G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion, Computer Methods in Applied Mechanics and Engineering, vol.187, issue.1-2, pp.91-117, 2000.
DOI : 10.1016/S0045-7825(99)00112-7

G. Allaire and C. Conca, Bloch-wave homogenization for a spectral problem in fluid-solid structures, Archive for Rational Mechanics and Analysis, vol.33, issue.3, pp.197-257, 1996.
DOI : 10.1007/BF02198140

F. Alouges, A. Augier, B. Graille, and B. Merlet, Homogenization of coupled equations for sound propagation in porous media, Adv. Diff. Eq, vol.17, pp.1001-1030, 2012.

P. Anselone, Collectively Compact Operator Approximation Theory and Applications to Integral Equations, 1971.

J. L. Auriault, Dynamic behaviour of a porous medium saturated by a newtonian fluid, International Journal of Engineering Science, vol.18, issue.6, pp.775-785, 1980.
DOI : 10.1016/0020-7225(80)90025-7

A. Ávila, G. Griso, B. Miara, and E. Rohan, Multiscale Modeling of Elastic Waves: Theoretical Justification and Numerical Simulation of Band Gaps, Multiscale Modeling & Simulation, vol.7, issue.1, pp.1-21, 2008.
DOI : 10.1137/060677689

L. Baffico, C. Grandmont, Y. Maday, and A. Osses, Homogenization of Elastic Media with Gaseous Inclusions, Multiscale Modeling & Simulation, vol.7, issue.1, pp.432-465, 2008.
DOI : 10.1137/070705714

URL : https://hal.archives-ouvertes.fr/inria-00180307

A. Bensoussan and J. , Lions and g; Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, 1978.

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lowfrequency range Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range Mechanics of deformation and acoustic propagation in porous media, J. Acoust. Soc. Amer. J. Acoust. Soc. Amer. J. Appl. Phys, vol.281213, issue.28, pp.168-178, 1956.
URL : https://hal.archives-ouvertes.fr/hal-01368668

G. Bouchitte and D. Felbacq, Homogenization near resonances and artificial magnetism from dielectrics, Comptes Rendus Mathematique, vol.339, issue.5, pp.377-382, 2004.
DOI : 10.1016/j.crma.2004.06.018

URL : https://hal.archives-ouvertes.fr/hal-01283206

R. Burridge and J. Keller, Biot's poroelasticity equations by homogenization, Macroscopic Properties of Disordered Media, pp.51-57, 1982.
DOI : 10.1007/3-540-11202-2_4

J. P. Butler, J. L. Lehr, and J. M. Drazen, Longitudinal elastic wave propagation in pulmonary parenchyma, J. Appl. Phys, vol.62, pp.1349-1355, 1987.

P. Cazeaux and J. S. Hesthaven, Multiscale modelling of sound propagation through the lung parenchyma, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.1, 2013.
DOI : 10.1051/m2an/2013093

URL : https://hal.archives-ouvertes.fr/hal-00736483

P. G. Ciarlet, Three-dimensional elasticity, of Studies in Mathematics and its Applications, 1988.
URL : https://hal.archives-ouvertes.fr/hal-01077590

D. Cioranescu, A. Damlamian, and G. Griso, The Periodic Unfolding Method in Homogenization, SIAM Journal on Mathematical Analysis, vol.40, issue.4, pp.1585-1620, 2008.
DOI : 10.1137/080713148

URL : https://hal.archives-ouvertes.fr/hal-00693080

D. Cioranescu and P. Donato, Exact internal controllability in perforated domains, J. Math. Pures Appl, vol.68, issue.9, pp.185-213, 1989.

P. Cummings, Analysis of Finite Element Based Numerical Methods for Acoustic Waves, Elastic Waves, and Fluid-Solid Interactions in the Frequency Domain, 2001.

P. J. Dale, F. L. Matthews, and R. C. Schroter, Finite element analysis of lung alveolus, Journal of Biomechanics, vol.13, issue.10, pp.865-873, 1980.
DOI : 10.1016/0021-9290(80)90174-8

R. Dautray and J. Lions, Mathematical analysis and numerical methods for science and technology, 1988.

M. Fang, R. Gilbert, A. Panchenko, and A. Vasilic, Homogenizing the time-harmonic acoustics of bone: The monophasic case, Mathematical and Computer Modelling, vol.46, issue.3-4, pp.331-340, 2007.
DOI : 10.1016/j.mcm.2006.10.005

J. L. Ferrín and A. Mikeli?, Homogenizing the acoustic properties of a porous matrix containing an incompressible inviscid fluid, Mathematical Methods in the Applied Sciences, vol.34, issue.10, pp.831-859, 2003.
DOI : 10.1002/mma.398

A. Friedman, Partial differential equations, 1969.

R. P. Gilbert and A. Mikeli?, Homogenizing the acoustic properties of the seabed. I, Nonlinear Anal, pp.185-212, 2000.

Q. Grimal, A. Watzky, and S. Naili, A one-dimensional model for the propagation of transient pressure waves through the lung, Journal of Biomechanics, vol.35, issue.8, pp.1081-1089, 2002.
DOI : 10.1016/S0021-9290(02)00064-7

G. C. Hsiao, R. E. Kleinman, and G. F. Roach, Weak Solutions of Fluid-Solid Interaction Problems, Mathematische Nachrichten, vol.84, issue.1, pp.139-163, 2000.
DOI : 10.1002/1522-2616(200010)218:1<139::AID-MANA139>3.0.CO;2-S

S. S. Kraman, Speed of low-frequency sound through lungs of normal men, J. Appl. Phys, pp.1862-1867, 1983.

G. Nguetseng, A General Convergence Result for a Functional Related to the Theory of Homogenization, SIAM Journal on Mathematical Analysis, vol.20, issue.3, pp.608-623, 1989.
DOI : 10.1137/0520043

J. Am, J. Resp-crit-care-med, and E. Osborn, Spectral approximation for compact operators, Math. Comput, vol.29, pp.712-725, 1975.

M. R. Owen and M. A. Lewis, The mechanics of lung tissue under high-frequency ventilation, SIAM J. Appl. Math, vol.61, pp.1731-1761, 2001.

H. Pasterkamp, S. S. Kraman, and G. R. Wodicka, Respiratory Sounds, American Journal of Respiratory and Critical Care Medicine, vol.156, issue.3, p.974, 1997.
DOI : 10.1164/ajrccm.156.3.9701115

D. A. Rice, Sound speed in pulmonary parenchyma, J. Appl. Physiol, vol.54, pp.304-308, 1983.

D. Rueter, H. P. Hauber, P. Droeman, S. Zabel, and . Uhlig, Low-frequency ultrasound permeates the human thorax and lung: a novel approach to non-invasive monitoring, pp.31-53, 2010.

E. Sanchez-palencia, Vibration of mixtures of solids and fluids, in Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol.127, pp.158-190, 1980.

M. Siklosi, O. E. Jensen, R. H. Tew, and A. Logg, Multiscale modeling of the acoustic properties of lung parenchyma, ESAIM: Proceedings, vol.23, pp.78-97, 2008.
DOI : 10.1051/proc:082306

B. Suki, S. Ito, D. Stamenovi?, K. R. Lutchen, and E. P. Ingenito, Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces, Journal of Applied Physiology, vol.98, issue.5, pp.98-1892, 2005.
DOI : 10.1152/japplphysiol.01087.2004