
HAL Id: hal-00764982
https://hal.sorbonne-universite.fr/hal-00764982v1

Preprint submitted on 13 Dec 2012 (v1), last revised 16 Dec 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Homogenization of a model for the propagation of sound
in the lungs

Paul Cazeaux, Céline Grandmont, Yvon Maday

To cite this version:
Paul Cazeaux, Céline Grandmont, Yvon Maday. Homogenization of a model for the propagation of
sound in the lungs. 2014. �hal-00764982v1�

https://hal.sorbonne-universite.fr/hal-00764982v1
https://hal.archives-ouvertes.fr


Homogenization of a model for the propagation of sound in the

lungs∗

Paul Cazeaux†, Céline Grandmont‡, Yvon Maday§

December 13, 2012

Abstract

In this paper, we are interested in the mathematical modeling of the propagation of sound

waves in the lung parenchyma, which is a foam–like elastic material containing millions of air–

filled alveoli. In this study, the parenchyma is governed by the linearized elasticity equations

and the air by the acoustic wave equations. The geometric arrangement of the alveoli is

assumed to be periodic with a small period ε > 0. We consider the time–harmonic regime

forced by vibrations induced by volumic forces. We use the two–scale convergence theory to

study the asymptotic behavior as ε goes to zero and prove the convergence of the solutions

of the coupled fluid–structure problem to the solution of a linear–elasticity boundary value

problem.

Keywords: acoustic–elastic interaction, Periodic homogenization, Two scale convergence method

1 Introduction and motivation

Lung sounds provide a cheap, non–invasive diagnostic technique which is often used for the
detection of some pathologies of the respiratory system [28, 30]. Some diseases are associated
with changes in the structure of the lung at various scales. Medical doctors have developed
a good empirical understanding of the relation between the characteristics of the lung sounds
they can hear, for example thanks to the stethoscope, and the underlying pathologies. But
one lacks a precise physical understanding of the generation and propagation of sound waves
through the respiratory system and the lung tissue, as well as of the changes in acoustic properties
associated with underlying lung diseases. Another factor of interest is the need for understanding
the propagation of pressure waves due to high–velocity impacts on the chest, thought to be
responsible for lung contusions [23].

The lung tissue (called the parenchyma) is a very complex structure similar to a foam.
Indeed, the lungs contain up to 300 million air pockets called the alveoli, connected by a bifur-
cating network of airways and embedded in an elastic matrix of connective tissue. The acoustic
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properties of this media are the consequence of this very complex, porous microstructure. Nev-
ertheless, it is hard to describe accurately the properties of such porous media and, in practice,
macroscopic models of reduced complexity are used. Our goal is to obtain macroscopic models
based on more detailed tissue mechanics and geometry that are expected to further improve the
understanding of experimental studies [28].

Current models for the acoustic properties of the lung parenchyma are usually based on
the work by Rice [29], modeling the parenchyma as a homogeneous mixture of tissue and non–
communicating air bubbles. When the sound wavelength is greatly superior to the size of the
air bubbles, averaging the properties of the medium over volume leads to consider the porous
medium as an elastic one. In this case, the speed of sound is independent of the frequency and
given by the Wood formula c = (K/ρ)1/2 , where K is the effective volumetric stiffness of the
medium and ρ its average density. When the volumetric proportion of the tissue phase is h,
and under adiabatic conditions, the effective stiffness can be found by the following averaging
process:

1

K
=

1− h

γP
+

h

Ks
,

where γ is the ratio of specific heats of the air, P is the gas pressure and Kt is the stiffness of
the tissue structure. The average density is given by

ρ = (1− h)ρg + hρs,

where ρg is the density of the air phase and ρs the density of the tissue phase. Experimental
measurements of the speed of sound in the low–frequency range (100 Hz to 1000 Hz) presented
in [25, 29] show a good agreement with Woods’ formula. However this homogeneous elastic
representation is not valid as the frequency increases and the wavelength approaches the size of
the alveoli as studied in [23] on a one dimensional model.

Other acoustic models of the lung’s parenchyma have been proposed, mainly to study the
effects of air communication between alveoli, which may be an important phenomemum at very
low frequencies [13]. The main wave propagation models for such porous media go back to the
work of Biot [8, 9]. Biot’s equations were first introduced to characterize the flow of a viscous fluid
through a porous elastic frame as well as the associated acoustic phenomena [10]. This model
has been then derived using general homogenization theory [5, 31, 12]. More recently, assuming
periodicity, the model as been obtained in [1, 22] by an asymptotic process using two–scale ho-
mogenization theory [26, 2]. Moreover, concerning the lung tissue modeling, the homogenization
approach has been used by Owen and Lewis [27] to study high–frequency ventilation, and Siklosi
et al. [32] to study the lungs of fetal sheep.

Here, we propose to derive rigorously, thanks to the homogenization theory, the non–
dissipative model developped by Rice [29] for the propagation of low–frequency sound in a domain
Ω modeling the parenchyma. We assume that this domain is occupied by an elastic deformable
structure (the lung tissue [33]) and closed pockets filled with a compressible inviscid fluid (the
air). Moreover, we assume that the size of the alveoli is small compared to the wavelength, i.e.
that the macroscale and microscale are well separated, and we use the two–scale homogenization
technique in order to investigate the asymptotic behavior of this medium as the size of the alveoli
tends to zero. Consequently we have to find the homogenized limit of a fluid–structure interaction
problem where the structure is elastic and the enclosed air is compressible and inviscid. Note
that when the model includes a viscous fluid, the effective material obtained by homogenization
usually depends strongly upon the contrast of property between the viscosity of the fluid and
the elasticity of the structure, ranging from a viscoelastic material when this contrast is small to
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material with a diphasic macroscopic behavior when the contrast is strong [22]. The case of an
inviscid but incompressible fluid can be found in [20]. In this work, since there is no viscosity, the
main difficulty to deal with the absence of space derivatives of the fluid velocity in the linearized
compressible Euler equations. As a result, the result depends strongly upon the geometry of
the micro–structure and specifically the connectedness of the fluid part. Here, in this paper,
we assume that the alveoli are disconnected. This is based on the common assumption [29, 23]
that air does not communicate freely between neighbouring alveoli at frequencies above a few
hundred hertz under normal circumstances. This hypothesis has been validated by a number of
experimental studies, see e.g. [25, 13]. Moreover, the space repetition of the alveoli suggests us
to consider an idealized medium containing a periodic arrangement of disconnected pores with
a small period ε > 0.

The material we study behaves like a closed foam. We consider time–harmonic solutions
to understand the behavior of the material in response to a harmonic forcing. Such a material
was studied in the static case in [7], and we will see that we recover the same model in the
vanishing frequency limit. To obtain a homogenized system, we pass to the limit as ε goes to
zero and we use the two–scale convergence theory. In the case of a vanishing viscosity of order ε2

and an connected incompressible fluid, the limit of the time–hamonic system was studied in [4].
The harmonic non–dissipative case brings some specific difficulties since the problem set in the
frequency domain, of a Helmhotz nature, is not coercive. This means that the standard two–
scale homogenization procedure cannot be applied directly and we have to use some nonstandard
arguments to study the convergence.

In the limit, we obtain a homogeneous, non dispersive elastic medium, as expected [28]. We
can recover the effective coefficients by computing the solutions of cell problems. Interestingly,
on one hand, the averaging effects on the fluid pressure give rise to a nonlocal term in the
formulation of the cell problems, and we obtain the same elastic tensor as in [7]. On the other
hand, the macroscopic effect of the gaseous bubbles is mainly a modification of the bulk modulus
(compressibility) of the limit material.

The paper is organized as follows. First, we detail the geometry and derive the equations
of the model. Then, we study the well–posedness of the coupled elastic–acoustic problem for
a fixed value of the micro–scale parameter ε and show that it verifies a Fredholm Alternative
Principle (Proposition 5). In section 3.1, we analyze the asymptotic behavior of the displacement
field, using homogenization techniques and an argument by contradiction. The main result of
the paper is the convergence Theorem 2, which describes both the two–scale convergence of the
displacement field and the homogenized problem (73).

2 Description of the coupling of the elastic and acoustic equations

in a perforated domain

2.1 Geometric setting

We consider that the lung tissue occupies a smooth domain Ω of R
d with d = 2 or 3. This

domain is filled homogeneously with a porous medium modeling the air–filled alveoli embedded
in the elastic structural matrix. We assume that the alveoli are periodically distributed and of
size ε > 0. More preciselly, we define an open periodic unit cell Y representing the geometry of
an alveolus. By rescaling, we normalize Y so that |Y| = 1 and we define the associated periodic
array Z of Rd, which is the discrete set of translation vectors such that Y + Z is a tiling of the
whole space. The standard example is Y = (−1/2, 1/2)d and Z = Z

d. We can also study for
example a honeycomb as presented in Figure 1, where Y is an hexagon with side a > 0 such that
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Figure 1: Domain Ω and reference cell Y

its volume is 1 and Z the discrete lattice with basis (0, a) and
(√

3a/2, a/2
)

in R
2, or a paving

based on the truncated octahedron in 3D which is a standard representation of the alveoli [19].
The reference unit cell is supposed to be divided between an elastic and a fluid (acoustic) part
YS and YF , where YF ⊂ Y̊ is smooth, simply connected, and locally lies on one side only of its
boundary. The boundary ΓF = ∂YF is the interface between the two components of Y. For the
sake of simplicity, we suppose that the barycenter of YF is at the origin of Rd.

Next, for any given small parameter ε > 0, we introduce the following notations:

• For a given a multi–index k ∈ Z, let

Yk
ε = ε(Y + k), Yk

F,ε = ε(YF + k), Yk
S,ε = ε(YS + k), Γk

F,ε = ε(ΓF + k), (1)

that are, a translation by k and a rescaling by ε of the unit cell Y and of the fluid and
structure part as well as of the fluid–structure boundary.

• Introducing the multi–index set

ZΩ
ε = {k ∈ Z|Yk

ε ⊂ Ω},

we define the periodically perforated structure domain, the fluid domain and the interior
interface respectively as

ΩS,ε = Ω \
⋃

k∈ZΩ
ε

YF
k, ΩF,ε =

⋃

k∈ZΩ
ε

Yk
F,ε, ΓI

ε =
⋃

k∈ZΩ
ε

Γk
F,ε. (2)

• Let nS and nS
ε be unit normal vectors on the fluid–structure cell interface ΓF and interior

interface ΓI
ε respectively, pointing in each case to the exterior of the structure represented

respectively by YS and ΩS,ε.

• Let χF , χS be the characteristic functions of YF and YS respectively, and χF,ε, χS,ε, χk
F,ε,

χk
S,ε the characteristic functions of ΩF,ε, ΩS,ε, Yk

F,ε and Yk
S,ε respectively.

