E-01   0.596E-01     2.0 

   242  v4-1  7  5  E     6  4  E   3085.8126   -0.190   0.469E-01   0.469E-01     0.1 

*  242  v4-1 27 -3  E    26 -2  E   3085.8136   -1.190                                 

In Column 1, “241” and “242” refer to the CHR3RP

35
PCl and CHR3RP

37
PCl isotopic species, respectively (HITRAN notation). Column 2 gives assignment for the upper vibrational 

states (v1-0, v4-1 and 3v6-1 stand for (vR1R=1; =0), (vR4R=1; =1) and (vR6R=3; =1), respectively). Columns 3 to 8 give the upper and lower J, K rotational quantum 

numbers and symmetry types. Note that “A” stands for overlapping A R1R ←AR2R and AR2R ← AR1R transitions. Columns 9 and 10 give the calculated line positions (in cm P

-1
P) and 

differences between experimental and calculated line positions in 10 P

-3
PcmP

-1
P, respectively. Columns 11 and 12 are the observed and calculated line intensities for a pure 

CHR3RP

35
PCl and CHR3RP

37
PCl isotopic species at 296 K in cmP

-2
P.atmP

-1
P. % is the difference (in percent) between experimental and calculated line intensities [100 (SRobsR-SRcalcR)/SRobsR]. 

An asterisk (*) corresponds to a transition overlapped with the previous one: the quoted calculated and measured intensities are for the total intensity of the overlapping 

lines. 
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Table 10: 

Description of the generated linelist. 

CHR3RP

35
PCl 

 V' '  SILI Total Sig-Min Sig-Max Int-Min Int-Max 

 V1 0 2.390 2496 2920.03 3021.20 0.004 6.70 

 V4 1 0.961 4461 2920.35 3197.76 0.004 2.00 

 3V6 1 0.328 3469 2920.56 3192.75 0.004 1.60 

 2V5 2 0.008 767 2920.07 3145.94 0.004 0.06 

 3V6 3 0.004 114 2923.50 3084.75 0.004 0.33 

 2V3+V5 1 0.003 19 2922.63 3002.75 0.004 1.10 

Total   3.694 11326     

         

CHR3RP

37
PCl 

 V' '  SILI Total Sig-Min Sig-Max Int-Min Int-Max 

 V1 0 0.760 2460 2920.03 3120.66 0.001 2.20 

 V4 1 0.316 4359 2920.09 3196.35 0.001 0.64 

 3V6 1 0.094 3318 2923.74 3197.96 0.001 0.48 

 2V5 2 0.004 981 2920.03 3120.94 0.001 0.02 

 3V6 3 0.002 322 2930.01 3159.10 0.001 0.13 

 2V3+V5 1 0.002 197 2920.46 3010.79 0.001 0.24 

Total   1.178 11637     

V' is the explicit mode notation of the bands use in HITRAN for CHR3RCl. SILI is the Sum of the Individual Line 

Intensities in 10 P

-18
P (cmP

-1
P/(molecule.cmP

-2
P)) at 296 K. Total corresponds to the number of calculated lines. Sig-Min 

and Sig-Max: minimum and maximum values of the wavenumber (in cm P

-1
P). Int-Min and Int-Max: minimum and 

maximum values of the intensity (in 10 P

-21
P (cmP

-1
P/(molecule.cmP

-2
P)) at 296 K). 
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Table 11: 

Comparison of the measured νR1RP

0
P line intensities between this work and Ref. [5]. 

 

Line IsotopeP

a
 

Wavenumber (cmP

-1
P) SR RP

b
 

       % P

c
 

This work (measured) This work (measured) 

