
HAL Id: hal-00753004
https://hal.sorbonne-universite.fr/hal-00753004v1

Preprint submitted on 16 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric Approach to Second-Order Sufficient
Optimality Conditions in Optimal Control

Daniel Hoehener

To cite this version:
Daniel Hoehener. Geometric Approach to Second-Order Sufficient Optimality Conditions in Optimal
Control. 2012. �hal-00753004�

https://hal.sorbonne-universite.fr/hal-00753004v1
https://hal.archives-ouvertes.fr


Geometric Approach to Second-Order Sufficient Optimality

Conditions in Optimal Control∗

Daniel Hoehener†

November 16, 2012

Abstract

We consider the Bolza optimal control problem with control constraints and propose new second-
order sufficient optimality conditions. These conditions are applicable under much weaker regularity
assumptions than those known in the literature. In particular, the reference control may be merely
measurable and the dynamics may be discontinuous in the time variable. Our approach is based on
a new decomposition result for control constraints, involving second-order tangents.

Résumé

Approche géométrique des conditions d’optimalité suffisantes du second ordre pour
des problèmes de contrôle optimal. Pour un problème de contrôle optimal sous forme de Bolza
avec des contraintes sur les contrôles, nous proposons des nouveaux conditions d’optimalités suf-
fisantes du second ordre. Ces conditions demandent peu de régularité des données. En particulier
le contrôle de référence peut être seulement mesurable et les dynamiques peuvent être discontinues
par rapport au temps. Notre approche est basée sur un nouveau résultat de décomposition pour les
contraintes sur les contrôles. Cette décomposition utilise des tangents du second ordre.

1 Introduction

This paper is devoted to second-order sufficient optimality conditions for the following optimal control
problem:

Minimize ϕ (x(1)) +

∫ 1

0
` (t, x(t), u(t)) dt, (P )

over absolutely continuous x : [0, 1]→ Rn and measurable u : [0, 1]→ Rm satisfying,{
ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U(t), a.e.
x(0) = x0,

(1)

where the maps f : [0, 1] × Rn × Rm → Rn, ` : [0, 1] × Rn × Rm → R, ϕ : Rn → R, the set-valued map
U : [0, 1] Rm and the initial state x0 ∈ Rn are given.
Denote by W 1,1([0, 1];Rn) the space of absolutely continuous mappings. The set of all measurable
mappings u : [0, 1] → Rm such that u(t) ∈ U(t) a.e. will be denoted by U . A process (x, u) comprises
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a control function u ∈ U and a state trajectory x ∈ W 1,1([0, 1];Rn) satisfying the differential equation
in (1). Under standard assumptions the state trajectory x is uniquely defined by a control function u
and the control system in (1). Consequently, the cost functional J : U → R,

J(u) := ϕ (xu(1)) +

∫ 1

0
` (t, xu(t), u(t)) dt, (2)

where xu ∈W 1,1([0, 1];Rn) is the solution of (1) corresponding to the control u, is well defined.

Definition 1.1 A process (x̄, ū) is a (strict) weak local minimizer if there exists ρ̄ > 0 such that ū
minimizes J (strictly) over all ũ ∈ U satisfying ‖ũ− ū‖∞ ≤ ρ̄.

In this note we present a new approach to second-order sufficient conditions. We consider set-valued
maps U(·) where the boundary of U(t) is smooth. Then we use the geometry of the sets U(t) in order
to show that there exists a neighborhood of the reference control ū, such that for every ũ ∈ U in this
neighborhood, one can approximate ũ−ū sufficiently well by first- and second-order tangents. Unlike in
[2], [4], [6], where the sufficient conditions were obtained by using abstract results, our approach permits
a direct and geometric proof. So far direct methods required the reference control ū to be continuous or
piecewise continuous, see for instance [5]. With our approach we are able to state sufficient conditions
when ū is merely measurable. Moreover the dynamics can be discontinuous in the time variable and
no special structure of the Hamiltonian is required. In particular we do not impose a Legendre-Clebsch
condition. Our sufficient optimality conditions form no-gap second-order optimality conditions with
the necessary optimality conditions of [3, Thm. 3.2]. Finally, this approach can be extended to sets
U(t) having nonsmooth boundary.

2 Notations and assumptions

As usual B(x, ρ) stands for the open ball with center x ∈ Rn and radius ρ > 0. ∂K denotes the
boundary of a set K ⊂ Rn and TK(x) the Bouligand tangent cone to K at x, see [1]. Throughout the
paper (x̄, ū) ∈W 1,1([0, 1];Rn)×U denotes a fixed reference process. In order to simplify the notations,
we will abbreviate (t, x̄(t), ū(t)) by [t], thus for instance f [t] := f(t, x̄(t), ū(t)). Furthermore we define,

TB := {t ∈ [0, 1] | ū(t) ∈ ∂U(t)} .