• The subscript # on the functional spaces’ name denotes the property of periodicity with
respect to Z, in the sense that C∞

# (Y) is the space of Z–periodic functions on R
d indefinitely

differentiable on R
d, and H1

#(Y) and L2
#(Y) are the closure of C∞

# (Y) respectively in
the H1– and the L2–norm. Moreover, H1

#(YS) and L2
#(YS) are defined as the spaces of

restrictions of functions in H1
#(Y) and L2

#(Y) to YS + Z.
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Note that due to the choice of ZΩ
ε , no hole intersects the exterior boundary of Ω. For this reason,

∂ΩS,ε = ∂Ω does not depend on ε. This will make the homogenization process, as ε goes to
zero, more convenient but not fundamentally different from a case where the holes are allowed
to sometimes intersect the exterior boundary.

As the material presents two characteristic length scales (macroscopic and microscopic),
we introduce finally two sets of spatial variables: the ordinary position vector x ∈ Ω, and the
position vector in a stretched coordinate system y = ε−1x. The variable x is called the slow
variable and the variable y the fast variable, and as ε goes to zero we expect the two sets of
variables to become independent. To make a difference between differentiation with respect to
either set of variables x or y, we will use a subscript as in ∇x or divy when there is a doubt.
When necessary, we will use the Einstein convention of repeated indexes to write summations.

2.2 Acoustic–Elastic interaction

Following [24], we write the model equations for the propagation of sound waves through our
perforated material. As a first step, we describe the equations governing this propagation in
the time domain for a given parameter ε. As we are studying sound waves, the perturbation
or displacement from the rest configuration of the structure or air is the relevant unknown to
consider. This perturbation is supposed to be small, so one can consider the linearized models
to describe the behavior of both structure and air parts of the material to understand the wave
propagation. As a second step, the signal will be represented by a harmonic superposition of
monochromatic waves, for which every excitation source and every unknown obeys a harmonic
dependence of frequency ω. Our goal is then to obtain a homogenized system in the asymptotic
limit where ε goes to zero, describing the effective equation satisfied by the pressure wave for
each value of ω.

Let us write the equations describing the mechanical behavior of the material. For simplic-
ity, we adopt a Lagrangian point of view and denote Uε the time–dependent displacement field
throughout the structure and air parts of the domain Ω. We begin by describing the equations
modeling the behavior of the structure part. Assuming that the wall material behaves like a
linearized elastic medium, the stress tensor satisfies Hooke’s law:

σε(Uε) = λ
(
x,

x

ε

)
div(Uε)Id + µ

(
x,

x

ε

)
e(Uε),

where λ > 0, µ > 0 are the Lamé parameters, Id the identity matrix, and e(Uε) is the linearized
Cauchy strain tensor:

e(Uε) =
1

2

(
∇Uε +

T ∇Uε

)
.

Note that we allow λ and µ to vary through the domain, for example to model a pathology where
the parenchyma is locally rigidified. Moreover, to model variations both at the macroscopic level
and at the alveolar, microscopic level, we allow a dependence on both the slow variable x and
the fast variable y = ε−1x. We assume that λ and µ are essentially bounded, continuous in
the x variable on Ω and periodic in the y variable (this is the right regularity for the two–scale
convergence method, and continuity in at least one variable is necessary for x 7→ µ(x, ε−1x)
to be measurable, see [2]). Moreover, µ is supposed to be uniformly bounded away from 0,
consequently there exists a constant µ0 > 0 independent of (x,y) such that:

∀x ∈ Ω, ∀y ∈ Y, µ(x,y) ≥ µ0 > 0. (3)
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Suppose that the material reacts to a volumic force Fε. The Newton law then yields the equations
for the linearized elastic material, with ρS denoting the density:

ρS
∂2Uε

∂t2
− div(σε(Uε)) = Fε, in ΩS,ε. (4)

Finally we also impose homogeneous Dirichlet boundary conditions on the outer boundary ∂Ω:

Uε = 0, on ∂Ω. (5)

Let us now describe the fluid behavior. The fluid domain ΩF,ε is filled with air which is
considered as an inviscid, irrotational, compressible perfect gas. We consider only small pertur-
bations with respect to a reference equilibrium state in each hole, with the reference pressure
being the atmospheric pressure P0 and a constant equilibrium density ρ0, under a potential vo-
lumic excitation force ∇Gε. Following [24], a complete description of the behavior of the gas is
given by two conservation laws and an appropriate state law of the gas, using three unknowns:
the displacement Uε, the absolute pressure Pε and the gas density ρε.
The momentum conservation law for an inviscid, irrotational gas writes:

ρε
∂2Uε

∂t2
+∇Pε = ∇Gε, in ΩF,ε. (6)

The continuity equation, or mass conservation law, writes:

∂ρε
∂t

+ div

(
ρε
∂Uε

∂t

)
= 0, in ΩF,ε. (7)

To close the system, we make the assumption that the air compression associated with the
propagation of sound waves is an adiabatic process. This is an usual assumption regarding
sound propagation, and it is motivated by the difference in characteristic times between the heat
dissipation process and the short timescale associated with the propagating waves. Pressure and
density are then linked by the following relation:

Pε = P0

(
ρε
ρ0

)γ

, in ΩF,ε, (8)

where γ is the adiabatic index of the air (γ ≈ 1.4). Let us now linearize the equations (6), (7),
(8) around the reference state following our assumption of small perturbation from rest:

ρ0
∂2Uε

∂t2
+∇Pε = ∇Gε in ΩF,ε, (9a)

∂ρε
∂t

+ ρ0div

(
∂Uε

∂t

)
= 0 in ΩF,ε. (9b)

Pε − P0 = c2(ρε − ρ0) in ΩF,ε, (9c)

where we have introduced c =
√
γ P0

ρ0
, the sound speed in the air. We eliminate the density ρε by

combining (9b) and (9c), and we find that the displacement and pressure in the fluid are solution
to the coupled system of equations:

ρ0
∂2Uε

∂t2
+∇Pε = ∇Gε, in ΩF,ε. (10a)

1

c2
∂Pε

∂t
+ ρ0div

(
∂Uε

∂t

)
= 0, in ΩF,ε. (10b)
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Let us now describe the coupling conditions between the fluid and the structure. The first
condition expresses the continuity of the normal component of the strain tensor at the interface:

−Pεn
S
ε = σε(Uε|ΩS,ε

)nS
ε on ΓI

ε. (11)

Moreover, because the air is inviscid, there is no constraint on the tangential component of the
trace of the velocity at the interface. Rather, we have slip boundary conditions, meaning that
the normal component of the displacement is continuous:

Uε|ΩS,ε
· nS

ε = Uε|ΩF,ε
· nS

ε on ΓI
ε. (12)

Finally our coupled fluid–structure interaction problem is described by equations (4), (10) and the
boundary conditions (5), (11) and (12) complemented with initial conditions. By construction,
this coupled system is now linear and its behavior can be understood by harmonic superposition
technique. We thus assume that both Gε, Fε and the initial conditions are coherent with a
time–harmonic forcing along the mode eiωt. This leads to assume that the unknowns write:

Uε(x, t) = uε(x)e
iωt in Ω, Pε(x, t) = pε(x)e

iωt in ΩF,ε,

Fε(x, t) = fε(x)e
iωt in Ω, gε(x, t) = Gε(x)e

iωt in Ω.

Note that the fields uε, pε, fε, gε will be complex–valued in what follows. In particular the
Hilbert spaces we consider will be complex–valued spaces unless it is otherwise specified. We
denote by Re (·) and Im (·) respectively the real and imaginary part of a complex argument.

2.3 Harmonic formulation

Taking into account this time dependency, the behavior of the coupled fluid and structure for
some frequency ω is described by the complex displacement / pressure field (uε, pε) solving the
following system:

−ρSω2uε − divσε(uε) = fε in ΩS,ε, (13a)

−ρ0ω2uε +∇pε = ∇gε in ΩF,ε, (13b)
1

c2
pε + ρ0div(uε) = 0 in ΩF,ε, (13c)

−pεnS
ε = σε(uε)n

S
ε on ΓI

ε, (13d)

uε|ΩS,ε
· nS

ε = uε|ΩF,ε
· nS

ε on ΓI
ε, (13e)

uε = 0 on ∂Ω. (13f)

Remember that we have assumed that uε is irrotational in ΩF,ε, this has lead to (13b). To write
this system in a more suitable form for further analysis, let us introduce a velocity potential φε
defined up to a constant in each hole, such that

∇φε = iωuε. (14)

We choose to work with the potential that has zero mean in each hole to fix the constant. By
combining the three relations (13b), (13c) and (14), we see that:

∇
(
−ω2φε − c2∆φε − iωgε/ρ0

)
= 0.
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To get rid of the gradient in this equation we need to introduce a constant Ck
ε on each connected

component of ΩF,ε, depending only on the hole index k. This leads to the following Hehlmoltz
equation set on each hole Yk

F,ε:

− ω2φε − c2∆φε = iω
gε + Ck

ε

ρ0
. (15)

Moreover, the boundary condition (13e) together with (14) imply that the following compatibility
condition is satisfied:

∫

Yk

F,ε

(
iω
gε + Ck

ε

ρ0

)
= c2

∫

Γk

F,ε

∂φε
∂nS

ε

= iωc2
∫

Γk

F,ε

uε · nS
ε . (16)

From (16) the constant Ck
ε appearing in equation (15) can be determined and satisfies:

Ck
ε =

1

|Yk
F,ε|

(
ρ0c

2

∫

Γk

F,ε

uε · nS
ε −

∫

Yk

F,ε

gε

)
. (17)

We next define a function Cε of L2(Ω), constant in each cell Yk
ε by

Cε(x) =

{
Ck
ε if x ∈ Yk

ε for some k ∈ ZΩ
ε ,

0 else.
(18)

We now eliminate the fluid pressure from the equations. From (13c) and (14) we derive

iωpε = −ρ0c2∆φε,

which combines with (15) yields

pε = −iωρ0φε + gε + Cε. (19)

Bringing together (15), (17) and (19), we write a new, equivalent system of equations describing
the behavior of our coupled fluid–structure material. The new unknowns are the structure
displacement and the fluid velocity potential (uε, φε). Note that the displacement field uε is
defined only on ΩS,ε from now on.

−ρSω2uε − divσε(uε) = fε in ΩS,ε, (20a)

−ω2φε − c2∆φε = iω
gε + Cε

ρ0
in ΩF,ε, (20b)

σε(uε)n
S
ε = − (−iωρ0φε + gε + Cε)n

S
ε on ΓI

ε, (20c)

iωuε · nS
ε =

∂φε
∂nS

ε

on ΓI
ε, (20d)

uε = 0 on ∂Ω, (20e)

with Cε defined by (18).
Now we are going to write the variational formulation of this problem. Let us define the

complex Hilbert spaces (bold face letters indicate spaces of vector–valued functions):

H1
0(ΩS,ε) =

{
vε ∈ H1(ΩS,ε),vε|∂Ω = 0

}
,
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H1
mean(ΩF,ε) =

{
ψ ∈ H1(ΩF,ε),∀k ∈ ZΩ

ε ,

∫

Yk

F,ε

ψ = 0

}
.