P

Q
PP(2,42)  241 2930.5831 0.483 -6.42 

P

Q
PP(6,40) 241 2930.6166 0.660 -9.70 

P

Q
PP(9,34)  241 2933.5933 0.526 -3.42 

P

Q
PP(9,33)  241 2934.4515 0.620 -2.26 

P

Q
PP(2,37)  241 2934.9384 0.112 -2.68 

P

Q
PP(6,35)  241 2934.9627 1.300 -2.15 

P

Q
PP(9,31)  241 2936.1697 0.750 -8.80 

P

Q
PP(1,10) 241 2958.8533 5.220 -7.85 

P

Q
PP(1,10) 242 2958.9689 1.640 -11.59 

P

Q
PP(2,8)  241 2960.4571 4.010 -10.47 

P

Q
PP(2,8)  242 2960.5453 1.290 -6.98 

P

Q
PP(1,8) 241 2960.6234 4.520 -7.52 

P

Q
PP(1,8)  242 2960.7117 1.400 -12.86 

P

Q
PP(2,7)  241 2961.3425 3.640 -9.62 

P

Q
PP(2,7)  242 2961.4170 1.120 -9.82 

P

Q
PP(1,7)  241 2961.5088 4.090 -9.05 

P

Q
PP(3,6) 241 2961.9511 4.580 -8.73 

P

Q
PP(3,6)  242 2962.0120 1.438 -8.07 

P

Q
PP(2,5)  241 2963.1140 2.470 -7.29 

P

Q
PP(2,5)  242 2963.1612 0.782 -9.46 

P

Q
PP(3,4)  241 2963.7229 18.640 -8.37 

P

Q
PP(3,4)  242 2963.7564 0.584 -14.73 

P

Q
PP(2,4)  241 2964.0000 1.790 -10.06 

P

Q
PP(2,4) 242 2964.0337 0.520 -20.58 

P

Q
PP(1,4) 241 2964.1664 2.380 -8.40 

P

Q
PR(0,0)  241 2968.6552 0.737 -2.04 

P

Q
PR(2,2)  241 2970.2071 9.650 -6.74 

P

Q
PR(1,2)  242 2970.3119 0.546 -13.55 

P

Q
PR(0,2) 241 2970.4293 2.090 -2.87 

P

Q
PR(3,3)  242 2970.7408 0.656 -3.35 

P

Q
PR(3,3)  241 2970.8167 2.040 -8.82 

P

Q
PR(2,3)  241 2971.0943 1.830 -12.02 

P

Q
PR(1,3)  242 2971.1855 0.764 -10.99 

P

Q
PR(1,3)R  241 2971.2610 2.470 -10.53 

P

Q
PR(9,22)  241 2983.7734 1.184 -17.40 

P

Q
PR(9,23)  241 2984.6714 1.184 -7.09 

P

Q
PR(9,28) 241 2989.1645 0.930 -7.10 

P

Q
PP(2,4): this notation stands for the transition P

∆K
P∆Q(K,J). 

P

a 
P: 241 and 242 corresponds to CHR3RP

35
PCl and CHR3RP

37
PCl, respectively. 

P

b
P : The values correspond to the measured lines intensities for natural CHR3RCl at 296K in 10 P

-21
P (cmP

-

1
P/(molecule.cmP

-2
P)). 

P

c
P : % corresponds to 100× (SRthis workR-SRRef. [5]R)/SRthis workR. 
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Table 12: 

Comparison of the integrated intensities from PNNL and this work for various integration 

ranges. 

 

 SR3µmR(PNNL) P

Calc
PSR3µm 

R=PNNL/This work 
Integration range in cmP

-1
 PNNL P

b
 This work 

2925-2976 0.204 P

 a
 0.208P

 a
 0.980 

2976-3027 0.187 P

 a
 0.188P

 a
 0.976 

3027-3078 0.075 P

 a
 0.076P

 a
 0.989 

3078-3129 0.040 P

 a
 0.039P

 a
 1.016 

P

a 
P: in 10 P

-17
P cmP

-1
P/(molecule.cmP

-2
P) at 296 K. 

P

b
P: Ref. [11]. 
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Appendix: Definition of matrix elements of the effective rotation-vibration Hamiltonian. 

 

 

 UDiagonal in v operators: U  W(v;±l) type operators 

 Terms diagonal in  and K: 
2 v 2 v v 4 v 3

v v v v

v 2 2 v 4 v 6 v v 2
v

v , v , ( 1) ( ) ( 1) ( 1) ( 1)

( 1) ( 1) 2 1 ...

2 2 3
J JK K J

2
JK KJ K J k

J K H J K E B J J A B K D J J D JK J D K H J J

H J J K H J J K H K A J J K K
(A1) 

 

The diagonal z-Coriolis terms vA  and its expansion ( v
K etc..) vanish for all l =0 

vibrational states. 

 Terms off-diagonal in  : 
 

For the   =1 vibrational states the following ( ; K)= ( 2; 2) and (  K)= ( 2;  1) -type 

operators were taken into account: 

1 2 2 2
22 22 22 22 2v 1, v ' 1, ' 2 ( , ). ' . ( , )J K q J K K M v q q K K q F J K (A2) 

1 2
21, 21, 21, 1v 1, v ' 1, ' 1 2 1 ( 1) ( , )xz xz xzJ K c J K K K c c J J F J K      (A3) 

 UOff diagonal in v operators 

 for ( ; K)=(0; 0) operators 

Anharmonic operators 

0 1 2 2v , v ' ' , ' 1 ...J K Anh J K K Anh Anh K Anh J J                         (A4) 

 

Z-type Coriolis resonance 

1 2 2v , v ' , ' ... .z z zJ K C J K K C C K K                                        (A5) 