For a map φ : [0, 1]×Rn×Rm → Rk we denote by φx(t0, x0, u0), φu(t0, x0, u0), φxx(t0, x0, u0), φxu(t0, x0, u0),
φuu(t0, x0, u0) its partial- and second-order partial derivatives with respect to x and/or u at (t0, x0, u0),
assuming these derivatives exist. The derivative, resp. the Hessian, of the map (x, u) 7→ φ(t, x, u)
evaluated at (x0, u0) is denoted by φ′(t, x0, u0), resp. φ′′(t, x0, u0).
We require the following regularity of the data: There exists ρ0 > 0 such that,

(A1) (a) ∀x ∈ Rn, ∀u ∈ Rm, f(·, x, u) and `(·, x, u) are measurable and for almost all t ∈ [0, 1], f(t, ·, ·),
`(t, ·, ·) are continuously differentiable on B(x̄(t), ρ0)×B(ū(t), ρ0). Moreover, ϕ ∈ C2(Rn;R);

(b) ∀R > 0, there exists kR ∈ L1([0, 1];R+) such that for a.e. t ∈ [0, 1], f(t, ·, u) and `(t, ·, u) are
kR(t)-Lipschitz on RB for all u ∈ B(ū(t), ρ0);

(c) There exists γ ∈ L1([0, 1];R+) such that for a.e. t ∈ [0, 1] and all x ∈ Rn,

|f(t, x, u)| ≤ γ(t)(1 + |x|), ∀u ∈ B(ū(t), ρ0);

(d) ∀R > 0, the mapping t 7→ sup(x,u)∈RB |`(t, x, u)| is integrable on [0, 1];
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(A2) fx[·] is integrable and ∃a1 > 0 s.t. for a.e. t ∈ [0, 1], ∀x, y ∈ B(x̄(t), ρ0), ∀u, v ∈ B(ū(t), ρ0),

‖fu[t]‖ ≤ a1 and
∥∥f ′(t, x, u)− f ′(t, y, v)

∥∥ ≤ a1(|x− y|+ |u− v|);
(A3) (a) For almost all t ∈ [0, 1], f(t, ·, ·) is twice differentiable on B(x̄(t), ρ0)×B(ū(t), ρ0);

(b) ∃a2 > 0 such that for a.e. t ∈ [0, 1], ∀x, y ∈ B(x̄(t), ρ0), ∀u, v ∈ B(ū(t), ρ0),∥∥f ′′[t]∥∥ ≤ a2 and
∥∥f ′′(t, x, u)− f ′′(t, y, v)

∥∥ ≤ a2(|x− y|+ |u− v|);
(A4) For all t ∈ [0, 1], U(t) := {u ∈ Rm | g(t, u) ≤ 0}, where the function g : [0, 1]× Rm → R satisfies,

(a) g(·, u) is measurable for all u ∈ Rm and there exists Kg > 0 such that for a.e. t ∈ [0, 1],
g(t, ·) is twice continuously differentiable on B(ū(t), ρ0) and for all u ∈ B(ū(t), ρ0),

‖guu(t, u)− guu(t, ū(t))‖ ≤ Kg |u− ū(t)| , ‖guu(t, ū(t))‖ ≤ Kg;

(b) There exists µ > 0 such that |∇ug(t, ū(t))| ≥ µ for a.e. t ∈ TB. For convenience we assume
that |∇ug(t, ū(t))| = 1 for a.e. t ∈ TB.

When (A2) or (A3) are imposed, then we always assume that ` satisfies the same assumptions as f .
Note that if (A4)(a) is satisfied, then one may also parameterize U(t) with the oriented distance
bU(t)(·) = d(·;U(t))− d(·;Rm \U(t)), where d(x;K) := infk∈K |x− k|. In this case (A4)(b) is automat-
ically verified.

3 Main results

Define the Hamiltonian H : [0, 1]× Rn × Rn × Rm → R by H(t, x, p, u) := 〈p, f(t, x, u)〉 − `(t, x, u).

Theorem 3.1 Let (x̄, ū) be a weak local minimizer of problem (P ) and (A1), (A2), (A4) hold true.
Then there exists p ∈W 1,1([0, 1];Rn) such that for almost every t ∈ [0, 1],

1. −ṗ(t) = Hx(t, x̄(t), p(t), ū(t)), p(1) = −∇ϕ (x̄(1));

2. Hu(t, x̄(t), p(t), ū(t))u ≤ 0, for all u ∈ TU(t)(ū(t)).

A map p ∈W 1,1([0, 1];Rn) satisfying (1)-(2) is called adjoint state. A triple (x̄, ū, p) ∈W 1,1([0, 1];Rn)×
U ×W 1,1([0, 1];Rn) is called extremal if (x̄, ū) is a process and p is the corresponding adjoint state.
For a given extremal (x̄, ū, p), we will use the abbreviation [t] := (t, x̄(t), p(t), ū(t)) when evaluating the
Hamiltonian or its (partial) derivatives at (t, x̄(t), p(t), ū(t)).
For any w ∈ L∞([0, 1];Rm) the solution y ∈W 1,1([0, 1];Rn) of the linear system,