The norms associated to functional spaces on ΩF,ε are to be understood as broken norms. For

instance, for ψ ∈ L2(ΩF,ε),‖ψ‖L2(ΩF,ε) =


∑

k∈ZΩ
ε

‖ψ‖2
L2(Yk

F,ε)




1/2

.

Let us also define the L2–projector Πε onto the space of functions that are constant on
each cell Yk

ε , by

Πε(φ) =
∑

k∈ZΩ
ε

1

|Yk
ε |

(∫

Yk
ε

φ

)
χYk

ε
=
∑

k∈ZΩ
ε

1

εd

(∫

Yk
ε

φ

)
χYk

ε
. (21)

Using the operator Πε and (17), we can rewrite the L2 function Cε introduced in (18) as:

Cε = ρ0c
2
∑

k∈ZΩ
ε

1

εd|YF |

(∫

Γk

F,ε

uε · nS
ε

)
χYk

ε
− 1

|YF |
Πε (χF,εgε) .

By taking a couple of test functions (v, ψ) in H1
0(ΩS,ε) × H1

mean(ΩF,ε) and using v as a test
function in equation (20a) and ψ in equation (20b), the weak formulation of (20) reads as
follows: for fε ∈ L2(Ω) and gε ∈ H1(Ω), find (uε, φε) ∈ H1

0(ΩS,ε) × H1
mean(ΩF,ε) such that for

any (v, ψ) ∈ H1
0 (Ω)

d ×H1
mean(ΩF,ε),





∫

ΩS,ε

−ρSω2uε · v+ σε(uε) : e(v) + ρ0

∫

ΓI
ε

iω
(
ψuε · nS

ε − φεv · nS
ε

)

+ ρ0c
2
∑

k∈ZΩ
ε

1

εd|YF |

(∫

Γk

F,ε

uε · nS
ε

)(∫

Γk

F,ε

v · nS
ε

)

+ ρ0

∫

ΩF,ε

−ω
2

c2
φεψ +∇φε · ∇ψ

=

∫

ΩS,ε

fε · v −
∫

ΓI
ε

(
gε −

1

|YF |
Πε(χF,εgε)

)
v · nS

ε

+

∫

ΩF,ε

iω

c2

(
gε −

1

|YF |
Πε(χF,εgε)

)
ψ.

(22)

Note that the trace of Πε(χF,εgε) over ΓI
ε = ∪k∈ZΩ

ε
Γk
F,ε makes sense since its restriction to

each Yk
ε is constant and thus belongs to H1(Yk

ε ).

Remark 1. If we take the frequency ω to be zero, we recover precisely the static model studied
in detail in [7].

Remark 2. Note, the presence of the unusual term

∑

k∈ZΩ
ε

1

εd|YF |

(∫

Γk

F,ε

uε · nS
ε

)(∫

Γk

F,ε

v · nS
ε

)
,

which for instance appeared in the model studied in [7]. It is a local term at the macroscopic scale
and nonlocal at the microscopic (alveolar) scale, and it comes from an average pressure in each
hole that mathematically was expressed by the compatibility condition (16).

We are going to study this system and its limit as ε goes to zero. But first let us introduce
some useful notations and tools.
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2.4 A few useful definitions and results

Let us describe here a few definitions and results we will frequently use in what follows and,
in particular, the framework of two–scale homogenization laid out by G. Nguetseng [26] and
G. Allaire [2]. Since we want to pass to the limit as ε goes to zero, we have to pay special
attention to the dependency of the various constants with respect to ε: it is indeed crucial to
get uniform bounds in order to obtain the compactness properties of the weak or two–scale
topologies. Consequently we will first define extension operators for functions defined on the
domains ΩS,ε or ΩF,ε to functions defined on the whole domain Ω, whose norms are independent
of ε. Next, we will derive Poincaré and Korn inequalities on ΩS,ε. Finally, after recalling the
two–scale convergence properties, we will study the well-posedness of (22) for a given ε > 0 and
derive some uniform energy bounds.

2.4.1 Extension operators

As is standard when dealing with porous multiscale domains, we need extension operators from
ΩS,ε and ΩF,ε onto Ω since convergence cannot be described in parameter dependent domains.
We define two extension operators:

• An extension operator in L
(
Hk(ΩS,ε),H

k(Ω)
)

for k = 0, 1, denoted by ·̂, such that for
some C > 0 independent of ε and depending only on Ω and Y, for all uε ∈ H1(ΩS,ε),

ûε = uε in ΩS,ε,

‖ûε‖L2(Ω) ≤ C‖uε‖L2(ΩS,ε), ‖∇ûε‖L2(Ω) ≤ C‖∇uε‖L2(ΩS,ε). (23)

The construction of such an operator can be found e.g. in [17].

• An extension still denoted by ·̂ : H1
mean(ΩF,ε) → H1

0 (Ω) that we are going to construct in
the following Lemma.

Lemma 1. There exists an extension operator ·̂ : H1
mean(ΩF,ε) 7→ H1

0 (Ω) for every ε > 0, such
that ∀φε ∈ H1

mean(ΩF,ε) we have the property

|φ̂ε|H1(Ω) ≤ C|φε|H1(ΩF,ε),

where the constant C depends only on Y and not on ε.

Proof. First of all, let us consider a linear continuous extension operator fromH1
mean(YF ) (defined

as the set of functions in H1(YF ) with zero average) to the space H1
0 (Y). As an example, we

define for any φ ∈ H1
mean(YF ) its harmonic extension E(φ) ∈ H1

0 (Y) by solving the Poisson
problem 




−∆ψ = 0 in YS ,

ψ = φ|ΓF
on ΓF ,

ψ = 0 on ∂Y.

It is well–known that for some constant C depending only on YS,

‖ψ‖H1(YS) ≤ C‖φ‖H1/2(ΓF ).

Thanks to both the trace inequality and the Poincaré–Wirtinger inequality in H1
mean(YF ), we

have
‖ψ‖H1(YS) ≤ C‖φ‖H1(YF ) ≤ C|φ|H1(YF ),
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where C depends only on Y, YF , YS. The function E(φ) on Y defined as

E(φ)(x) =

{
φ(x) if x ∈ YF ,

ψ(x) if x ∈ YS,

belongs to H1
0 (Y) and the following estimate holds for some constant C, depending only on Y,

YS and YF :
|E(φ)|H1(Y) ≤ C|φ|H1(YF ). (24)

Now let φε ∈ H1
mean(ΩF,ε). For each k ∈ ZΩ

ε , we have φε|Yk

F,ε
(ε · +k) ∈ H1

mean(YF ). Let

us define:

φ̂ε(x) =

{
E
(
φε|Yk

F,ε
(ε ·+k)

)
(ε−1(x− k)) if x ∈ Yk

ε , k ∈ ZΩ
ε ,

0 otherwise.

Because the traces of φ̂ coincide on each side of ∂Yk
ε with 0, φ̂ε belongs globally to H1

0 (Ω). We
have the estimate:

|φ̂ε|2H1(Ω) =
∑

k∈ZΩ
ε

∫

Yk
ε

|∇φ̂ε|2

=
∑

k∈ZΩ
ε

εd
∫

Y
|ε−1∇ (E {φε(ε ·+k)} (y)) |2

= εd−2
∑

k∈ZΩ
ε

|E {φε(ε ·+k)}|2H1
0 (Y)

≤ C2εd−2
∑

k∈ZΩ
ε

|φε(ε ·+k)|2H1(YF )

≤ C2|φε|2H1(ΩF,ε)
, (25)

where C is the same constant as in (24) and thus is independent of ε. This concludes the proof
of the Lemma.

2.4.2 Korn and Poincaré inequalities

The L2–norm of the Cauchy stress tensor e(u) will appear naturally when we compute energy
bounds for our solutions. To deduce H1–bounds, we need the Korn inequality. This result is
well–known in the case of a bounded open set Ω with Dirichlet boundary conditions. Once again,
here we pay special attention to the dependency of the constants on ε. It is well–known that the
Korn inequality holds on Ω [15]: there exists K > 0 depending only on Ω, such that

‖e(u)‖L2(Ω) ≥ K1|u|H1(Ω), ∀u ∈ H1
0(Ω). (26)

The Poincaré inequality also holds on Ω: there exists K2 > 0 depending only on Ω, such that

‖u‖H1(Ω) ≤ K2|u|H1(Ω), ∀u ∈ H1
0(Ω). (27)

Using the extension operator u 7→ û we can easily extend, uniformly with respect to ε, the Korn
and the Poincaré inequality to ΩS,ε using the property (23):
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Lemma 2. (Korn inequality on ΩS,ε) There exists a constant α, depending only on Ω and Y,
such that:

∀ε > 0, ∀uε ∈ H1
0(ΩS,ε) ‖e(uε)‖L2(ΩS,ε) ≥ α|uε|H1(ΩS,ε). (28)

Lemma 3. (Poincaré inequality on ΩS,ε) There exists a constant β, depending only on Ω and
Y, such that:

∀ε > 0, ∀uε ∈ H1
0(ΩS,ε) ‖uε‖H1(ΩS,ε) ≤ β|uε|H1(ΩS,ε). (29)

Remark 3. To sum things up, | · |H1
0(ΩS,ε)

, ‖ · ‖H1
0(ΩS,ε)

, ‖e( · )‖L2(ΩS,ε), | ·̂ |H1
0(Ω), ‖ ·̂ ‖H1

0(Ω),

‖e( ·̂ )‖L2(Ω) are all equivalent norms on H1
0(ΩS,ε), uniformly with respect to ε.

On H1
mean(ΩF,ε), we also have a Poincaré inequality. Let φε belongs to H1

mean(ΩF,ε). By
rescaling each Yk

ε to Y and applying the Poincaré inequality for E (φε(ε ·+k)) ∈ H1
0 (Y), using

(25), we have

‖φε‖2L2(Yk

F,ε)
≤ ‖φ̂ε‖2L2(Yk

ε )
= εd‖E (φε(ε ·+k)) ‖2L2(Y)

≤ Cεd ‖∇ (E(φε(ε ·+k)))‖2L2(Y)

≤ Cεd ‖∇ (φε(ε ·+k))‖2L2(YF )

≤ Cεd+2 ‖(∇φε)(ε ·+k)‖2L2(YF )

≤ Cε2|φε|2H1(Yk

F,ε)
, ∀φε ∈ H1

mean(ΩF,ε),

where the constant C depends only on Y, YF , YS. Summing these inequalities over k we get

Lemma 4. (Poincaré inequality on ΩF,ε) There exists a constant γ depending only on Y such
that:

∀ε > 0, ∀φε ∈ H1
mean(ΩF,ε), ‖φε‖L2(ΩF,ε) ≤ ‖φ̂ε‖L2(Ω) ≤ γε|φε|H1(ΩF,ε). (30)

2.4.3 Two–scale convergence

Our objective in this paper is the study of the behavior of the solutions uε and φε of the problem
(22) as the parameter ε tends to zero. To achieve this, we will use the two–scale homogenization
and for the sake of completeness, we recall here the definition of two–scale convergence, see [26, 2].
Note that we could also use the closely related periodic unfolding method, see [16].

