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Abstract

Pluto was discovered in 1930. It is also the multiple system which has been known for
the longest time with the discovery of its first satellite Charon in 1978. Because of Pluto’s
distance to the Sun, the system still has not completed a revolution since its discovery, hence
an uncertain heliocentric distance. The difference between the different ephemeris available
far exceeds the uncertainty needed for the mission New Horizons, that is 1,000 km. A new
astrometric reduction of old photographic plates may be an efficient way to constrain it.

1 Introduction

Pluto was discovered in 1930. Because its period of revolution is about 248 years, it has not
completed an entire revolution. As a consequence, its distance to the Sun is not accurately
known.
Pluto has a unique trait among the dwarf planets, a very massive satellite. Its main satellite
Charon has a mass of one tenth of Pluto’s while the mass of the other satellites Nix, Hydra, P4
and P5 are on the contrary nearly negligible. Because of this mass ratio the center of mass of
the system is outside of Pluto. Pluto’s motion is also the result of the combination of both its
motion around the Sun, and its motion around the barycenter of the system. This situation is
the same for all planets, except that for planets the center of mass lies inside the most massive
object of the system. In the case of Pluto, the motion around the Sun is heavily disturbed by
Charon. Thus any modelization of Pluto’s motion needs to include these perturbations. Up to
now, there were studies separating the satellites [1] and the dwarf planet motions [2], [3].
The first in-situ exploration of the system will be in 2015 by the probe New Horizons. The
probe will not orbit around Pluto or another object of the system. It will make a fly-by of the
system, crossing it in a few hours, before going on exploring another transneptunian object.
Because of this, the probe needs a precision of 1000 km on the heliocentric distance of Pluto. In
this proceeding, we present the ephemeris of Pluto’s system developed, as well as a comparison
between the different ephemeris available. Then, we discuss the use of photographic plates to
achieve the needed precision for the ephemeris of Pluto.

2 Dynamical model : ODIN

We specifically developed the numerical model ODIN (Orbite, Dynamique et Intégration Numérique)
to study the orbit of multiple systems [4], [5]. With ODIN, we integrated the equations of mo-
tion of the bodies of the system in a Solar System barycentric reference frame with inertial axes
coinciding with the ICRF. We also included the perturbations due to the Sun and the planets.
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Because we found the second order harmonics of the gravity fields of Pluto and Charon to be
non-detectable with observations [4], we did not take them into account. As a result, the equa-
tions of motion only consisted in the gravitational interactions between the center of mass of
the bodies and their interaction with the main bodies of the Solar System:

r̈i =
N∑
j=1

−GMj(�ri − �rj)

r3ij
+

4∑
l=1, l �=i

(
−Gml(�ri − �rl)

r3il

)
, (1)

where i is an integrated body, j is the Sun or a planet, l is a body of Pluto’s system, Mj is the
mass of the body j, ml is the mass of the body l, �rj is the position vector of the body j with
respect to Solar System barycenter and rij is the distance between bodies i and j.

Our model was fitted to observations using the least-square method. We may approximate
the relationship between the calculated residuals and the model parameter errors by its linear
part :
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To obtain the needed partial derivatives, we used Newton’s second law :
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Assuming that the derivations with respect to time and to a dynamical parameter are inde-
pendent, we determined the differential equations [6]:
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where cl is a parameter we need to adjust. We numerically integrated these equations alongside
the equations of motion. Note that our model can be fitted to both resolved and unresolved
observations of Pluto’s system in (RA, Dec) spherical coordinates and to observations of the
satellites relative to Pluto.

3 Observations used

We used sets of observations taken from 1914 to 2011 and because of this large time span,
the number of observations and their accuracy changed significantly between the different sets.
Over this period, there is a gap in both the precision and the number of observations because
of the introduction of CCD targets. Most of these observations are unresolved, the first images
separating Pluto and Charon being those taken by the Hubble Space Telescope [7]. The char-
acteristics of the unresolved observations and stellar occultations used are given in the Table
1.

4 Fitting to the observations

Because of the small perturbations due to the rest of the Solar System on the satellites, we
first fitted the motion of the satellites and then we used this first solution to fit the heliocentric
motion of the system.
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Table 1: Properties of the observations to which ODIN was fitted
Origin Number Reference frame Observations Reference Years

Lowell, Yerkes
and McDonald
Observatory

552 B1950 Photographic [8] 1914-1965

Asiago Observa-
tory

175 B1950 Photographic [9], [10], [11], [12] 1971-1997

A.J. Dyer Obser-
vatory

15 B1950 Photographic [13] 1965-1981

La Silla 45 B1950 Photographic [14], [15] 1980 & 1985
Torino Observa-
tory

39 B1950 Photographic [16], [17] 1973-1982

Brorfelde Obser-
vatory

15 B1950 Photographic [18] 1975-1978

Lick Observatory 11 B1950 Photographic [19], [20], [21] 1980-1985
Flagstaff Obser-
vatory

