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Geometric Approach to Second-Order Sufficient Optimality Conditions in Optimal Control *

We consider the Bolza optimal control problem with control constraints and propose new secondorder sufficient optimality conditions. These conditions are applicable under much weaker regularity assumptions than those known in the literature. In particular, the reference control may be merely measurable and the dynamics may be discontinuous in the time variable. Our approach is based on a new decomposition result for control constraints, involving second-order tangents.

Résumé

Approche géométrique des conditions d'optimalité suffisantes du second ordre pour des problèmes de contrôle optimal. Pour un problème de contrôle optimal sous forme de Bolza avec des contraintes sur les contrôles, nous proposons des nouveaux conditions d'optimalités suffisantes du second ordre. Ces conditions demandent peu de régularité des données. En particulier le contrôle de référence peut être seulement mesurable et les dynamiques peuvent être discontinues par rapport au temps. Notre approche est basée sur un nouveau résultat de décomposition pour les contraintes sur les contrôles. Cette décomposition utilise des tangents du second ordre.

Introduction

This paper is devoted to second-order sufficient optimality conditions for the following optimal control problem:

Minimize ϕ (x(1)) + 1 0 (t, x(t), u(t)) dt, (P ) over absolutely continuous x : [0, 1] → R n and measurable u : [0, 1] → R m satisfying, ẋ(t) = f (t, x(t), u(t)), u(t) ∈ U (t), a.e. x(0) = x 0 ,

where the maps f :

[0, 1] × R n × R m → R n , : [0, 1] × R n × R m → R, ϕ : R n → R, the set-valued map U : [0, 1]
R m and the initial state x 0 ∈ R n are given. Denote by W 1,1 ([0, 1]; R n ) the space of absolutely continuous mappings. The set of all measurable mappings u : [0, 1] → R m such that u(t) ∈ U (t) a.e. will be denoted by U. A process (x, u) comprises a control function u ∈ U and a state trajectory x ∈ W 1,1 ([0, 1]; R n ) satisfying the differential equation in [START_REF] Aubin | Set-Valued Analysis, Systems Control Found[END_REF]. Under standard assumptions the state trajectory x is uniquely defined by a control function u and the control system in [START_REF] Aubin | Set-Valued Analysis, Systems Control Found[END_REF]. Consequently, the cost functional J : U → R,

J(u) := ϕ (x u (1)) + 1 0 (t, x u (t), u(t)) dt, (2) 
where

x u ∈ W 1,1 ([0, 1]; R n
) is the solution of (1) corresponding to the control u, is well defined.

Definition 1.1 A process (x, ū) is a (strict) weak local minimizer if there exists ρ > 0 such that ū minimizes J (strictly) over all ũ ∈ U satisfying ũ -ū ∞ ≤ ρ.
In this note we present a new approach to second-order sufficient conditions. We consider set-valued maps U (•) where the boundary of U (t) is smooth. Then we use the geometry of the sets U (t) in order to show that there exists a neighborhood of the reference control ū, such that for every ũ ∈ U in this neighborhood, one can approximate ũ-ū sufficiently well by first-and second-order tangents. Unlike in [START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF], [START_REF] Maurer | Second order sufficient conditions for optimal control problems with free final time: The Riccati approach[END_REF], [START_REF] Zeidan | The Riccati equation for optimal control problems with mixed state-control constraints: necessity and sufficiency[END_REF], where the sufficient conditions were obtained by using abstract results, our approach permits a direct and geometric proof. So far direct methods required the reference control ū to be continuous or piecewise continuous, see for instance [START_REF] Milyutin | Calculus of Variations and Optimal Control[END_REF]. With our approach we are able to state sufficient conditions when ū is merely measurable. Moreover the dynamics can be discontinuous in the time variable and no special structure of the Hamiltonian is required. In particular we do not impose a Legendre-Clebsch condition. Our sufficient optimality conditions form no-gap second-order optimality conditions with the necessary optimality conditions of [START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF]Thm. 3.2]. Finally, this approach can be extended to sets U (t) having nonsmooth boundary.

Notations and assumptions

As usual B(x, ρ) stands for the open ball with center x ∈ R n and radius ρ > 0. ∂K denotes the boundary of a set K ⊂ R n and T K (x) the Bouligand tangent cone to K at x, see [START_REF] Aubin | Set-Valued Analysis, Systems Control Found[END_REF]. Throughout the paper (x, ū) ∈ W 1,1 ([0, 1]; R n ) × U denotes a fixed reference process. In order to simplify the notations, we will abbreviate (t, x(t), ū(t)) by [t], thus for instance f [t] := f (t, x(t), ū(t)). Furthermore we define,