Definition 1. We say that a sequence (uε)ε>0 ⊂ L2(Ω) two–scale converges to some function
u ∈ L2(Ω;L2

#(Y)), and we note uε ։ u, if for all admissible test functions v ∈ L2(Ω, C#(Y)),

lim
ε→0

∫

Ω
uε(x)v

(
x,

x

ε

)
dx =

∫

Ω

∫

Y
u(x,y)v(x,y)dydx. (31)

This definition can be extended in an obvious way to complex, vector– and tensor–valued functions
in L2(Ω), L2(Ω) or L2(Ω)d by changing the product to the sesquilinear scalar product in C or the
scalar product for vectors, the tensorial product for matrices respectively.

Remark 4. The question of determining which test functions are admissible is a delicate one and
has been adressed on [2]. In particular, some amount of continuity in one variable or the other
is necessary to ensure the measurability of x 7→ v (x,x/ε). For example, any v ∈ L2

#(Y, C(Ω)),
such as 1Ω(x)χF (y), is an admissible test function for the two–scale convergence.

The two–scale homogenization method relies on the following Proposition, see [2] for proofs:
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Proposition 1. 1. Let uε be a bounded sequence in L2(Ω), there exists u(x,y) ∈ L2(Ω × Y)
such that up to a subsequence still denoted by uε, uε ։ u.

2. Let uε be a bounded sequence in H1(Ω) that converges weakly to a limit u in H1(Ω). Then,
uε two–scale converges to u(x) and there exists a function u1(x,y) in L2(Ω;H1

#(Y)/R)
such that up to a subsequence, ∇uε two–scale converges to ∇xu(x) +∇yu

1(x,y).

3. Let uε and ε∇uε be two bounded sequences in L2(Ω). Then, there exists a function u(x,y)
in L2(Ω;H1

#(Y)) such that up to a subsequence, uε ։ u(x,y) and ε∇uε ։ ∇yu(x,y).

2.5 Gårding’s inequality and well–posedness

Let us now study the variational problem (22) for any given ε > 0. In a standard way, using the
fact that λ ≥ 0, property (3) on µ and Korn’s inequality derived at Lemma 2, we obtain for all
functions vε in H1

0(ΩS,ε) the inequality:
∫

ΩS,ε

σε(vε) : e(vε) ≥ µ0‖e(vε)‖2H1(ΩS,ε)
≥ µ0α

2|vε|2H1(ΩS,ε)
. (32)

We define the sesquilinear form on H1
0(ΩS,ε) × H1

mean(ΩF,ε) appearing in the left–hand side of
(22) by:

aωε ((uε, φε); (v, ψ)) =

∫

ΩS,ε

−ρSω2uε · v + σε(uε) : e(v)

+ ρ0

∫

ΓI
ε

iω
(
ψuε · nS

ε − φεv · nS
ε

)

+ ρ0c
2
∑

k∈ZΩ
ε

1

εd|YF |

(∫

Γk

F,ε

uε · nS
ε

)(∫

Γk

F,ε

v · nS
ε

)

+ ρ0

∫

ΩF,ε

−ω
2

c2
φεψ +∇φε · ∇ψ.

(33)

The analysis proceeds by the use of the Fredholm alternative to obtain a criterium for the well–
posedness of the variational problem (22). We show that the alternative holds by proving in
the following Lemma that the sesquilinear form aωε defined by (33) satisfies Gårding’s inequality,
which is known to be a sufficient condition for the alternative to hold (see [21]).

Lemma 5. The sesquilinear form aωε (·, ·) verifies Gårding’s inequality on the space H1
0(ΩS,ε)×

H1
mean(ΩF,ε): for all ω ≥ 0, there exists constants C, γ > 0, both independent on ε but dependent

on ω, such that for any ε > 0 and (vε, ψε) ∈ H1
0(ΩS,ε)×H1

mean(ΩF,ε),

Re (aωε ((vε, ψε); (vε, ψε))) + C
(
‖vε‖2L2(ΩS,ε)

+ ‖ψε‖2L2(ΩF,ε)

)

≥ γ
(
‖vε‖2H1(ΩS,ε)

+ ‖ψε‖2H1(ΩF,ε)

)
. (34)

Proof. We follow the same steps as in [18], pp 63–64 for the proof of this inequality. Let ε > 0,
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ω ∈ R, vε ∈ H1
0(ΩS,ε) and ψε ∈ H1

mean(ΩF,ε). We compute from (33):

aωε ((vε, ψε); (vε, ψε)) =

∫

ΩS,ε

−ρSω2|vε|2 + σε(vε) : e(vε)

+ρ0c
2
∑

k∈ZΩ
ε

1

εd|YF |

∣∣∣∣∣

∫

Γk

F,ε

vε · nS
ε

∣∣∣∣∣

2

+ ρ0

∫

ΩF,ε

−ω
2

c2
|ψε|2 + |∇ψε|2

+ρ0

∫

ΓI
ε

iω
(
ψεvε · nS

ε − ψεvε · nS
ε

)
.

Taking the real part of the previous equality and using the coercivity of the stress tensor operator
(32), it follows that:

Re (aωε ((vε, ψε); (vε, ψε)))

+
(
µ0α

2 + ρSω
2
)
‖vε‖2L2(ΩS,ε)

+ ρ0

(
ω2

c2
+ 1

)
‖ψε‖2L2(ΩF,ε)

≥ µ0α
2‖vε‖2H1(ΩS,ε)

+ ρ0‖ψε‖2H1(ΩF,ε)
− 2ρ0ω

∣∣∣∣∣

∫

ΓI
ε

ψεvε · nS
ε

∣∣∣∣∣ .

If ω is equal to zero, we have proved the Gårding inequality (34). Else, we bound the last term
as follows. Using the divergence theorem, the Cauchy-Schwartz inequality and the extension
operator properties, see (23), we have

∣∣∣∣∣

∫

ΓI
ε

ψε v̂ε · nS
ε

∣∣∣∣∣ =
∣∣∣∣∣

∫

ΩF,ε

div(v̂ε) ψε +

∫

ΩF,ε

∇ψε · v̂ε

∣∣∣∣∣

≤ C
(
|vε|H1(ΩS,ε)‖ψε‖L2(ΩF,ε) + |ψε|H1(ΩF,ε)‖vε‖L2(ΩS,ε)

)
,

where C is a constant independent of ε and ω. Hence, by Young’s inequality, we get for any
constants δ1, δ2 > 0:

2ρ0ω

∣∣∣∣∣

∫

ΓI
ε

ψε v̂ε · nS
ε

∣∣∣∣∣ ≤ ρ0Cω
(
δ1|vε|2H1(ΩS,ε)

+ δ−1
1 ‖ψε‖2L2(ΩF,ε)

+δ2|ψε|2H1(ΩF,ε)
+ δ−1

2 ‖vε‖2L2(ΩS,ε)

)
,

and choosing respectively δ1 =
µ0α2

2ρ0Cω and δ2 = 1
2Cω we obtain

2ρ0ω

∣∣∣∣∣

∫

ΓI
ε

ψεvε · nS
ε

∣∣∣∣∣ ≤
µ0α

2

2
|vε|2H1(ΩF,ε)

+
2ρ20C

2ω2

µ0α2
‖ψε‖2L2(ΩF,ε)

+
ρ0
2
|ψε|2H1(ΩF,ε)

+ 2ρ0C
2ω2‖vε‖2L2(ΩS,ε)

.

Finally we have the estimate:

Re (aωε ((vε, ψε); (vε, ψε))) +
(
µ0α

2 + ρSω
2
)
‖vε‖2L2(ΩS,ε)

+ρ0

(
ω2

c2
+ 1

)
‖ψε‖2L2(ΩF,ε)

+ 2ρ0C
2ω2

(
‖vε‖2L2(ΩS,ε)

+
ρ0
µ0α2

‖ψε‖2L2(ΩF,ε)

)

≥ µ0α
2

2
‖vε‖2H1(ΩS,ε)

+
ρ0
2
‖ψε‖2H1(ΩF,ε)

.

Consequently, we have proved that aωε satisfies (34) for all ω ≥ 0.
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Gårding’s inequality (34) is then a sufficient condition for the Fredholm Alternative Prin-
ciple to hold for the problem (22) (see [21]). Thus the following proposition hold true:

Proposition 2. Either the problem (22) is well–posed, or there exists a nonzero solution (uε, φε)
to the homogeneous adjoint problem:

aωε ((vε, ψε); (uε, φε)) = 0 ∀(vε, ψε) ∈ H1
0(ΩS,ε)×H1

mean(ΩF,ε).

Remark 5. Note that the existence of nonzero solutions (uε, φε) is effective since this is the case
when, e.g., ω is an eigenvalue for the elasticity problem in ΩS,ε with the boundary conditions
σε(uε) · nS

ε = 0 such that the associated eigenmode uε satisfies at the same time the additional
condition uε · nS

ε = 0 on ΓI
ε, see [24, 18]. The associated φε is then equal to zero. Since we

cannot control the apparition of these eigenmodes as ε varies, we have to be careful about the
well–posedness of (22).

2.6 Energy estimates

Let us assume that (22) has a solution (uε, φε) in H1
0(ΩS,ε) × H1

mean(ΩF,ε). In this section we
are looking for a priori bounds for (uε, φε) independent on ε. Nevertheless, it is not possible to
obtain directly a priori estimates uniform in ε because ω could be an eigenvalue for the harmonic
problem (22), see e.g. Remark 5. Yet we can prove the following "energy" estimate:

Lemma 6. Let (uε, φε) ∈ H1
0(ΩS,ε)×H1

mean(ΩF,ε) be a solution of problem (22). There exists a
constant C(ω) > 0, independent of ε (but depending on ω) such that:

‖uε‖2H1(ΩS,ε)
+ ‖φε‖2H1(ΩF,ε)

≤ C(ω)
(
‖uε‖2L2(ΩS,ε)

+ ‖φε‖2L2(ΩF,ε)

+‖fε‖2L2(Ω) +‖gε‖2H1(Ω)

)
.

(35)

Proof. These estimates are obtained, thanks to standard arguments, by choosing uε and φε as
test functions in the variational formulation (22). This leads to:

aωε ((uε, φε); (uε, φε)) =

∫

ΩS,ε

fε · uε −
∫

ΓI
ε

(
gε −

1

|YF |
Πε(χF,εgε)

)
uε · nS

ε

+
iω

c2

∫

ΩF,ε

(
gε −

1

|YF |
Πε(χF,εgε)

)
φε.