5 B1950 Photographic [22] 1980 & 1983

La Silla 29 J2000 Photographic [23] 1989-1990
Pulkovo astro-
graph

207 J2000 Photographic [24] 1930-1993

FASTT 914 J2000 CCD IAU Comm. 4 a from 1995
FASTT websiteb

Table Mountain 259 J2000 CCD IAU Comm. 4 a 1997-2010
Bordeaux-Floirac
Observatory

87 J2000 CCD [25] 1995-2005

Observatoire de
Haute-Provence

242 J2000 CCD 1997-2010

Observatoire du
Pic du Midi

73 J2000 CCD 2011

Stellar occulta-
tions

14 J2000 Occultations [26], Bruno Sicardy (pri-
vate communication)

2005-2008

a http://iau-comm4.jpl.nasa.gov/plan-eph-data/

b http://www.nofs.navy.mil/data/plansat.html
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Table 2: Mean value and standard deviation for the residuals of photographic observations with
ODIN, DE421 and INPOP08 ephemerides.

ODIN DE421
INPOP08

Δα (”) Δδ (”) Δα (”) Δδ (”)

old observations −0.026± 1.162 0.023± 1.558 −0.104± 1.163 0.088± 1.553
0.754± 1.342 0.142± 1.560

Pulkovo 0.034± 0.398 0.163± 0.418 −0.081± 0.388 0.027± 0.414
0.352± 0.657 0.035± 0.414

A.J. Dyer-Lick-Mink −0.467± 0.960 −0.034± 0.480 −0.617± 0.932 −0.146± 0.500
−0.564± 0.990 −0.147± 0.523

Tokyo-Bordeaux-Flagstaff −0.029± 0.100 −0.004± 0.097 −0.053± 0.0962 −0.028± 0.105
−0.068± 0.095 −0.021± 0.105

Gemmo-USNO −0.075± 0.197 −0.024± 248 −0.110± 0.199 −0.014± 0.252
−0.129± 0.200 −0.004± 0.251

Bordeaux −0.069± 0.098 −0.077± 158 −0.078± 0.091 −0.075± 0.146
−0.129± 0.200 −0.004± 0.251

4.1 Heliocentric motion of the system

The semi-major axis differs by 0.2% from that given by DE423 [27] for the same date. A more
complete comparison between the JPL ephemeris of Pluto and our own fitted model is given
in Table 2 with the standard deviation and mean value of the residuals obtained with the two
theories for the photographic observations. The residuals of both theories are quite close con-
sidering their statistics.

4.2 Heliocentric distance of the system

Concerning the issue of Pluto’s heliocentric distance, the least-square method provides a statis-
tical uncertainty of the fitted semi-major axis. Yet this uncertainty is based on the hypothesis
that the errors of the observations follow a Gaussian law, which is not the case because of sys-
tematic errors. As a consequence, this uncertainty is only linked to the residuals and to the
correlations between the parameters in the model. What we need to know is the error we do
because of the differences between the real motion we try to determine and our model.

To determine this error, we need to compare the heliocentric distance given by different
theories which can be considered as having the same quality concerning the residuals. For this
purpose, we compared the heliocentric distance of Pluto to the Sun between ODIN, DE421 [2],
DE423 [27], INPOP08 [28], and INPOP10 [3]. These ephemerides are based on three models
and are fitted to similar sets of observations. The differences on the heliocentric distance will
be a lower estimation of the external precision of Pluto’s motion.

The result is shown in figure 1. As we can see, there is a large discrepancy between the
models and the New Horizons spacecraft needs a 1,000 km precision of the heliocentric distance
of Pluto to make observations. In 2015, the most recent theories can have up to 5,000 km
differences. Even when comparing the two models with the smallest difference in distance, that
is ODIN and DE421/423, we still have about 4,000 km difference.

The best way to try to reduce this uncertainty would be either to increase the number of
observations, or to improve the accuracy of those already existing. We know that observations of
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Figure 1: Evolution of the difference in the heliocentric distance of Pluto between DE421 and
other models.

Pluto are taken every year and used in the models. But the fly-by of New Horizons is due in 2015.
It is doubtful a few years of observations will constrain the models enough. The second source
of improvement would be to make a new reduction of the observations taken with photographic
plates. The uncertainties with these observations are widely larger than those with the more
recent observations and these observations span on many decades. Reducing the uncertainties
attached to the old observations would naturally reduce the differences between the models.

5 Conclusion

We developed a numerical model specifically dedicated to the study of multiple systems: ODIN.
After fitting our model to observations of Pluto’s system, we obtained a dynamical solution for
Pluto’s heliocentric motion and for the satellite plutocentric motions. This dynamical solution
provided similar results to those obtained with different dynamical models.Yet, we found that
the heliocentric distance of Pluto is known with less precision than what we expected. The New
Horizons probe needs a 1,000 km accuracy on the heliocentric distance of Pluto. Even though
the expected precision of the different available ephemerides are less than this threshold, the
differences between the models are far greater. The different models have similar results for the
most recent observations. The oldest observations of the system have far greater residuals. A
new reduction of these old observations would certainly reduce these residuals and then enough
constrain the heliocentric distance of Pluto.
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