J. Baudry, Model Selection for Clustering Choosing the Number of Classes, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00461550

C. Biernacki, G. Celeux, and G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.7, pp.719-725, 2000.
DOI : 10.1109/34.865189

C. Biernacki, G. Celeux, G. Govaert, and F. Langrognet, Model-based cluster and discriminant analysis with the MIXMOD software, Computational Statistics & Data Analysis, vol.51, issue.2, pp.587-600, 2006.
DOI : 10.1016/j.csda.2005.12.015

URL : https://hal.archives-ouvertes.fr/inria-00069878

G. Celeux and G. Govaert, Gaussian parsimonious clustering models, Pattern Recognition, vol.28, issue.5, pp.781-793, 1995.
DOI : 10.1016/0031-3203(94)00125-6

URL : https://hal.archives-ouvertes.fr/inria-00074643

A. Dempster, N. Laird, R. , and D. , Maximum likelihood from incomplete data via the EM-algorithm, Journal of the Royal Statistical Society. Series B, vol.39, issue.1, pp.1-38, 1977.

R. Fisher, THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS, Annals of Eugenics, vol.59, issue.2, pp.179-188, 1936.
DOI : 10.1111/j.1469-1809.1936.tb02137.x

R. Lebret, S. Iovleff, F. Langrognet, C. Biernacki, G. Celeux et al., Rmixmod: The r package of the model-based unsupervised , supervised and semi-supervised classification mixmod library, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00919486

G. Mclachlan and T. Krishnan, The EM-algorithm and Extensions, 1997.

G. Mclachlan and D. Peel, Finite Mixture Models, 2000.
DOI : 10.1002/0471721182

K. Roeder and L. Wasserman, Practical Bayesian Density Estimation Using Mixtures of Normals, Journal of the American Statistical Association, vol.22, issue.439, pp.92894-902, 1997.
DOI : 10.1080/01621459.1997.10474044

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136