We denote by g0ε the L2–function defined by:

g0ε = gε −
1

|YF |
Πε(χF,εgε).

Note that ∇
(
g0ε |Yk

ε

)
= ∇

(
gε|Yk

ε

)
, and

‖g0ε‖L2(Ω) ≤
(
1 +

1

|YF |

)
‖gε‖L2(Ω). (36)

Thanks to Proposition 5, there exists two constants C, γ > 0, independent of ε such that

Re



∫

ΩS,ε

fε · uε −
∑

k∈ZΩ
ε

∫

Γk

F,ε

g0εuε · nS
ε +

iω

c2

∫

ΩF,ε

g0εφε




+ C
(
‖uε‖2L2(ΩS,ε)

+ ‖φε‖2L2(ΩF,ε)

)
≥ γ

(
‖uε‖2H1(ΩS,ε)

+ ‖φε‖2H1(ΩF,ε)

)
.

(37)
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To control the first term of estimate (37), we use the Cauchy–Schwartz and Young inequalities.
We obtain

∣∣∣∣∣

∫

ΩS,ε

fε · uε

∣∣∣∣∣ ≤
1

2

(
‖uε‖2L2(ΩS,ε)

+ ‖fε‖2L2(Ω)

)
, (38)

∣∣∣∣∣
iω

c2

∫

ΩF,ε

g0ε · φε

∣∣∣∣∣ ≤
ω

2c2

(
‖φε‖2L2(ΩF,ε)

+ ‖g0ε‖2L2(Ω)

)
, (39)

and, for all δ > 0:
∣∣∣∣∣∣
∑

k∈ZΩ
ε

∫

Γk

F,ε

g0εuε · nS
ε

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

k∈ZΩ
ε

∫

Yk

F,ε

g0ε divûε +∇g0ε · ûε

∣∣∣∣∣∣

≤ δ

2
‖ûε‖2H1(ΩF,ε)

+
1

2δ


‖g0ε‖2L2(ΩF,ε)

+
∑

k∈ZΩ
ε

‖∇g0ε‖2L2(Yk

F,ε)


 .

Thanks to the properties of the extension operator (see Lemma 1) and to (36), there exists a
constant C1 independent of ε and ω such that

∣∣∣∣∣∣
∑

k∈ZΩ
ε

∫

Γk

F,ε

g0εuε · nS
ε

∣∣∣∣∣∣
≤ C1δ

2
δ‖uε‖2H1(ΩS,ε)

+
C1

2δ

∑

k∈ZΩ
ε

‖gε‖2H1(Yk

F,ε)
.

Hence choosing δ = γ/C1 we get the estimate

∣∣∣∣∣

∫

ΓI
ε

g0εuε · nS
ε

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈ZΩ
ε

∫

Γk

F,ε

g0εuε · nS
ε

∣∣∣∣∣∣
≤ γ

2
‖uε‖2H1(ΩS,ε)

+
C2
1

2γ
‖gε‖2H1(ΩF,ε)

. (40)

Combining finally (37), (38), (39) and (40) we can conclude that for some constant C > 0
independent of ε (but depending on ω), the following estimate holds true:

γ

2

(
‖uε‖2H1(ΩS,ε)

+ ‖φε‖2H1(ΩF,ε)

)
≤ C

(
‖uε‖2L2(Ω) + ‖φε‖2L2(ΩF,ε)

+‖fε‖2L2(Ω) + ‖gε‖2H1(Ω)

)
.

This ends the proof of estimate (35).

3 Two–scale homogenization of the coupled model

In this section we study the asymptotic as ε goes to zero. Nevertheless the standard scheme to
obtain the homogenized limit does not apply here. Indeed, usually we follow the steps:

• existence of a solution for a given ε,

• a priori bounds, independent of ε,

• two–scale convergence up to a subsequence by the use of Proposition 1,

• identification of the two–scale homogenized problem.
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However the problem presented here satisfies neither the first point, because of the two valid
statements in the Fredholm alternative, nor the second point since we only have a Gårding
inequality and not a coercivity property. In fact, it so happens that for some values of the
frequency ω, depending on ε, our problem is not well–posed due to the occurence of so–called
traction–free oscillations as explained in Remark 5.

A way to deal with this difficulty is to make the hypothesis that the required well–posedness
and boundedness results are true for ε small enough, and perform the homogenization process
according to the usual theory. Then, by studying the resulting homogenized problem, it is
possible to get a better understanding of the Fredholm alternative for the coupled problem (22)
as ε goes to zero. This kind of arguments was already used in [11, 6, 4]. In fact, we show
that away from the discrete set of eigenvalues of the homogenized problem, the coupled problem
(22) is well–posed for ε small enough. Moreover, when the homogenized problem has a unique
solution and due to the linear character of the system, the solutions of the problem (22) also
satisfy a priori bounds uniform in ε. This allows us to prove that the initial assumption (well-
posedness and a proiri estimates for ε small enough) holds true for all values of ω distinct from
the spectrum of the homogenized problem.

Let us now present the main result of this section, which will allow us to pass to the limit
and obtain, as the main conclusion of the paper, the homogenized behavior of the material.

Theorem 1. There is a discrete set Λ, such that for any ω ∈ R \ Λ, there exists ε0(ω) and
C(ω) in R

∗
+ such that for any 0 < ε < ε0, the problem (22) is well–posed for any data (fε, gε) ∈

L2(Ω)×H1(Ω), and its solution (uε, φε) satisfies the a priori bounds:

‖uε‖2H1(ΩS,ε)
+ ‖φε‖2H1(ΩF,ε)

≤ C(ω)
(
‖fε‖2L2(Ω) + ‖gε‖2H1(Ω)

)
. (41)

The proof of this result is detailed in Section 3.2, but we need to identify and study the
homogenized problem first.

3.1 Two–scale problem identification

In this whole section, we fix ω ∈ R and a sequence of data (fε, gε)ε>0 ⊂ L2(Ω) × H1(Ω), that
converges strongly to (f , g) ∈ L2(Ω)×H1(Ω). We assume that there exists C > 0 such that, for
ε small enough, the variational problem (22) with data (fε, gε) has at least one solution (uε, φε),
such that the following bound holds uniformly in ε:

‖uε‖2H1(ΩS,ε)
+ ‖φε‖2H1(ΩF,ε)

≤ C
(
‖fε‖2L2(Ω) + ‖gε‖2H1(Ω)

)
. (42)

Remark 6. Note that these assumptions reflect the conclusions of Theorem 1, which we prove
later on in Section 3.2.

Using the two–scale convergence framework, we are going to investigate the asymptotics
of problem (22) and identify the homogenized two–scale problem. Since the sequence (fε, gε)ε>0

converges strongly in L2(Ω) ×H1(Ω) it is bounded uniformly in ε in L2(Ω) ×H1(Ω). So from
(42), there exists C > 0 independent of ε such that

‖uε‖2H1(ΩS,ε)
+ ‖φε‖2H1(ΩF,ε)

≤ C.

Thanks to the properties of the extension operators introduced in Section 2.4 and to (30), we
have then for some constant C > 0:

‖ûε‖2H1(Ω) +
1

ε2
‖φ̂ε‖2L2(Ω) + |φ̂ε|2H1(Ω) ≤ C. (43)
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Thanks to Proposition 1, we know that there exists a subsequence, still indexed by ε for simplicity,
and three functions: u ∈ H1

0(Ω), u
1 ∈ L2(Ω;H1

#(Y)/C) and φ ∈ L2(Ω;H1
#(Y)), such that ûε,

φ̂ε and their gradients two–scale converge:

ûε ։ u in L2(Ω× Y), ∇ûε ։ ∇xu+∇yu
1 in L2(Ω× Y),

φ̂ε/ε։ φ in L2(Ω× Y), ∇φ̂ε ։ ∇yφ in L2(Ω× Y).
(44)

We are now going to identify the homogenized problem, satisfied by u, χSu
1 and χFφ.

3.1.1 Identification of the homogenized problem

To pass to the limit in the variational formulation we shall use well chosen test functions:

• vε(x,x/ε) = v(x) + εv1(x,x/ε) with v ∈ D(Ω) and v1 ∈ D(Ω, C∞
# (Y)), and

• ψε(x,x/ε) = εψ(x,x/ε) with ψ ∈ D
(
Ω, C∞(YF ) ∩H1

mean(YF )
)
.

We can then pass to the limit as ε goes to zero in the weak formulation (22), which writes:
∫

ΩS,ε

−ρSω2uε · vε + σε(uε) : e(vε) + ρ0

∫

ΓI
ε

iω
(
ψεuε · nS

ε − φεvε · nS
ε

)

+ ρ0c
2
∑

k∈ZΩ
ε

1

εd|YF |

(∫

Γk

F,ε

uε · nS
ε

)(∫

Γk

F,ε

vε · nS
ε

)

+ ρ0

∫

ΩF,ε

−ω
2

c2
φεψε +∇φε · ∇ψε

=

∫

ΩS,ε

fε · vε +

∫

ΩF,ε

∇gε · vε

+

∫

ΩF,ε

(
gε −

1

|YF |
Πε(χF,εgε)

)(
div(vε)−

iω

c2
ψε

)
.

(45)

It is straightforward to pass to the limit in most terms of the identity. For instance, we write
∫

ΩS,ε

σε(uε) : e(vε) =

∫

Ω
χS,ε λ∂iuε,i ∂ivε,i + χS,ε µ∂iuε,i ∂jvε,j,

where vε,j denotes the jth component of the vector vε. As the functions χS,ε λ∂ivε,j are admis-
sible test functions in the sense of two–scale convergence, we can pass to the limit as ε goes to
zero, and we obtain:

∫

ΩS,ε

σε(uε) : e(vε) →
∫

Ω

∫

YS

(
σx(u) + σy(u

1)
)
:
(
ex(v) + ey(v

1)
)
,

where we denote by σx(·) and σy(·) respectively the following tensor–valued operators:

σx(v)(x, y) = λ(x,y)divx(v)(x,y)Id + µ(x,y)ex(v)(x,y) for v ∈ H1(Ω, L2
#(Y)),

σy(v)(x, y) = λ(x,y)divy(v)(x,y)Id + µ(x,y)ey(v)(x,y) for v ∈ H1
#(Y, L2(Ω)).
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The main difficulty consists in dealing with the nonstandard terms supported by the interior
boundary ΓI

ε, which are:

ρ0c
2
∑

k∈ZΩ
ε

1

εd|YF |

(∫

Γk

F,ε

uε · nS
ε

)(∫

Γk

F,ε

vε · nS
ε

)
+ ρ0

∫

ΓI
ε

iω
(
ψεuε − φεvε

)
· nS

ε ,

and also with the term
∫

ΩF,ε

(
gε −

1

|YF |
Πε(χF,εgε)

)(
div(vε)−

iω

c2
ψε

)
.