ẏ(t) = fx[t]y(t) + fu[t]w(t) a.e. y(0) = 0, (3)

is called the solution of the linearized system corresponding to w. From now on H′′(t, x, p, u) denotes
the Hessian of the function (x, u) 7→ H(t, x, p, u) and for t ∈ TB, π(t, u) stands for the metric projection
of u onto ∂TU(t)(ū(t)). For convenience we set π(t, ·) ≡ 0 if t ∈ [0, 1] \ TB.
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Theorem 3.2 Let (x̄, ū, p) be an extremal and (A1)-(A4) hold true. Assume there exist γ1, γ2 > 0
such that for all u ∈ L∞([0, 1];Rm), satisfying u(t) ∈ TU(t)(ū(t)) a.e. in TB and u(t) ∈ ∂TU(t)(ū(t)) for
a.e. t ∈ {s ∈ [0, 1] | |Hu[s]| ≥ γ1}, we have that the following inequality holds true,

ϕ′′(x̄(1))y(1)y(1) +

∫ 1

0

(
|Hu[t]| guu(t, ū(t))π(t, u(t))π(t, u(t))−H′′[t](y(t), u(t))(y(t), u(t))

)
dt

≥ γ2
∫ 1

0

(
|u(t)|2

)
dt, (4)

where y ∈W 1,1([0, 1];Rn) is the solution of the linearized control system (3) corresponding to u. Then
(x̄, ū) is a strict weak local minimizer of problem (P ).

Remark 1 For t ∈ TB and u ∈ ∂TU(t)(ū(t)) ∩ Sm−1, −guu(t, ū(t))uu is the normal curvature of ∂U(t)
at ū(t) with respect to u. Therefore condition (4) is related to the curvature of ∂U(t) at ū(t).

To prove Theorem 3.2 we consider an arbitrary ũ ∈ U such that ‖ũ− ū‖∞ is small enough. For t ∈
[0, 1]\TB set u(t) = ũ(t)−ū(t) and v(t) = 0. On the other hand, if t ∈ TB, we set u′(t) = π(t, ũ(t)−ū(t)).
Then one shows that ũ(t) − u′(t) − ū(t) = v′(t) + r(t), where v′(t) is such that gu(t, ū(t))v′(t) +
1
2guu(t, ū(t))u′(t)u′(t) ≤ 0 holds true and |r(t)| / |ũ(t)− ū(t)|2 → 0, when |ũ(t)− ū(t)| → 0+. Finally,
we define u(t) = u′(t), v(t) = v′(t) for all t ∈ {s ∈ TB | |Hu[s]| ≥ γ1 or gu(s, ū(s))v′(s) ≥ 0} =: A and
u(t) = u′(t) + v′(t), v(t) = 0 for all t ∈ TB \A. Having this, one uses the variational analysis performed
in [3] in order to conclude.

Remark 2 By (A4) and Theorem 3.1 we have that for a.e. t ∈ [0, 1], |Hu[t]| g(t, ū(t)) = 0 and Hu[t]−
|Hu[t]| gu(t, ū(t)) = 0. Thus, in the case when there exists γ1 > 0 such that,

λ ({t ∈ [0, 1] | |Hu[t]| > 0} \ {t ∈ [0, 1] | |Hu[t]| ≥ γ1}) = 0, (5)

here λ(·) is the Lebesgue measure, (4) becomes the classical sufficient condition of [4]. Note that in this
paper the authors impose a strengthened Legendre-Clebsch condition and assume that (A4)(b) holds on
a neighborhood of TB, in order to obtain these results for an essentially bounded ū. In [6] the same
assumptions as in [4] are made and in addition it is required that (5) is satisfied. Finally, in [2] the
authors consider also pure state constraints but they impose an even stronger version of the strengthened
Legendre-Clebsch condition. That is they need that there exists γ > 0 such that for almost all t ∈ [0, 1],
Huu[t]vv − |Hu[t]| guu(t, ū(t))vv ≤ −γ |v|2 for all v ∈ Rm.

Example 1 Consider ϕ ≡ 0, n = m = 2, x = (x1, x2)
T , u = (u1, u2)

T , x0 = 0 and let f : R4 → R2,
` : R4 → R, g : R2 → R be given by f(x1, x2, u1, u2) = (u1, u1+u2)

T , `(x1, x2, u1, u2) = −1
4x

2
1−u41−u2+1

and g(u1, u2) = u21 + u2 − 1. Then for ū(t) ≡ (0, 1)T , x̄(t) = (0, t)T and p(·) ≡ 0, (x̄, ū, p) is an
extremal. Let γ1 = 1 and observe that {t ∈ [0, 1] | |Hu[t]| ≥ 1} = [0, 1]. Consider u ∈ L∞([0, 1];R2) as
in Theorem 3.2, that is for almost all t ∈ [0, 1], u(t) ∈ R× {0}. Using this we find that,∫ 1

0
(|Hu[t]| guu(t, ū(t))u(t)u(t)−Hxx[t]y(t)y(t)) dt ≥ 3

2

∫ 1

0
|u(t)|2 dt,

where y(·) is the solution of (3) corresponding to u. Since Hxu[t] = 0 and Huu[t] = 0 a.e., we have
that (x̄, ū) is a strict weak local minimizer.

Note that in this example the strengthened Legendre-Clebsch condition of [2], see Remark 2, is not
satisfied.
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