  

 for ( ; K)=( 1; 1) operators 

1 2 1 2 2 2
1

v , v ' ' 1, ' 1

( 1) 2 1 ' ( , )

x

x x yz yz

J K C J K K

C C J J K C C K K F J K
                 (A6) 

 

 for ( ; K)=( 1;  2) operators 
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1 2 2 2
12 12 12 2v , v ' ' 1, ' 2 ' ( , )J K C J K K C C K K F J K               (A7) 

 

 for ( ; K)=( 2; 1) operators 

 

1 2 1
21 21, 21, 21, 1v , v ' ' 2, ' 1 1 2 1 ( , )y y xzJ K C J K K C C J J K C F J K    (A8) 

 

 for ( ; K)=( 2; 2) operators 

0 1 2 2
22' 22 22 2v , v ' ' 2, ' 2 ' . ( , )J K Q J K K Q Q K K F J K                       (A9) 

 Particular case for the  ( ; K)= )=( 2; 2) off diagonal in l operator for        

(vR6R=3;l= 3 )(vR6R=3;l= 1). 

 

6 22 6

3, 1 3, 1 2 2
222 22,

v 3 1, v ' 3 ' 3, ' 2

' . ( , ). ( , )K

J K Q J K K

Q F K K M v F J K
               (A10) 

1/2

1

( , ) 1 1
n

n
i

F J K J J K i K i         

, v v 2M v , with (v 1, 1) 2M , (v 3, 1) 4M  and 

(v 3, 1) 2 3M             

1/2

1

( , ) ( 1) 1
n

n
i

F J K J J K i K i          

The phase convention is:   

11 ( , )x yJ K J i J J K F J K  

 

 

 



Figure 1: 

Overview of the ν1
0, ν4

1 and 3ν6
1 band of methyl chloride in the 3.4 µm region. In the 2920-

3150 cm-1 spectral region, the agreement of the present calculation (upper panel) with the 
observation (spectrum #3) is significantly improved as compared to the one obtained when 
using the linelist available in HITRAN [2] or GEISA [3] (lower panel). The present study 
does not concern the highly perturbed 2ν5

0 band centered near 2880 cm-1. 
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Figure 2: 

Part of spectrum #3 near 2965 cm–1. The strong Q
KQ  (∆J = 0, ∆K=0) series of the ν1

0 band 
for K=1 to K=10 is indicated on the lower trace. All traces have the same vertical scale but are 
shifted for visual clarity.  
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Figure 3: 

Part of the QP branch of the ν1
0 band in spectrum #3 near 2940 cm-1. For K=0 the upper J’ 

values are given and the transitions for CH3
35Cl and CH3

37Cl are marked by diamonds and 
triangles, respectively. All traces have the same vertical scale but are shifted for visual clarity. 
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Figure 4:  
Single channel spectra of CH3Cl around 3000 cm-1. The upper panel corresponds to spectrum 
#3 recorded without any optical filter (H2O and CO2 transitions are observed). The bottom 
panel corresponds to spectrum #4 recorded with an optical filter. 
 

 

 
 



Figure 5:  
Example of the simultaneous fit of two transitions from 6 experimental spectra (from lower to 
higher pressure, see Table 1) between 2931.18 and 2931.34 cm-1.  
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Figure 6: 

Part of the methyl chloride spectrum near 2983 cm–1 (R branch of the ν1
0 band). The 

assignments are given for CH3
35Cl (circles) and CH3

37Cl (triangles). Because of a local 
resonance the forbidden 2ν3+ν5

1 for CH3
35Cl [19 6 ← 19 5] (star) becomes observable. All 

traces have the same vertical scale but are shifted for visual clarity. 
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Figure 7: 

Part of the methyl chloride spectrum near 3015 cm–1: The lines of the ' 2, ' 1
" 3( )= =−
=−

K
KQ J  

series of the ν4
1 band are clearly perturbed near J '~21. As a result, the 3ν6

3 [21 0← 21 3] 
transition is clearly observable. For both series of assigned lines, the upper state J ' values are 
indicated. All traces have the same vertical scale but are shifted for visual clarity. 
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Figure 8: 

Part of the methyl chloride spectrum near 3150 cm–1 (RQK branch of the ν4
1 band). Lines from 

the 3ν6
1 band are also observable. All traces have the same vertical scale but are shifted for 

visual clarity. 
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Figure 9: 
Analysis of the resonances perturbing the (v4=1;  =±1) energy levels for J =21 and Γ=A1 or 
A2 symmetry. The mixing coefficient % (A1, (v4=1;  =±1), J ’=21 K ’| v  ), in percentage 
(see text) on the (v6=3;  =±1), (v6=3;  =±3) and (v0=1;  =0) interacting vibrational states. 
There exists a local resonance coupling together (v4=1;  =±1), K=-2  (v6=3;  =±3) K=0. 
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