First, we consider the product of integrals on the boundary of the holes as in [3, 7]. We write:

∑

k∈ZΩ
ε

ε−d

(∫

Γk

F,ε

uε · nS
ε

)(∫

Γk

F,ε

vε · nS
ε

)

=
∑

k∈ZΩ
ε

∫

Yk

F,ε

div ûε(x)

(
ε−d

∫

Yk

F,ε

div vε(x′)dx′

)
dx

=

∫

Ω
χF,ε div ûε Πε(χF,εdiv vε),

where Πε is defined by (21). To study the convergence of this product involving the projector
Πε, we need the following strong convergence result, which is proved in [3, 7]:

Lemma 7. Let ψ ∈ C∞(Ω;C∞
# (Y)), then

Πε

(
ψ
(
·, ·
ε

)
χF,ε

)
→
∫

YF

ψ(·,y)dy strongly in L2(Ω).

Consequenlty, since div vε = divxv+ εdivyv
1 + divxv

1, we obtain immediately:

Πε(χF,εdiv vε) →
∫

YF

divxv + divyv
1 strongly in L2(Ω).

Moreover, for any w ∈ D(Ω), the function

χF (y)w(x) ∈ C(Ω, L2
#(Y))

is an admissible test function for the two–scale convergence, see Remark 4. Hence, by definition
of the two–scale convergence we obtain

χF,εdiv ûε ⇀

∫

YF

divxu+ divyu
1 weakly in L2(Ω).

Combining these two results, we see that
∫

Ω

(
χF,ε div ûε Πε(χF,ε div vε)

)
converges to

1

|YF |

∫

Ω

(∫

YF

(divxu+ divyu
1)dy

)(∫

YF

(divxv + divyv1)dy′

)
.
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Another nonstandard term corresponds to the integral over the interior boundary. This one is
easier to deal with since it can be rewritten as a standard bilinear form using the Stokes formula.
Indeed, we obtain:

∫

ΓI
ε

ψuε · nS
ε − φεvε · nS

ε =

∫

ΩF,ε

(
∇φε · vε + φεdiv vε −∇ψε · uε − ψεdiv vε

)
.

Because φ̂ε and ψε converge strongly to 0 in L2(Ω), see (44), passing to the two–scale limit yields:

lim
ε→0

∫

ΓI
ε

ψuε · nS
ε − φεv · nS

ε =

∫

Ω

∫

YF

∇yφ · v −∇yψ · u.

Finally, let us compute the limit of the term:
∫

ΩF,ε

(
gε −

1

|YF |
Πε(χF,εgε)

)(
div(vε)−

iω

c2
ψε

)
.

Let g0ε =
(
gε − 1

|YF |Πε(gεχF,ε)
)
∈ L2(ΩF,ε). This function has zero mean over each pore Yk

F,ε,

and its restriction to each fluid cell Yk
F,ε belongs to H1. Thus g0ε belongs to H1

mean(ΩF,ε).
Moreover ∇(g0ε |Yk

F,ε
) = ∇(gε|Yk

F,ε
). Consequently from Lemma 4, we deduce that for some C > 0

independent of ε,
‖ĝ0ε‖L2(Ω) ≤ Cε‖∇g0ε‖L2(ΩF,ε) ≤ Cε‖∇gε‖L2(Ω).

Since the sequence (gε)ε>0 is strongly convergent inH1(Ω), ‖∇gε‖L2(Ω) is bounded independently

of ε. Thus ĝ0ε converges strongly to 0 in L2(Ω). Hence

lim
ε→0

∫

ΩF,ε

g0ε

(
div(vε)−

iω

c2
ψε

)
= lim

ε→0

∫

Ω
χF,εĝ0ε

(
div(vε)−

iω

c2
ψε

)
= 0.

We can now pass to the two–scale limit in every term of identity (45). We deduce that u,
u1 and φ are solutions of the following two–scale variational formulation: for all v ∈ D(Ω),
v1(x,y) ∈ D(Ω, C∞

# (Y)) and ψ ∈ D
(
Ω, C∞(YF ) ∩H1

mean(YF )
)
,

∫

Ω

∫

YS

−ρSω2u · v +
(
σx(u) + σy(u

1)
)
: (ex(v) + ey(v1))

+
ρ0c

2

|YF |

∫

Ω

(∫

YF

(divxu+ divyu
1)dy

)(∫

YF

(divxv + divyv1)dy′

)
dx

+ ρ0

∫

Ω

∫

YF

∇yφ · ∇yψ + ρ0iω

∫

Ω

∫

YF

(
∇yφ · v −∇yψ · u

)

=

∫

Ω

∫

Y
(fχS +∇gχF ) · v.

(47)

Remark 7. As a consequence of Lemma 7, we can show that
∫

YF

φ = 0 a.e. in Ω. (48)

To prove this, we note that χF,εφε/ε converges weakly to

∫

YF

φ in L2(Ω) by definition of the

two–scale convergence. Moreover, since φε ∈ H1
mean(ΩF,ε),

Πε(χF,εφε/ε) =
∑

k∈ZΩ
ε

1

|Yk
ε |

(∫

Yk

F,ε

φε/ε

)
χYk

ε
= 0. (49)
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But for any test function ψ ∈ C∞(Ω) we have
∫

ΩF,ε

Πε(χF,ε(φε/ε))ψ =

∫

Ω
χF,ε(φε/ε)Πε(χF,εψ).

Applying Lemma 7 yields
∫

Ω
χF,ε(φε/ε)Πε(χF,εψ) →

∫

Ω

(∫

YF

φ

)
|YF |ψ, as ε→ 0.

Consequently, thanks to this convergence and (49), we obtain that for any test function ψ ∈
C∞(Ω),

∫

Ω

(∫

YF

φ

)
ψ = 0 and (48) follows.

Remark 8. Let us make a few comments on the homogenized model described by the system
(47). At first glance, the only remaining inertia term seems to be ρSω

2u, so it seems that there
is no added mass effect from the fluid on the structure. However, we will see that we have the
relationship

∇yφ = iωu,

so the effective density is equal to the average density of the mixture.
On the other hand, there is no impact from the micro–structure geometry on the effective

density of the homogenized material because u1 does not appear in the inertia terms. This means,
for example, that there is no possibility of a band gap effect as in [6] as the mass does not depend
on the frequency ω.

Remark 9. When ω is zero, the fluid and the structure decouple. We then have

ρ0

∫

Ω

∫

YF

∇yφ · ∇yψ = 0 ∀ψ ∈ D
(
Ω, C∞(YF ) ∩H1

mean(YF )
)
.

Since D
(
Ω, C∞(YF ) ∩H1

mean(YF )
)

is dense in L2(Ω;H1
mean(YF )), one can take ψ = φ as a test

function to obtain ∇yφ = 0 in Ω × YF . Moreover
∫
YF
φ = 0 a.e. in Ω (see Remark 7), so we

find that φ|YF
= 0 a.e. in Ω. Our homogenized model then reduces to the same homogenized

two–scale system found in the static case in [7].

The next step is to decompose this two–scale problem on Ω×Y into cell problems for φ and
u1 where we use the macroscopic displacement u as a slow–varying parameter, and an effective
homogenized problem on u. Solving the cell problems yields explicit corrector functions, which
can be reinjected in (47) to write the homogenized coefficients for the macroscopic problem.

3.1.2 Fluid cell problem

Choosing v = 0 and v1 = 0, we recover the following variational problem for the homogenized
fluid velocity potential φ. The restriction φ|YF

∈ L2(Ω,H1
mean(YF )) verifies:

ρ0

∫

Ω

∫

YF

∇yφ · ∇yψ = ρ0iω

∫

Ω

∫

YF

∇yψ · u ∀ψ ∈ D
(
Ω, C∞(YF ) ∩H1

mean(YF )
)
.

Since u does not depend on the y variable and YF is strictly included in Y, it implies that
∇yφ = iωu a.e. in Ω× YF . This determines uniquely φ|YF

as a function of u. Remember that
we have chosen originally the origin as the barycenter of YF , hence this yields

φ = iωy · u and ∇yφ = iωu, on Ω× YF . (50)
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Remark 10. We see that the limit velocity of the fluid coincides locally with the limit velocity of
the structure. This result is mainly a consequence of the completely disconnected geometry of the
fluid domain: since the pores are closed, there is no independent motion of the gas with respect
to the structure.

3.1.3 Elastic cell problem

From (47), by taking v = 0 and ψ = 0 we obtain that for a.e. x ∈ Ω and for all v1 ∈ C∞
# (Y),

∫

YS

(
σx(u) + σy(u

1)
)
: ey(v1) =

ρ0c
2

|YF |

(∫

YF

divxu+ divyu
1dy

)(∫

ΓF

v1 · nS

)
. (51)

The strong formulation associated with (51) is





−divy

(
σy(u

1)
)
= divy (σx(u)) , in YS,

σy(u
1)nS − ρ0c

2

|YF |

(∫

ΓF

u1 · nS

)
nS = ρ0c

2divx(u)nS − σx(u)nS , on ΓF ,

u1 is Y–periodic.

Remark 11. Note that there is no dependence on ω in the structure cell problem, so the homog-
enized material’s elastic behavior is independent of frequency.

Remark 12. The cell problem is nonstandard as there is a nonlocal term in the boundary con-
ditions, as in the static case [7] which corresponds to the case ω = 0.

Since this problem is linear, we are going to take advantage of the superposition principle
to express u1 in terms of u. We define the classical auxiliary functions pkl ∈ H1(YS) by:

pkl(y) =
1

2

(
yke

l + yle
k
)

for 1 ≤ k, l ≤ d, (52)

where the vectors ek for 1 ≤ k ≤ d are the unit vectors of Rd whose components are ekl = δkl for
1 ≤ k, l ≤ d. Using the superposition principle in the local problem (51), we decompose u1|Ω×YS

as follows:
u1(x,y) = ex(u)kl(x)χ

kl(x,y), x ∈ Ω, y ∈ YS, (53)

where the functions χkl ∈ L∞(Ω,H1
#(YS ,R)/R), 1 ≤ k, l ≤ d are solutions of the cell problems





−divy

(
σy(p

kl + χkl)
)
= 0, in YS,

σy(p
kl + χkl)nS − ρ0c

2

|YF |

(∫

ΓF

(pkl + χkl) · nS

)
nS = 0, on ΓF ,

χkl is Y–periodic.