T B := {t ∈ [0, 1] | ū(t) ∈ ∂U (t)} .
For a map φ : [0, 1]×R n ×R m → R k we denote by φ x (t 0 , x 0 , u 0 ), φ u (t 0 , x 0 , u 0 ), φ xx (t 0 , x 0 , u 0 ), φ xu (t 0 , x 0 , u 0 ), φ uu (t 0 , x 0 , u 0 ) its partial-and second-order partial derivatives with respect to x and/or u at (t 0 , x 0 , u 0 ), assuming these derivatives exist. The derivative, resp. the Hessian, of the map (x, u) → φ(t, x, u) evaluated at (x 0 , u 0 ) is denoted by φ (t, x 0 , u 0 ), resp. φ (t, x 0 , u 0 ). We require the following regularity of the data: There exists ρ 0 > 0 such that, 

(A1) (a) ∀x ∈ R n , ∀u ∈ R m , f (•, x,

  u) and (•, x, u) are measurable and for almost all t ∈[0, 1], f (t, •, •), (t, •, •) are continuously differentiable on B(x(t), ρ 0 )×B(ū(t), ρ 0 ). Moreover, ϕ ∈ C 2 (R n ; R); (b) ∀R > 0, there exists k R ∈ L 1 ([0, 1]; R + ) such that for a.e. t ∈ [0, 1], f (t, •, u) and (t, •, u) are k R(t)-Lipschitz on RB for all u ∈ B(ū(t), ρ 0 );

(c) There exists γ ∈ L 1 ([0, 1]; R + ) such that for a.e. t ∈ [0, 1] and all x ∈ R n ,

|f (t, x, u)| ≤ γ(t)(1 + |x|), ∀u ∈ B(ū(t), ρ 0 ); (d) ∀R > 0, the mapping t → sup (x,u)∈RB | (t, x, u)| is integrable on [0, 1];
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(A2) f x [•] is integrable and ∃a 1 > 0 s.t. for a.e. t ∈ [0, 1], ∀x, y ∈ B(x(t), ρ 0 ), ∀u, v ∈ B(ū(t), ρ 0 ), f u [t] ≤ a 1 and f (t, x, u) -f (t, y, v) ≤ a 1 (|x -y| + |u -v|);

(A3) (a) For almost all t ∈ [0, 1], f (t, •, •) is twice differentiable on B(x(t), ρ 0 ) × B(ū(t), ρ 0 );

(b) ∃a 2 > 0 such that for a.e. t ∈ [0, 1], ∀x, y ∈ B(x(t), ρ 0 ), ∀u, v ∈ B(ū(t), ρ 0 ), f [t] ≤ a 2 and f (t, x, u) -f (t, y, v) ≤ a 2 (|x -y| + |u -v|);

(A4) For all t ∈ [0, 1], U (t) := {u ∈ R m | g(t, u) ≤ 0}, where the function g

) is measurable for all u ∈ R m and there exists K g > 0 such that for a.e. t ∈ [0, 1], g(t, •) is twice continuously differentiable on B(ū(t), ρ 0 ) and for all u ∈ B(ū(t), ρ 0 ), When (A2) or (A3) are imposed, then we always assume that satisfies the same assumptions as f . Note that if (A4)(a) is satisfied, then one may also parameterize

, where d(x; K) := inf k∈K |x -k|. In this case (A4)(b) is automatically verified.

Main results

Define the Hamiltonian

Theorem 3.1 Let (x, ū) be a weak local minimizer of problem (P ) and (A1), (A2), (A4) hold true. Then there exists p

) is a process and p is the corresponding adjoint state. For a given extremal (x, ū, p), we will use the abbreviation [t] := (t, x(t), p(t), ū(t)) when evaluating the Hamiltonian or its (partial) derivatives at (t, x(t), p(t), ū(t)).

For any

is called the solution of the linearized system corresponding to w. 

Having this, one uses the variational analysis performed in [START_REF] Hoehener | Variational approach to second-order optimality conditions for control problems with pure state constraints[END_REF] in order to conclude.

Remark 2 By (A4) and Theorem 3.1 we have that for a.e.

Thus, in the case when there exists γ 1 > 0 such that,

here λ(•) is the Lebesgue measure, (4) becomes the classical sufficient condition of [START_REF] Maurer | Second order sufficient conditions for optimal control problems with free final time: The Riccati approach[END_REF]. Note that in this paper the authors impose a strengthened Legendre-Clebsch condition and assume that (A4)(b) holds on a neighborhood of T B , in order to obtain these results for an essentially bounded ū. In [START_REF] Zeidan | The Riccati equation for optimal control problems with mixed state-control constraints: necessity and sufficiency[END_REF] the same assumptions as in [START_REF] Maurer | Second order sufficient conditions for optimal control problems with free final time: The Riccati approach[END_REF] are made and in addition it is required that (5) is satisfied. Finally, in [START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF] the authors consider also pure state constraints but they impose an even stronger version of the strengthened Legendre-Clebsch condition. That is they need that there exists γ > 0 such that for almost all t ∈ [0, 1],