(54)

Remark 13. The functions χkl are called the correctors for the homogenized problem (47). The
cell problems (54) have only real coefficients and data; therefore, the family of correctors (χkl)kl
are in fact R

d–valued functions by opposition to the complex–valued displacement. This will be
important when computing the homogenized coefficients, see Proposition 3.
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The necessary compatibility conditions for existence of solutions of (54), or more generally
for any problem of the form

−divy (σy(u)) = F, in YS

σy(u)nS − ρ0c
2

|YF |

(∫

ΓF

u · nS

)
nS = G, on ΓF (55)

u is Y–periodic,

reads, since
∫

ΓF

nS = 0:
∫

YS

F+

∫

ΓF

G = 0. (56)

In our case, it writes:
∫

YS

divy

(
σy(p

kl)
)
+

∫

ΓF

(
ρ0c

2divy(p
kl)nS − σy(p

kl)nS

)

=

∫

ΓF

σy(p
kl)nS −

∫

ΓF

σy(p
kl)nS = 0.

Thus, the compatibility conditions are satisfied, and the local problems (54) as well as (51) are
well posed. Notice that the function pkl +χkl, which appears in the cell problem (54), describes
the microstructure’s response to a spatially slowly varying strain. We will need the following
technical result for such functions, a special version of Korn’s inequality, which is proved in the
annex:

Lemma 8. Consider the space of real–valued functions on YS defined as follows:

V = Span
{
(pkl)1≤k,l≤d

}
+H1

#(YS ,R)/R ⊂ H1(YS ,R)/R, (57)

where the family (pkl)1≤k,l≤d is defined by (52). Then the following Korn’s inequality holds in
V: there exists C > 0 depending only on YS such that

‖φ‖H1(YS) ≤ C‖e(φ)‖L2(YS) ∀φ ∈ V. (58)

3.1.4 Homogenized problem

Thanks to the expressions of φ given by (50) and of u1 parameterized by u given by (53), we
can eliminate u1 and φ from the two–scale system (47) to obtain the homogenized variational
formulation satisfied by the displacement u. We obtain, for any v ∈ D(Ω),

∫

Ω
−(|YS |ρS + |YF |ρ0)ω2u · v +

(∫

YS

σx(u) + ex(u)klσy(χ
kl)

)
: ex(v)

+ ρ0c
2

∫

Ω

(
|YF |divxu− ex(u)kl

∫

ΓF

χkl · nS

)
divxvdx

=

∫

Ω
(|YS|f + |YF |∇g) · v.

(59)
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Now, this formulation motivates the introduction of the homogenized coefficients, respectively
the homogenized density, elastic tensor and stress of the effective material:

ρ∗ = |YS |ρS + |YF |ρ0, (60)

A∗
ijkl =

∫

YS

(
σy(p

kl + χkl)ij − ρ0c
2δijdivyχ

kl
)
+ ρ0c

2|YF |δijδkl, (61)

σ∗(u) =
(
A∗

ijkle(u)kl
)
1≤i,j≤d

= A∗e(u). (62)

Finally, by density of test functions v ∈ D(Ω) in H1
0(Ω), u is a solution of the following variational

problem on H1
0(Ω): find u ∈ H1

0(Ω) such that for any v ∈ H1
0(Ω),

∫

Ω
−ρ∗ω2u · v +A∗e(u) : e(v) =

∫

Ω
(|YS |f + |YF |∇g) · v. (63)

Remark 14. Let us make some comments on the properties of the homogenized problem (63).
From the definitions of the effective density (60) and of the homogenized elastic tensor (61) the
effects of the fluid on the structure are the following:

• An added mass effect, so that the effective density (60) of the homogenized porous medium
is also its averaged density,

• A mean pressure term, which is nonlocal in the micro–scale cell problems (54) and appears
in the effective elastic tensor (61) as a contribution to the compressibility factor of the
material. This is the consequence of the phenomenon described in Remark 2 for finite
values of ε: the pressure term in each hole results in an effect which is nonlocal at the
microscopic scale, but local at the macroscopic scale. In fact, this is the same effective
tensor that was found in [7] in the static case (modulo a different air compressibility factor,
because we have used here a different state law for the gas).

On the whole, the resulting homogenized model (63) behaves like a linearized elastic material.
This is in agreement with the experimental data since low–frequency sound propagates in the
lungs without much attenuation [29].

Let us study the properties of problem (63). The sesquilinear form that appears on the
left hand side is not coercive. However, the following ellipticity properties of A∗ show that the
homogenized problem keeps much of the operator structure of linearized elasticity.

Proposition 3. The fourth–order real–valued tensor A∗(x) defined in (61) has the following
properties:

1. (Symmetry) The coefficients of A∗ satisfy the property:

A∗
ijkl = A∗

ijlk = A∗
klij, (64)

2. (Strong Ellipticity) There exists κ > 0 depending only on µ0 and the geometry of the cell
Y such that for any x ∈ Ω and any d× d real symmetric matrix ξ,

A∗(x)ξ : ξ ≥ κξ : ξ; (65)

3. (Definite positiveness)

A∗(x)ξ : ξ = 0 ⇔ ξ = 0. (66)
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Proof. The proof of the first point is standard and follows exactly the same lines as in [2, 7].
Consequently, we refer to these works for details. We will focuss only on the second point. Note
that the third item follows directly from the ellipticity property.

Let us prove the uniform coercivity. Since A∗(x) is positive definite in a finite dimensional
space, it is known that there exists a scalar κ(x) > 0 such that A∗(x)ξ : ξ ≥ κ(x)ξ : ξ. However,
κ(x) depends both on the geometry and on the Lamé coefficient µ(x,y), in a way that is not
clear at this point. We are going to prove a uniform lower bound for κ(x), independent of x and
of the continuity properties of λ and µ, that makes these dependencies explicit. Let us define
the function

φξ = ξijφ
ij.

We have
A∗(x)ξ : ξ = a#y (φξ(x),φξ(x)) ≥ µ0‖ey(φξ(x))‖2L2(YS)

. (67)

Now, let z1, . . . , zd, be a basis of Z (and R
d) such that for d faces of the unit cell Y,

denoted by F1, . . . , Fd, the translated surfaces F1 + z1, . . . , Fd + zd are also faces of YF . Then,
for i = 1, . . . , d and any y ∈ Fi, by Y–periodicity of χkl we have

ξzi = pξ(zi) = φξ(y + zi)− φξ(y).

Because the trace operator is continuous from H1(YS) on Fi and Fi + zi, there exists a constant
C depending on YS, Y only such that

‖ξzi‖ ≤ C‖φξ‖H1(YS).

Since the zi form a basis of Rd, we have
√
ξ : ξ < C sup

i=1,...,d
‖ξzi‖ ≤ C‖φξ‖H1(YS).

Here, C depends on YS and Y only. To conclude, we need to use the special version of Korn
inequality for the space on which the φξ live which is proved in the Annex, Lemma 8. This yields

‖φξ‖H1(YS) ≤ C‖e(φξ)‖L2(YS),

where C does not depend on x and depends only on YS and Y. Combining estimates (67) and
(58), we have proved that for some constant C > 0 depending only on YS and Y,

A∗(x)ξ : ξ > Cµ0ξ : ξ ∀x ∈ Ω. (68)

We are going to apply the Fredholm theory to the homogenized problem to show that there
is a discrete set of resonant frequencies ω for this limit problem. We denote by ( · , · )L2 the
L2–scalar product in L2(Ω).

Definition 2. Let B be the unbounded operator L2(Ω) → L2(Ω) such that:
{
D(B) =

{
u ∈ H1

0(Ω),−div (A∗(x)e(u)) ∈ L2(Ω)
}

Bu = −div (A∗(x)e(u)) ,
(69)

and b be the associated sesquilinear form in H1(Ω), that is

b(u,v) =

∫

Ω
A∗(x)e(u) : e(v) = (Bu,v)L2 . (70)
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Define the family of operators Aω = B − ω2I with D(Aω) = D(B), and the associated family of
sesquilinear forms aω appearing on the left–hand side of (63):

aω(u,v) =

∫

Ω
−ρ∗ω2u · v +A∗(x)e(u) : e(v) = (Aωu,v)L2 . (71)

Then, we have the well–known properties, since B is elliptic:

Proposition 4. 1. B is self–adjoint and has compact resolvent,

2. the eigenvalues of B form a sequence of nonnegative real numbers converging to +∞
(λn)n≥0, 0 < λ0 < ... < λn < ...

3. Aω is invertible iff ω2 /∈ (λn)n≥0,

4. If ω2 = λn, the solutions of Aωu = 0 form a subspace Vn of finite dimension dn for which
there exists an orthonormal basis of eigenvectors of B, (φk)1≤k≤dn , and Aωu = f is solvable
iff (φk, f)L2 = 0 for all 1 ≤ k ≤ dn.

Remark 15. In the case of Neumann boundary conditions, the main difference is that λ0 = 0
is an eigenvalue of the problem (with multiplicity d0 = 6) corresponding to the infinitesimal rigid
displacements. Except this everything else stands. Indeed, the homogenization process and A∗ do
not depend on the boundary conditions.

3.2 Proof of the a priori bounds and Theorem 1

We are now going to prove Theorem 1, making good use of our knowledge of the homogenized
system (63) and its eigenvalue set. The idea is to proceed by contradiction. Suppose that the
segments of Theorem 1 are false for some ω for which the problem (63) is well–posed. Then, the
following alternative holds true:

• The problem (22) is ill–posed for arbitrary small values of ε. In this case, there is a
sequence (εn)n≥0 converging to zero such that for all n ≥ 0, the problem (22) is ill–posed.
We know then by Proposition 5 that the homogeneous problem (22) with vanishing data
(fn, gn) = (0, 0) has a non–zero solution (un, φn). Since the problem is linear, we can
require that (un, φn) is normalized meaning that:

‖un‖2H1(ΩS,εn )
+ ‖φn‖2H1(ΩF,εn)

= 1.

• Or the problem (22) is well–posed for ε small enough, but the solutions do not satisfy
a priori bounds uniform in ε. Then, there exists a sequence (εn)n≥0 converging to zero
such that for some sequence (fn, gn) ∈ L2(Ω) ×H1(Ω) indexed by n ≥ 0, the sequence of
solutions (un, φn) of (22) satisfies

1 = ‖un‖2H1(ΩS,εn )
+ ‖φn‖2H1(ΩF,εn )

> n
(
‖fn‖2L2(Ω) + ‖gn‖2H1(Ω)

)
.

In either case, we have obtained a sequence (εn)n≥0 converging to zero and a sequence of data
(fn, gn) converging strongly to zero, such that the sequence (un, φn) is a sequence of solutions of
(22) and is bounded independently of n in H1(ΩS,ε)×H1(ΩF,ε):

‖un‖2H1(ΩS,εn ) + ‖φn‖2H1(ΩF,εn)
= 1. (72)
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We are going to show that ûn and φ̂n converge strongly to zero in L2(Ω), and then, using the
estimate (35), we will conclude that lim

n→+∞
‖un‖2H1(ΩS,εn ) + ‖φn‖2H1(ΩF,εn)

= 0 which is absurd

considering (72).
Thanks to (72), we can apply our analysis from Section 3.1 directly. In particular, ûn

and φ̂n two–scale converge: there exists functions u ∈ H1
D(Ω), u1 ∈ L2(Ω,H1

#(Y)/C) and
φ ∈ L2(Ω,H1

#(Y)) such that

ûn ։ u, ∇ûn ։ ∇xu+∇yu
1,

φ̂n ։ 0, ∇φ̂n ։ ∇yφ.

Moreover, (u,u1|Ω×YS
, φ|Ω×YF

) satisfy the homogenized problem (73) with zero right hand side.
We have supposed that the variational problem (73) is well–posed for our choice of ω. As a
consequence, u is equal to zero and the respective restrictions of u1 and φ to Ω×YS and Ω×YF

are also zero. Let us now show that this implies that ûn and φ̂n converge to 0 strongly in
H1(Ω). The first difficulty is that we do not control u1 and φ on the whole domain Ω× Y, and
thus the two–scale limits of the gradients ∇ûn and ∇φ̂n are not a priori uniquely defined. We
prove that this is not the case for the weak H1–limits. We know that ∇ûn converges weakly to∫
Y ∇xu+∇yu

1 so, since, u = 0 and u1|YS
= 0,

∇û⇀

∫

YF

∇yu
1 weakly in L2(Ω).

Then, for almost every x ∈ Ω, u1(x, ·) is zero on YS and belongs to H1
#(Y), so clearly u1 = 0

on ΓF = ∂YF . Integrating by parts, we obtain for any i, j ∈ {1, . . . , d},
∫

YF

∂iu
1
j (x,y)dy =

∫

ΓF

u1j (x,y)nS,i(y) = 0.

In the same way, we know that ∇φ̂n converges weakly to
∫
YS

∇yφ in H1(Ω) and for any i ∈
{1, . . . , d}, ∫

YS

∂iφ(y)dy =

∫

ΓF

φ(x,y)nS,i(y) = 0.

This proves that ûn and φ̂n converge weakly to zero in H1(Ω) and H1(Ω) respectively. By
compactness of the injection of H1

0 (Ω) in L2(Ω), there exists a subsequence (still denoted by n)
such that ûn and φ̂n converge strongly to 0 in L2(Ω). We now use the estimate (35). Since
(un, φn) are solutions of (22), we get:

‖un‖2H1(ΩS,εn )
+ ‖φn‖2H1(ΩF,εn)

≤ C(ω)
(
‖un‖2L2(ΩS,εn )

+ ‖φn‖2L2(ΩF,εn )
+ ‖fn‖2L2(Ω) + ‖gn‖2H1(Ω)

)
.

Hence since ûn and φ̂n converge strongly to zero in L2(Ω), we obtain

lim
n→∞

‖un‖2H1(ΩS,εn )
+ ‖φn‖2H1(ΩF,εn)

= 0.

But this is in contradiction with the construction of the sequence, since

‖un‖2H1(ΩS,εn ) + ‖φn‖2H1(ΩF,εn)
= 1.

This ends the proof of Theorem 1.
Finally, we have the following Proposition, which completes Theorem 1:
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Proposition 5. Let 0 < λ0 ≤ · · · < λn ≤ . . . be the ordered sequence of eigenvalues of the
homogeneous variational problem on H1

0(Ω)

−ρ∗λ2u− div (σ∗(u)) = 0.

then, for any ω ∈ R \ {λn}n∈N, there exists ε0(ω) and C(ω) in R
∗
+ such that for 0 < ε < ε0(ω),

the problem (22) is well posed and for any data f ∈ L2(Ω) and g ∈ H1(Ω), the solution (uε, φε)
satisfies the a priori estimate:

‖uε‖2H1(ΩS,ε)
+ ‖φε‖2H1(ΩF,ε)

≤ C(ω)
(
‖f‖2L2(Ω) + ‖g‖2H1(Ω)

)
.

3.3 Convergence Theorem and homogenized problem

We can now sum up the asymptotic behavior of the solutions in the following theorem.

Theorem 2. Two–scale homogenization of problem (22)
Let the frequency ω ≥ 0 be such that ω2 is in the resolvent set of B, then for ε small enough the
problem (22) is well posed.
Moreover, let the data (fε, gε)ε>0 ⊂ L2(Ω) × H1(Ω) be a sequence such that fε and gε converge
strongly to f ∈ L2(Ω) and g ∈ H1(Ω), then the solutions (uε, φε) of the problem (22) two–scale
converge in the sense that:

χS,εûε ։ uχS,

φ̂ε ։ 0, χF,ε∇φ̂ε ։ uχF ,

where u is the solution of the homogenized problem:

−ρ∗ω2u− div(σ∗(u)) = |YS |f + |YF |∇g on Ω, (73)

u = 0 on ∂Ω,

and the coefficients σ∗ and ρ∗ can be explicitly computed using formulas (60), (61), (62).

Proof. The only result of this theorem which we have not yet proved is the two–scale convergence
of the whole sequences χS,εûε, χF,εφ̂ε, and not only subsequences. This is a consequence of
the uniqueness of the solution of the homogenized problem (73), since every subsequence then
converges to the same limit.

4 Conclusion

We have obtained an homogenized system of equations for the modeling of sound propagation in
a foam like material such as the lung tissue. Starting from a model coupling elastic and acoustic
equations, we obtain at the limit a linearized elastic-like medium. In particular, we have shown
that the resonances of the material do not change the homogenized model: in fact, the resonances
of the real material, for a given ε > 0, are shown to be close to the resonances of the homogenized
material.

Obviously, this model is limited in its physical description of the lung tissue, but is nev-
ertheless valid for the low–frequency range since we recover the model introduced by Rice [29].
However, for higher frequencies some of the phenomena we have neglected, may become more
important, in particular viscous attenuation or scattering by the alveoli as the wavelength be-
comes smaller [23]. Indeed, it is well-known that sounds of a frequency above 1kHz are quickly
attenuated when propagating through the parenchyma [28, 30]. We refer to [14] for the numerical
study of an other model showing some memory effects due to a viscoelastic micro–structure.
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Annex

We provide here the proof of Lemma 8. We recall the definition of the functions pkl ∈ H1(YS):

pkl(y) =
1

2

(
yke

l + yle
k
)

for 1 ≤ k, l ≤ d, (74)

where the vectors ek for 1 ≤ k ≤ d are the unit vectors of Rd whose components are ekl = δkl for
1 ≤ k, l ≤ d.

Lemma 9. Consider the space of real–valued functions on YS defined as follows:

V = Span
{
(pkl)1≤k,l≤d

}
+H1

#(YS ,R)/R
d ⊂ H1(YS ,R)/R

d, (75)

where the family (pkl)1≤k,l≤d is defined by (74). Then the following Korn’s inequality holds in
V: there exists C > 0 depending only on the geometry of YS such that

‖φ‖H1
#
(YS)

≤ C‖e(φ)‖L2(YS) ∀φ ∈ V. (76)

Proof. We follow the proof of Theorem 6.3–4 in [15].

Step 1. We begin by showing that V is a closed subspace of H1(YS)/R
d. H1

#(YS) is closed in

H1(YS) since it is the closure of C∞
# (YS)

d in H1(YS).

Since the space of constant functions, noted R
d for simplicity, is a subspace of H1

#(YS)

with finite dimension, it is closed both in H1(YS) and in H1
#(YS). Identifying the quotient

spaces H1(YS)/R
d and H1

#(YS)/R
d with the orthogonal complement of Rd in each space,

it is clear that H1
#(YS)/R

d is a closed subspace of H1(YS)/R
d.

Step 2. Let M be the orthogonal complement of H1
#(YS)/R

d in H1(YS)/R
d. For each choice of

k, l, 1 ≤ k, l ≤ d, we can decompose each pkl according to the direct sum H1(YS)/R
d =

M⊕H1
#(YS)/R

d:

pkl = pkl
0 +ψkl pkl0 ∈ M, ψkl ∈ H1

#(YS)/R
d.

Let (φn) be a sequence of elements in V, such that φn → φ in H1(YS)/R
d. We have a

unique decomposition

φn = αn
klp

kl
0 +ψn, αn ∈ R

d×d, ψn ∈ H1
#(YS)/R

d,

and ‖φn‖2
H1(YS)

= ‖
∑

kl α
n
klp

kl
0 ‖2H1(YS)

+ ‖ψn‖2
H1(YS)

, so (αn
klp

kl
0 ) is bounded. Since the

space Span
{
(pkl

0 )1≤k,l≤d

}
has a finite dimension, there exists p ∈ Span

{
(pkl

0 )1≤k,l≤d

}

such that up to a subsequence
αn
klp

kl
0 → p.

Then, ψn converges to ψ in H1(YS)/R
d, so since H1

#(YS)/R
d is closed in H1(YS)/R

d,

ψn → ψ ∈ H1
#(YS)/R

d.

Finally, φ = p+ψ ∈ V and V is closed as a subspace of H1(YS)/R
d.
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Step 3. Let us show that V contains no infinitesimal rigid displacement of a solid body. Suppose
we have two vectors a,b ∈ R

d such that

V ∋ a+ b× y = Bklp
kl +ψ, B ∈ R

d×d, ψ ∈ H1
#(YS).

Recall that pkl is defined by (74). Since pkl, b × y and a are all polynomial functions in
the variable y, ψ is one too. Then ψ is a periodic polynomial function, therefore it has
to be equal to a constant c. Then a = c because pkl(0) = 0, see definition (74). Now, we
have

b× y =
1

2
Bklyke

l +
1

2
Bklyle

k =
1

2
(B +BT )y.

Observe that the cross product on the left can be represented only by a skew–symmetric
matrix, while we have a symmetric matrix on the right of the identity. Therefore both
matrices are in fact zero. This means that b = 0 and since we have taken the quotient by
the constants in definition (75), V contains no infinitesimal rigid displacement of a solid
body aside from {0}.

Step 4. Now, suppose assertion (76) is wrong. Then, there exists (φn) a sequence of elements of
V such that:

‖φn‖H1(YS) = 1 for all n ∈ N, and lim
n→∞

‖e(φn)‖L2(YS) = 0.

Using the Rellich–Kondrasov theorem, there exists a subsequence (still denoted by n) such
that φn converges strongly in L2(Ω). Since e(φn) also converges strongly in L2(Ω), we
deduce that φn is a Cauchy sequence with respect to the norm

φ 7→
√

‖φ‖2
L2(YS)

+ ‖e(φ)‖2
L2(YS)

.

By the standard Korn’s inequality in H1(YS), this norm is equivalent to the norm ‖·‖H1(YS)

on H1(YS). Hence, since V is closed and therefore complete, there exists φ ∈ V such that
φn converges to φ strongly. Moreover, the limit φ satisfies

‖e(φ)‖L2(YS) = lim
n→∞

‖e(φn)‖L2(YS) = 0.

Now φ is an infinitesimal rigid dislacement of a solid body and belongs to V, hence φ = 0.
This is a contradiction, since ‖φn‖H1(YS) = 1 for all n ∈ N.
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